首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
It is thought that direct quenching of singlet oxygen and scavenging free radicals by macular pigment carotenoids is a major mechanism for their beneficial effects against light-induced oxidative stress. Corresponding data from human tissue remains unavailable, however. In the studies reported here, electron paramagnetic resonance (EPR) spectroscopy was used to measure light-induced singlet oxygen generation in post-mortem human macula and retinal pigment epithelium/choroid (RPE/choroid). Under white-light illumination, production of singlet oxygen was detected in RPE/choroid but not in macular tissue, and we show that exogenously added macular carotenoids can quench RPE/choroid singlet oxygen. When the singlet oxygen quenching ability of the macular carotenoids was investigated in solution, it was shown that a mixture of meso-zeaxanthin, zeaxanthin, and lutein in a ratio of 1:1:1 can quench more singlet oxygen than the individual carotenoids at the same total concentration.  相似文献   

2.
BtuCD is a type II ABC importer that catalyzes the translocation of vitamin B12 from the periplasm into the cytoplasm of Escherichia coli. Crystal structures of BtuCD and the related HiF (or Hi1470/71) protein from Haemophilus influenzae have revealed distinct conformations of the transmembrane domains that form inner and outer gates. We used electron spin resonance spectroscopy to study the reaction cycle of BtuCD after labeling the protein at residues located at these gates. The results suggest that BtuCD as a prototype type II ABC importer may have a mechanism that is distinct from that of ABC exporters such as Sav1866 or type I ABC importers such as those specific for molybdate (ModBC) or maltose (MalFGK).

Structured summary

MINT-6803800: btuF (uniprotkb: P37028), btuC (uniprotkb:P06609) and btuD (uniprotkb:P06611) physically interact (MI:0218) by molecular sieving (MI:0071)  相似文献   

3.
Circular dichroism (CD) spectra are presented of ferredoxin, ferredoxin-NADP reductase and their complex. A change in CD occurs on complex formation which is consistent with a decrease in the Cotton effects due to the ferredoxin. This change is interpreted as due to a decrease in interaction in ferredoxin between the iron-sulphur chromophore group and the protein.  相似文献   

4.
The region of β-spectrin that is responsible for interactions with ankyrin was shown to comprise an ankyrin-sensitive lipid-binding site. Structural studies indicate that it exhibits a mixed 310/α helical conformation and is highly amphipathic. These features together with the distinctively conserved sequence of the lipid-binding site motivated us to explore the mechanism of its interactions with biological membranes. A series of singly and doubly spin-labeled erythroid β-spectrin-derived peptides was constructed, and the spin-label mobility and spin-spin distances were analyzed via electron paramagnetic resonance spectroscopy and two different calculation methods. The results indicate that in β-spectrin, the lipid-binding domain, which is part of the 14th segment, has the topology of typical triple-helical spectrin repeat. However, it undergoes significant changes when interacting with phospholipids or detergents. A mechanism for these interactions is proposed in this paper.  相似文献   

5.
Iron chelation therapy was initially designed to alleviate the toxic effects of excess iron evident in iron-overload diseases. However, some iron chelator-metal complexes have also gained interest due to their high redox activity and toxicological properties that have potential for cancer chemotherapy. This communication addresses the conflicting results published recently on the ability of the iron chelator, Dp44mT, to induce hydroxyl radical formation upon complexation with iron (B.B. Hasinoff and D. Patel, J Inorg. Biochem.103 (2009), 1093-1101). This previous study used EPR spin-trapping to show that Dp44mT-iron complexes were not able to generate hydroxyl radicals. Here, we demonstrate the opposite by using the same technique under very similar conditions to show the Dp44mT-iron complex is indeed redox-active and induces hydroxyl radical formation. This was studied directly in an iron(II)/H2O2 reaction system or using a reducing iron(III)/ascorbate system implementing several different buffers at pH 7.4. The demonstration by EPR that the Dp44mT-iron complex is redox-active confirms our previous studies using cyclic voltammetry, ascorbate oxidation, benzoate hydroxylation and a plasmid DNA strand-break assay. We discuss the relevance of the redox activity to the biological effects of Dp44mT.  相似文献   

6.
酶的定向固定化方法及其对酶生物活性的影响   总被引:13,自引:0,他引:13  
固定化酶可以提高酶的稳定性,但通常酶通过酶分子上的多个赖氨酸残基随意固定在载体上,这样会使酶的活性显著下降,采用定向固定化酶不仅可以提高酶的稳定性,而且可以保存它的活性。综述了定向固定化酶的几种方法,比较了定向固定化和随意固定化对酶活性的影响。另外,还叙述了酶的活性位点结构变化的自旋共振波谱(EPR)检测。  相似文献   

7.
Reactive oxygen species play an important role in adriamycin (ADR) nephropathy. We showed by in vivo electron paramagnetic resonance (EPR) that renal reducing ability (RRA) declined on the 7th day after ADR administration. Proteinuria appeared after the decline in RRA. The aim of this study was to prove by in vivo EPR whether the decline in RRA is altered by scavengers such as dimethyl sulfoxide (DMSO) and dimethylthiourea (DMTU) and that it is this change which is responsible for the proteinuria in ADR nephropathy. By showing that DMSO and DMTU ameliorate the RRA, we demonstrate that the decline in RRA is related to ADR-induced proteinuria.  相似文献   

8.
XC Sarcoma, Vero and Aedes aegypti plasma membranes have been studied in viable cells and in purified membrane of XC Sarcoma cells by the spin label method. The temperature dependence of the order parameter of fatty acid spin labels is found to be linear in all three cells and membrane and shows no evidence of a lipid phase transition. The order parameter of the fatty acid labels substituted at the 5-position is shown to increase as a function of the cholesterol: phospholipid molar ratio in cells that have been studied to date. Cells attached to their growing surface are studied for the first time by electron paramagnetic resonance spectroscopy (EPR). The resulting spectra are anisotropic due to the non-spherical shape of the cells and show that these labels orient preferentially perpendicular to the cell surface. The viscosity of the extracted XC cell membrane is estimated to be 2.5 P from rotational correlation time measurements of the spin label 2,2,6,6-tetramethylpiperidine-N-oxyl (TEMPO).  相似文献   

9.
10.
Acute nodularin-induced hepatotoxicity was assessed in vivo, in rats using magnetic resonance (MR) techniques, including MR imaging (MRI), MR spectroscopy (MRS), and electron paramagnetic resonance (EPR) oximetry. Nodularin is a cyclic hepatotoxin isolated from the cyanobacterium Nodularia spumigena. Three hours following the intraperitoneal (i.p.) administration of nodularin (LD50), a region of 'damage', characterized by an increase in signal intensity, was observed proximal to the porta hepatis (PH) region in T2-weighted MR images of rat liver. Image analysis of these regions of apparent 'damage' indicated a statistically significant increase in signal intensity around the PH region following nodularin administration, in comparison with controls and regions peripheral to the PH region. An increase in signal intensity was also observed proximal to the PH region in water chemical shift selective images (CSSI) of nodularin-treated rat livers, indicating that the increased signal observed by MRI is an oedematous response to the toxin. Microscopic assessment (histology and electron microscopy) and serum liver enzyme function tests (aminotransferase (ALT) and aspartate ALT (AST)) confirmed the nodularin-induced tissue injury observed by MRI. In vivo and in vitro MRS was used to detect alterations in metabolites, such as lipids, Glu+Gln, and choline, during the hepatotoxic response (2-3 h post-exposure). Biochemical assessment of perchloric acid extracts of nodularin-treated rat livers were used to confirm the MRS results. In vivo EPR oximetry was used to monitor decreasing hepatic pO2 (approximately 2-fold from controls) 2-3 h following nodularin exposure. In vivo MR techniques (MRI, MRS and EPR oximetry) are able to highlight effects that may not have been evident in single end point studies, and are ideal methods to follow tissue injury progression in longitudinally, increasing the power of a study through repeated measures, and decreasing the number of animals to perform a similar study using histological or biochemical techniques.  相似文献   

11.
Protoporphyrin IX (PPIX) lipids were synthesized by introducing a long alkyl chain, such as C13, C15, and C17, at each vinyl group on PPIX via hydrobromination. The PPIX lipids exhibited a water-soluble property by forming their micelles in water and the PPIX–lipid micelles showed relatively low cytotoxicity toward HeLa cells (IC50 = 151.7–379.9 μM) without light irradiation. PL-C17 liposomes (post-inserted liposomes) were readily prepared by adding PL-C17 micelle solution to the liposome solution. The IC50 values of PPIX, PL-C17 micelles, and PL-C17 liposomes toward HeLa cells were 0.53, 5.65, and 12.9 μM, respectively, after irradiation with a xenon lamp in the 400–800 nm range for 2 min. PL-C17 liposomes were selectively accumulated in the Golgi apparatus in cells.  相似文献   

12.
Summary N-acetylchitooligosaccharides, fragments of the backbone of fungal cell wall, trigger rapid membrane responses such as transient depolarization, and elicit defense reactions including phytoalexin production in suspension-cultured rice cells. The generation of reactive oxygen species triggered by the oligosaccharide signal was analyzed with EPR spectroscopy using a spin trapping system, 4-pyridyl 1-oxideN-tert-butyl nitrone (4-POBN) and ethanol. OH generation was detected as the -hydroxyethyl adduct of 4-POBN after elicitation. Superoxide dismutase, catalase or diethylenetriamine pentaacetic acid, a metal chelator, inhibited generation, proposing the following reaction sequence: generation of in response to the oligosaccharide elicitor, followed by dismutation to H2O2, then generation of by the reaction of H2O2 with Fe2+ that is generated by the reduction of Fe3+ by . Generation of the same reactive oxygen species was also triggered by calyculin A, a protein phosphatase inhibitor, alone, suggesting the involvement of protein phosphorylation in its regulation during the oligosaccharide signal transduction.Abbreviations DMPO 5,5-dimethyl-1-pyrroline N-oxide - DTPA diethylenetriamine pentaacetic acid - 4-POBN 4-pyridyl 1-oxideN-tert-butylnitrone - SOD Superoxide dismutase - 4-hydroxy-TEMPO 2,2,6,6-tetramethyl-4-hydroxypiperidine-1-oxyl  相似文献   

13.
    
We investigated aqueous solutions containing nitrite ions and DMPO (5,5-dimethyl-1-pyrroline-N-oxide) by electron spin resonance (ESR) in the pH range from 1 to 6. A DMPO-OH signal was observed below pH 3.0 in the presence of nitrite ions, whereas in the absence of nitrite ion, an extremely weak signal was observed below pH 1.5. Addition of methanol, a hydroxyl radical scavenger, to this system did not lead to the appearance of a detectable DMPO-CH2OH signal. The possibility of this DMPO-OH signal being due to a genuine spin trapping process with hydroxyl radical was, therefore, ruled out. The reactivities of reactive nitrogen species (RNS) in this system with DMPO have also been investigated by density functional theory (DFT) at the IEFPCM (water)/B3LYP/6–311?+?G ** level of theory. On the basis of the pH dependence of the signal intensity and the redox potential (versus SHE) calculated by DFT theory, we propose that the origin of this signal is “inverted spin trapping” via one-electron oxidation of DMPO by H2ONO+, followed by the nucleophilic addition of water. Prevention of these false-positive results when detecting hydroxyl radical using ESR spin trapping requires an awareness of both the presence of nitrite ions in the solution and the solution pH.  相似文献   

14.
The relationship between Ca2+ transport and energy transduction of myocardial mitochondria in the presence of reactive oxygen species was investigated. Following treatment with oxygen free radicals [superoxide(O 2 ) or hydroxyl radical ()OH], lipid free radicals in myocardial mitochondrial membrane could be detected by using the method of EPR spin trap. Simultaneously there were obvious alterations in the free Ca2+ ([Ca2+]m) in the mitochondrial matrix; the physical state of membrane lipid; the efficiency of oxidative phosphorylation (ADP/O); the value of the respiratory control ratio (RCR); and the membrane potential of the inner membrane of myocardial mitochondria. If the concentrations of reactive oxygen species were reduced by about 30%, the alterations in the physical state of the membrane lipid and energy transduction of myocardial mitochondria were not observed, but the changes in Ca2+ homeostasis remained. We conclude that Ca2+ transport by myocardial mitochondria is more sensitive to agents such as (O 2 ) or OH, etc. than are oxidation phosphorylation and the respiratory chain.  相似文献   

15.
Free radicals or oxidants are continuously produced in the body as a consequence of normal energy metabolism. The concentration of free radicals, together with lipid peroxidation, increases in some tissues as a physiological response to exercise – they have also been implicated in a variety of pathologies. The biochemical measurement of free radicals has relied in the main on the indirect assay of oxidative stress by-products. This study presents the first use of electron spin resonance (ESR) spectroscopy in conjunction with the spin-trapping technique, to measure directly the production of radical species in the venous blood of healthy human volunteers pre- and post-exhaustive aerobic exercise. Evidence is also presented of increased lipid peroxidation and total antioxidant capacity post-exercise. Accepted: 30 October 1997  相似文献   

16.
Electron paramagnetic resonance (EPR) spectroscopy has been used to structurally characterize the copper-binding site in CusF protein from Escherichia coli. The EPR spectra indicate a single type II copper center with parameters typical for nitrogen and oxygen ligands (A~200 G, g~2.186, g~2.051). The pulsed EPR data show that one of the ligands to Cu2+ is an imidazole ring of a histidine residue. The remote amino nitrogen of this imidazole ring is readily observed by electron spin-echo envelope modulation spectroscopy, while the imino nitrogen that is directly coordinated to the Cu2+ ion is observed by pulsed electron–nuclear double resonance (ENDOR). In addition, the ENDOR spectra reveal the presence of one more nitrogen ligand that was assigned to be a deprotonated peptide nitrogen. Apart from the two nitrogen ligands, it has been established that there are two nearby hydroxyl protons, although whether these belong to a single equatorial water ligand or two equatorial hydroxide ligands is not known.
Megan M. McEvoyEmail: Phone: +1-520-6213489Fax: +1-520-6211697
  相似文献   

17.
Freshwater goldfish (Carassius auratus) were exposed to cadmium (Cd) from 0 to 5 mg/L, and naphthalene (NAP) from 0 to 50 mg/L. Twenty-four hours after the exposure, reactive oxygen species (ROS) was trapped by phenyl-tert-butyl nitrone and detected by electron paramagnetic resonance (EPR). Protein carbonyl (PCO) and lipid peroxidation (LPO) content were determined. The activities of superoxide dismutase (SOD) and catalase (CAT) were also measured. The EPR spectra signals were characterized by prominent six-line spectra, which were defined as hydroxyl radical ((.)OH). As compared to the control group, Cd and NAP significantly induced (.)OH production marked by the intensity of the prominent spectra at higher concentrations. Both xenobiotics also increased LPO content and PCO content, depending on the concentrations. Either LPO or PCO content showed significant relation with (.)OH production. Cd increased the activity of SOD and decreased that of CAT at 5 mg/L, and NAP increased the activities of SOD and CAT at 5 mg/L. The results clearly indicated that these two structurally different non-redox cycling xenobiotics could induce (.)OH generation and result in oxidative damage in liver of C. auratus, and these effects were concentration-dependent.  相似文献   

18.
The hydrophobic spin probe 2,2,6,6-tetramethyl-piperidin-1-oxyl-4-yl octadecanoate (TEMPO-stearate) is used to study the interfacial properties of a variety of phosphatidylcholine vesicles. Since the spin probe exhibits a fast motional electron paramagnetic resonance (EPR) spectrum above the phase transition, the EPR spectrum of the spin probe is analyzed by nonlinear least-squares spectral fitting. EPR spectral line fitting provides high precision spectral parameters, which can be used to construct a detailed picture of the dynamics of the probe and its environment. The hyperfine coupling spacing is used to estimate the effective water concentration in the polar shell of vesicles, while the rotational correlation times give the information on the motion of the spin probe. The effective water concentration of the polar shell of dimyristoyl-phosphatidylglycerol (DMPG) vesicles is greater on average by about 4.0M than the effective water concentration of the polar shell of dimyristoyl-phosphatidylcholine (DMPC) vesicles. The effective water concentration decreases by about 0.5M for an increase of two carbons in the chain, and increases noticeably with hydrocarbon chain unsaturation, which is in good agreement with literature values. The nitroxide moiety rotates preferentially along the N-O bond, that is, parallel to its hydrocarbon chain.  相似文献   

19.
Hypocrellin B (HB), a perylenequinone derivative, is an efficient phototherapeutic agent. The chelation of HB with Zinc ions (Zn2+) results in a metal chelate (Zn-HB) which exhibits considerable absorption (λmax = 612nm) in the phototherapeutic window. The structure of this chelate has been characterized by UV-Vis, IR and mass spectra. The redox potentials of the Zn-HB chelate were Eox = +1.1V (vs. SCE) and Ere = -0.7V (vs. SCE) as measured using the circle volt curve. The quantum yield of singlet oxygen generated by the Zn-HB chelate was 0.86, which both the electron spin trap (EPR) method and the chemical trap method show to be about 0.1 higher than that of its parent compound HB. In irradiated oxygen-saturated solutions of Zn-HB chelate, superoxide radical anions and hydroxyl radicals were detected by EPR spectroscopy using 5,5-dimethyl-1-pyrroline-N-oxide (DMPO) as the spin-trapping agent.  相似文献   

20.
Intrinsic reactive oxygen species (ROS) in a rat model of human minimal change nephropathy were detected directly using an in vivo electron paramagnetic resonance (EPR) method with 1-acetoxy-3-carbamoyl-2,2,5,5-tetramethylpyrrolidine (ACP) in real time. The nephrosis was induced by the intravenous administration of 75 mg/kg of puromycin aminonucleoside (PAN). It was found that ROS in the kidney were increased 1 h after the administration of PAN. This increased oxidative stress declined at 24 h and returned to a normal level 3 days after PAN administration. This is the first non-invasive in vivo detection and quantification of specific ROS in an experimental nephrosis model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号