首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A better understanding of the factors that govern individual cell lifespan and the replicative capacity of cells (i.e. Hayflick's limit) is important for addressing disease progression and ageing. Estimates of cell lifespan in vivo and the replicative capacity of cell lines in culture vary substantially both within and across species, but the underlying reasons for this variability remain unclear. Here, we address this issue by presenting a quantitative model of cell lifespan and cell replicative capacity. The model is based on the relationship between cell mortality and metabolic rate, which is supported with data for different cell types from ectotherms and endotherms. These data indicate that much of the observed variation in cell lifespan and cell replicative capacity is explained by differences in cellular metabolic rate, and thus by the three primary factors that control metabolic rate: organism size, organism temperature and cell size. Individual cell lifespan increases as a power law with both body mass and cell mass, and decreases exponentially with increasing temperature. The replicative capacity of cells also increases with body mass, but is independent of temperature. These results provide a point of departure for future comparative studies of cell lifespan and replicative capacity in the laboratory and in the field.  相似文献   

2.
Chronological and replicative aging have been studied in yeast as alternative paradigms for post-mitotic and mitotic aging, respectively. It has been known for more than a decade that cells of the S288C background aged chronologically in rich medium have reduced replicative lifespan relative to chronologically young cells. Here we report replication of this observation in the diploid BY4743 strain background. We further show that the reduction in replicative lifespan from chronological aging is accelerated when cells are chronologically aged under standard conditions in synthetic complete medium rather than rich medium. The loss of replicative potential with chronological age is attenuated by buffering the pH of the chronological aging medium to 6.0, an intervention that we have previously shown can extend chronological lifespan. These data demonstrate that extracellular acidification of the culture medium can cause intracellular damage in the chronologically aging population that is asymmetrically segregated by the mother cell to limit subsequent replicative lifespan.  相似文献   

3.
Chronological and replicative aging have been studied in yeast as alternative paradigms for post-mitotic and mitotic aging, respectively. It has been known for more than a decade that cells of the S288C background aged chronologically in rich medium have reduced replicative lifespan relative to chronologically young cells. Here we report replication of this observation in the diploid BY4743 strain background. We further show that the reduction in replicative lifespan from chronological aging is accelerated when cells are chronologically aged under standard conditions in synthetic complete medium rather than rich medium. The loss of replicative potential with chronological age is attenuated by buffering the pH of the chronological aging medium to 6.0, an intervention that we have previously shown can extend chronological lifespan. These data demonstrate that extracellular acidification of the culture medium can cause intracellular damage in the chronologically aging population that is asymmetrically segregated by the mother cell to limit subsequent replicative lifespan.  相似文献   

4.
In bacteria, replicative aging manifests as a difference in growth or survival between the two cells emerging from division. One cell can be regarded as an aging mother with a decreased potential for future survival and division, the other as a rejuvenated daughter. Here, we aimed at investigating some of the processes involved in aging in the bacterium Escherichia coli, where the two types of cells can be distinguished by the age of their cell poles. We found that certain changes in the regulation of the carbohydrate metabolism can affect aging. A mutation in the carbon storage regulator gene, csrA, leads to a dramatically shorter replicative lifespan; csrA mutants stop dividing once their pole exceeds an age of about five divisions. These old-pole cells accumulate glycogen at their old cell poles; after their last division, they do not contain a chromosome, presumably because of spatial exclusion by the glycogen aggregates. The new-pole daughters produced by these aging mothers are born young; they only express the deleterious phenotype once their pole is old. These results demonstrate how manipulations of nutrient allocation can lead to the exclusion of the chromosome and limit replicative lifespan in E. coli, and illustrate how mutations can have phenotypic effects that are specific for cells with old poles. This raises the question how bacteria can avoid the accumulation of such mutations in their genomes over evolutionary times, and how they can achieve the long replicative lifespans that have recently been reported.  相似文献   

5.
It has been reported that the replicative lifespan of human fibroblasts can be substantially extended by supplementing the growth medium with hydrocortisone or increased levels of serum proteins. These observations have been made only on cell populations transferred many times at high cell density, and cumulative population doublings have been recorded, rather than a more direct measure of cell division potential. We have measured the replicative potential of human fibroblasts cultured so as to avoid conditions of high cell density, medium depletion, and departure from exponential growth. Two fetal lung and two newborn foreskin fibroblast strains were serially passaged in the presence or absence of hydrocortisone (HC), epidermal growth factor (EGF), and fibroblast growth factor (FGF) until they senesced. At each passage cells were plated at densities sufficiently low that colony-forming efficiency could be calculated. We determined cumulative population doublings and also estimated the number of cell generations attained under each condition. FGF caused small but possibly significant changes, while HC and EGF failed to substantially alter replicative lifespan. The reported effect of HC on the doubling potential of fetal lung fibroblasts is therefore not an inevitable action of this hormone on the senescence mechanism, but may instead depend for its apparent activity on the passage regimen used. The fibroblast's insensitivity to EGF as a modulator of replicative potential, as compared with the keratinocyte, whose lifespan can be tripled by EGF, implies that the mechanisms limiting the replicative potential of these two cell types are not identical.  相似文献   

6.
Yeast mother cell-specific ageing is characterized by a limited capacity to produce daughter cells. The replicative lifespan is determined by the number of cell cycles a mother cell has undergone, not by calendar time, and in a population of cells its distribution follows the Gompertz law. Daughter cells reset their clock to zero and enjoy the full lifespan characteristic for the strain. This kind of replicative ageing of a cell population based on asymmetric cell divisions is investigated as a model for the ageing of a stem cell population in higher organisms. The simple fact that the daughter cells can reset their clock to zero precludes the accumulation of chromosomal mutations as the cause of ageing, because semiconservative replication would lead to the same mutations in the daughters. However, nature is more complicated than that because, (i) the very last daughters of old mothers do not reset the clock; and (ii) mutations in mitochondrial DNA could play a role in ageing due to the large copy number in the cell and a possible asymmetric distribution of damaged mitochondrial DNA between mother and daughter cell. Investigation of the loss of heterozygosity in diploid cells at the end of their mother cell-specific lifespan has shown that genomic rearrangements do occur in old mother cells. However, it is not clear if this kind of genomic instability is causative for the ageing process. Damaged material other than DNA, for instance misfolded, oxidized or otherwise damaged proteins, seem to play a major role in ageing, depending on the balance between production and removal through various repair processes, for instance several kinds of proteolysis and autophagy. We are reviewing here the evidence for genetic change and its causality in the mother cell-specific ageing process of yeast.  相似文献   

7.
《Bioscience Hypotheses》2008,1(6):287-291
Budding yeast Saccharomyces cerevisiae has two distinct lifespans. The replicative lifespan is defined as the number of progeny cells that a mother cell can have prior to senescence while the chronological lifespan is a measure of the time nondividing cells remain viable. Mechanisms for cells to choose the type of lifespans appropriate to environmental conditions to minimize DNA damage should be critical for maintenance of viability, an interesting question worthy of further investigation. To this end, we hypothesize that chronologically aged cells are defective in the lifespan choosing mechanism so that DNA replication, characteristic of the replicative lifespan, initiates near end of the chronological lifespan. Replication may frequently stall due to the limited resources and oxidative stress, leading to replication fork stall and fatal DNA damage. We will use the 2D DNA gel electrophoresis to examine replication initiation and stall at rDNA in the chronologically aged cells.  相似文献   

8.
We have inferred, from computer simulations of clonal growth data, mean cell cycle time (Tc) for putative subpopulations of fibroblastic cells having unique replicative potentials. The growth kinetics of chick embryo fibroblast clones can be accounted for if it is assumed that: (1) there is a transient, and rather substantial, decline in mean Tc (from 34 to 12 hr) immediately following the commitment of a 'stem' cell daughter to a limited replicative lifespan; (2) the mean Tc increases progressively (from 12 to 48 hr) as 'committed' cells exhaust their remaining replicative potential; and (3) the daughters of committed cells may occasionally become abruptly post-mitotic.  相似文献   

9.
The replicative lifespan of normal somatic cells is restricted by the erosion of telomeres, which are protective caps at the ends of linear chromosomes. The loss of telomeres induces antiproliferative signals that eventually lead to cellular senescence. The enzyme complex telomerase can maintain telomeres, but its expression is confined to highly proliferative cells such as stem cells and tumor cells. The immense regenerative capacity of the hematopoietic system is provided by a distinct type of adult stem cell: hematopoietic stem cells (HSCs). Although blood cells have to be produced continuously throughout life, the HSC pool seems not to be spared by aging processes. Indeed, limited expression of telomerase is not sufficient to prevent telomere shortening in these cells, which is thought ultimately to limit their proliferative capacity. In this review, we discuss the relevance of telomere maintenance for the hematopoietic stem cell compartment and consider potential functions of telomerase in this context. We also present possible clinical applications of telomere manipulation in HSCs and new insights affecting the aging of the hematopoietic stem cell pool and replicative exhaustion. This work was supported by European Community Grant LSHC-CT-2004-502943 (MOL CANCER MED).  相似文献   

10.
11.
We have successfully isolated a cell line (IEC-1) from an intraepidermal carcinoma of the skin of a patient and compared its behavior, in vitro, to normal human epidermal keratinocytes (HEK) and squamous cell carcinoma cell lines (SCCs). HEK differentiation comprises an initial growth arrest followed by an induction of squamous differentiation-specific genes such as transglutaminase type 1 (TG-1). Using thymidine uptake and TG-1 induction as markers of proliferation and differentiation, respectively, we were able to show that HEKs and the IEC-1 cells undergo growth arrest and induce TG-1 mRNA expression in response to various differentiation-inducing stimuli, while neoplastic SCC cell lines did not. However, differentiation in HEKs was an irreversible process whereas differentiation of the IEC-1 cells was reversible. Furthermore, growth of IEC-1 cells in organotypic raft cultures revealed differences in their ability to complete a squamous differentiation program compared with that of normal HEKs. The IEC-1 cells also exhibited a transitional phenotype with respect to replicative lifespan; HEKs had a lifespan of 4-6 passages, IEC-1 cells of 15-17 passages, and SCC cells were immortal. These alterations in IEC-1 cell behavior were not associated with functional inactivation or mutations of the p53 gene. These data indicate that the IEC-1 cells, derived from a preneoplastic skin tumor, exhibit differences in their ability to undergo terminal differentiation and have an extended replicative lifespan.  相似文献   

12.
Autologous disc cell implantation, growth factors and gene therapy appear to be promising therapies for disc regeneration. Unfortunately, the replicative lifespan and growth kinetics of human nucleus pulposus (NP) cells related to host age are unclear. We investigated the potential relations among age, replicative lifespan and growth rate of NP cells, and determined the age range that is suitable for cell-based biological therapies for degenerative disc diseases. We used NP tissues classified by decade into five age groups: 30s, 40s, 50s, 60s and 70s. The mean cumulative population doubling level (PDL) and population doubling rate (PDR) of NP cells were assessed by decade. We also investigated correlations between cumulative PDL and age, and between PDR and age. The mean cumulative PDL and PDR decreased significantly in patients in their 60s. The mean cumulative PDL and PDR in the younger groups (30s, 40s and 50s) were significantly higher than those in the older groups (60s and 70s). There also were significant negative correlations between cumulative PDL and age, and between PDR and age. We found that the replicative lifespan and growth rate of human NP cells decreased with age. The replicative potential of NP cells decreased significantly in patients 60 years old and older. Young individuals less than 60 years old may be suitable candidates for NP cell-based biological therapies for treating degenerative disc diseases.  相似文献   

13.

Background

The pig, Sus scrofa domestica includes both the miniature and commercial domestic breed. These animals have influenced the human life and economies and have been studied throughout history. Although the miniature breeds are more recent and have increasingly been used in a variety of biomedical studies, their cell lines have rarely been established. Therefore, we sought to establish primary and immortal cell lines derived from both the miniature and domestic pig to better enable insight into possible in vivo growth differences.

Results

The in vitro lifespan of primary domestic pig fibroblast (PF) and miniature pig fibroblast (MPF) cells using a standard 3T3 protocol was determined. Both of the primary PF and MPF cells were shown to have a two-step replicative senescence barrier. Primary MPF cells exhibited a relatively shorter lifespan and slower proliferation rate compared to those of primary PF cells. Beyond senescence barriers, lifespan-extended PF and MPF cells were eventually established and indicated spontaneous cellular immortalization. In contrast to the immortalized PF cells, immortal MPF cells showed a transformed phenotype and possessed more frequent chromosomal abnormalities and loss of p53 regulatory function. The lifespan of primary MPF and PF cells was extended by inactivation of the p53 function using transduction by SV40LT without any detectable senescent phenotype.

Conclusion

These results suggest that p53 signaling might be a major determinant for the replicative senescence in the MPF cells that have the shorter lifespan and slower growth rate compared to PF cells in vitro.  相似文献   

14.
Chick embryo fibroblasts serially propagated in media containing division ratelimiting amounts of fetal bovine serum underwent premature culture senescence as illustrated by accelerated declines in the number of cells incorporating 3H-thymidine, increased population doubling times, reduced cell densities at subcultivation, and reduced replicative life-spans compared to cells grown in medium containing non-rate-limiting amounts of serum. Low serum serially propagated “senescent” cultures returned to 10% serum containing medium had proliferative rates, incorporated 3H-thymidine, and attained saturation densities at confluency similar to younger cells. “Senescent” cells serially propagated in low serum and returned to 10% serum achieved life-spans similar to cells continuously grown in the presence of 10% serum. The results of these and other studies show that cells serially propagated in the presence of division rate-limiting amounts of fetal bovine serum, or at high inoculation densities, accumulate a substantial number of cells in the population during exponential growth conditions that are not senescent but are prevented from entering DNA synthesis becuase of mitogen limitations. Our results indicate that the amount of serum mitogen in the growth medium affects only the rate at which cells express their genetically predetermined replicative potential and not the replicative lifespan per se. These results are discussed in relation to the techniques that should be employed for studying cellular aging and the mechanism of senescent cell formation.  相似文献   

15.
Oxidative damage to DNA in cultured bovine adrenocortical cells was investigated by exposing cells to a sublethal concentration (10 microM) of cumene hydroperoxide under conditions previously shown to be deficient in the biological antioxidants selenium and alpha-tocopherol (vitamin E). DNA prepared from cells incubated for 4 h with 10 microM cumene hydroperoxide had a greater fraction showing resistance to S1 nuclease after denaturation and reassociation to a log C0t of -3. Cross-linking by cumene hydroperoxide was abolished in cells that had been grown in the presence of 20 nM selenite or 1 microM alpha-tocopherol for 96 h prior to peroxide addition, whereas such cells remained susceptible to cross-linking by nitrogen mustard. Extensive strand breaks in DNA from peroxide-treated cells as assessed by alkaline sucrose gradient centrifugation were greatly reduced in cells grown in selenite or alpha-tocopherol. Despite the evidence of damage to DNA, cumene hydroperoxide was not detectably mutagenic, in contrast to 5 microM methylnitronitrosoguanidine (MNNG), when assessed as the incidence of resistance to 25 microM ouabain. We confirmed that cumene hydroperoxide at greater than 10 microM lowers cloning efficiency and that this is largely prevented by selenite or alpha-tocopherol. Additionally, selenite or alpha-tocopherol produced increased clonogenicity in cells not incubated with peroxide. To examine effects of the biological antioxidants on replicative lifespan, cells were grown continuously in fetal bovine serum (FBS), fibroblast growth factor (FGF), and selenite or alpha-tocopherol. Selenium increased replicative lifespan by 10-20% and alpha-tocopherol by 22-30%. Levels of DNA cross-links and strand breaks did not differ under any circumstances between early (second) passage and late (30th) passage cells. The experiments on replicative potential were all performed in the presence of FGF. When FGF was omitted from the culture medium, replicative lifespan was reduced by 85%. We conclude that types of damage to DNA resulting from peroxide exposure are not present in cells under standard culture conditions at early or late stages of the lifespan. Other work has noted a relationship between clonogenicity and replicative lifespan; thus, the increase in cloning efficiency seen with selenium and alpha-tocopherol may cause the observed slight increase in replicative lifespan. Oxidative damage does not appear to be a major determinant of cellular senescence in adrenocortical cells.  相似文献   

16.
Telomere is the repetitive DNA sequence at the end of chromosomes, which shortens progressively with cell division and limits the replicative potential of normal human somatic cells. L-carnosine, a naturally occurring dipeptide, has been reported to delay the replicative senescence, and extend the lifespan of cultured human diploid fibroblasts. In this work, we studied the effect of carnosine on the telomeric DNA of cultured human fetal lung fibroblast cells. Cells continuously grown in 20 mM carnosine exhibited a slower telomere shortening rate and extended lifespan in population doublings. When kept in a long-term nonproliferating state, they accumulated much less damages in the telomeric DNA when cultured in the presence of carnosine. We suggest that the reduction in telomere shortening rate and damages in telomeric DNA made an important contribution to the life-extension effect of carnosine.  相似文献   

17.
Abstract. We have inferred, from computer simulations of clonal growth data, mean cell cycle time (Tc) for putative subpopulations of fibroblastic cells having unique replicative potentials. the growth kinetics of chick embryo fibroblast clones can be accounted for if it is assumed that: (1) there is a transient, and rather substantial, decline in mean Tc (from 34 to 12 hr) immediately following the commitment of a 'stem' cell daughter to a limited replicative lifespan; (2) the mean Tc increases progressively (from 12 to 48 hr) as 'committed' cells exhaust their remaining replicative potential; and (3) the daughters of committed cells may occasionally become abruptly post-mitotic.  相似文献   

18.
Saccharomyces cerevisiae has been an excellent model system for examining mechanisms and consequences of genome instability. Information gained from this yeast model is relevant to many organisms, including humans, since DNA repair and DNA damage response factors are well conserved across diverse species. However, S. cerevisiae has not yet been used to fully address whether the rate of accumulating mutations changes with increasing replicative (mitotic) age due to technical constraints. For instance, measurements of yeast replicative lifespan through micromanipulation involve very small populations of cells, which prohibit detection of rare mutations. Genetic methods to enrich for mother cells in populations by inducing death of daughter cells have been developed, but population sizes are still limited by the frequency with which random mutations that compromise the selection systems occur. The current protocol takes advantage of magnetic sorting of surface-labeled yeast mother cells to obtain large enough populations of aging mother cells to quantify rare mutations through phenotypic selections. Mutation rates, measured through fluctuation tests, and mutation frequencies are first established for young cells and used to predict the frequency of mutations in mother cells of various replicative ages. Mutation frequencies are then determined for sorted mother cells, and the age of the mother cells is determined using flow cytometry by staining with a fluorescent reagent that detects bud scars formed on their cell surfaces during cell division. Comparison of predicted mutation frequencies based on the number of cell divisions to the frequencies experimentally observed for mother cells of a given replicative age can then identify whether there are age-related changes in the rate of accumulating mutations. Variations of this basic protocol provide the means to investigate the influence of alterations in specific gene functions or specific environmental conditions on mutation accumulation to address mechanisms underlying genome instability during replicative aging.  相似文献   

19.
In contrast to cancer cells and embryonic stem cells, the lifespan of primary human cells is finite. After a defined number of population doublings, cells enter in an irreversible growth-arrested state termed replicative senescence. Mutations of genes involved in immortalization can contribute to cancer. In a genetic screen for cDNAs bypassing replicative senescence of normal human prostate epithelial cells (HPrEC), we identified CBX7, a gene that encodes a Polycomb protein, as shown by sequence homology, its interaction with Ring1 and its localization to nuclear Polycomb bodies. CBX7 extends the lifespan of a wide range of normal human cells and immortalizes mouse fibroblasts by downregulating expression of the Ink4a/Arf locus. CBX7 does not inter-function or colocalize with Bmi1, and both can exert their actions independently of each other as shown by reverse genetics. CBX7 expression is downregulated during replicative senescence and its ablation by short-hairpin RNA (shRNA) treatment inhibited growth of normal cells though induction of the Ink4a/Arf locus. Taken together, these data show that CBX7 controls cellular lifespan through regulation of both the p16(Ink4a)/Rb and the Arf/p53 pathways.  相似文献   

20.
The Sgs1 protein from Saccharomyces cerevisiae is a member of the RecQ helicases. Defects in RecQ helicases result in premature aging phenotypes in both yeasts and humans, which appear to be promoted by replicative stress. Yeast rad27 mutants also suffer from premature aging. As the human Rad27p and Sgs1p homologs interact, a similar interaction between the yeast proteins could be important for promoting longevity in S. cerevisiae. We tested the contribution of a potential interaction between Rad27p and Sgs1p to longevity by analyzing lifespan and parameters associated with longevity in rad27 and sgs1 mutants. The carbon source supporting growth also modulated longevity as evaluated by replicative and chronological lifespan measurements. Growth on glycerol promoted chronological lifespan, while maximum replicative lifespan was obtained with glucose-supported growth. In comparison to the individual mutants, the sgs1 rad27 double mutant displayed a shortened replicative lifespan and was also more sensitive to DNA-damaging agents. In addition to promoting replicative lifespan, the activity of Rad27p was critical for achieving full chronological lifespan. The rad27 mutants exhibited increased oxidative stress levels along with an elevated spontaneous mutation rate. Removal of Sgs1p activity additionally increased the oxidative stress and spontaneous mutation rate in rad27 mutants without affecting the chronological lifespan.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号