首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two murine monoclonal antibodies to the proliferating cell nuclear antigen (PCNA), a rabbit anti-N-terminal peptide antibody and human auto-antibody to PCNA reacted with the auxiliary protein for DNA polymerase delta from fetal calf thymus following SDS-polyacrylamide gel electrophoresis, confirming the identity of PCNA and the auxiliary protein. Undenatured auxiliary protein was immunoprecipitated by the human autoantibody, but not by the monoclonal antibodies, which were raised to SDS-denatured PCNA, nor by the anti-N-terminal peptide antibody, suggesting that the epitopes recognized by both the monoclonal antibodies and the anti-peptide antibody are not exposed in the native protein. The human anti-PCNA autoantibody neutralized the activity of the auxiliary protein for DNA polymerase delta, but did not inhibit the activity of pol delta itself. The ability of pol delta to utilize template/primers containing long stretches of single-stranded template was inhibited by the anti-PCNA autoantibody, whereas the activity of pol alpha on such templates was not affected, confirming the specificity of the auxiliary protein for pol delta. The ability of PCNA, a cell cycle-regulated protein, to regulate the activity of pol delta suggests a central role for pol delta in cellular DNA replication.  相似文献   

2.
Proliferating cell nuclear antigen (PCNA) is expressed in the nuclei of proliferating cells, but is not detected in resting cells. The kinetics of PCNA expression suggest that it is associated with a phase preceding active DNA synthesis. DNA synthesis is under cytoplasmic control, and there is a cytoplasmic protein, ADR (activator of DNA replication), that induces DNA synthesis in isolated quiescent nuclei. We now report that a human antibody preparation monospecific for PCNA, but not two monoclonal antibodies directed against different epitopes on PCNA, can inhibit the ability of ADR to induce DNA synthesis in isolated quiescent nuclei. This effect is not due to inhibition of DNA polymerase alpha activity. Thus, the anti-PCNA antibody exerts its effect either by directly influencing the initial interaction of ADR with the nucleus, or by inhibiting subsequent synthetic events.  相似文献   

3.
Replication factors A and C (RF-A and RF-C) and the proliferating cell nuclear antigen (PCNA) differentially augment the activities of DNA polymerases alpha and delta. The mechanism of stimulation by these replication factors was investigated using a limiting concentration of primed, single-stranded template DNA. RF-A stimulated polymerase alpha activity in a concentration-dependent manner, but also suppressed nonspecific initiation of DNA synthesis by both polymerases alpha and delta. The primer recognition complex, RF-C.PCNA.ATP, stimulated pol delta activity in cooperation with RF-A, but also functioned to prevent abnormal initiation of DNA synthesis by polymerase alpha. Reconstitution of DNA replication with purified factors and a plasmid containing the SV40 origin sequences directly demonstrated DNA polymerase alpha dependent synthesis of lagging strands and DNA polymerase delta/PCNA/RF-C dependent synthesis of leading strands. RF-A and the primer recognition complex both affected the relative levels of leading and lagging strands. These results, in addition to results in an accompanying paper (Tsurimoto, T., and Stillman, B. (1991) J. Biol. Chem. 266, 1950-1960), suggest that an exchange of DNA polymerase complexes occurs during initiation of bidirectional DNA replication at the SV40 origin.  相似文献   

4.
The subunit that mediates binding of proliferating cell nuclear antigen (PCNA) to human DNA polymerase delta has not been clearly defined. We show that the third subunit of human DNA polymerase delta, p66, interacts with PCNA through a canonical PCNA-binding sequence located in its C terminus. Conversely, p66 interacts with the domain-interconnecting loop of PCNA, a region previously shown to be important for DNA polymerase delta activity and for binding of the cell cycle inhibitor p21(Cip1). In accordance with this, a peptide containing the PCNA-binding domain of p21(Cip1) inhibited p66 binding to PCNA and the activity of native three-subunit DNA polymerase delta. Furthermore, pull-down assays showed that DNA polymerase delta requires p66 for interaction with PCNA. More importantly, only reconstituted three-subunit DNA polymerase delta displayed PCNA-dependent DNA replication that could be inhibited by the PCNA-binding domain of p21(Cip1). Direct participation of p66 in PCNA-dependent DNA replication in vivo is demonstrated by co-localization of p66 with PCNA and DNA polymerase delta within DNA replication foci. Finally, in vitro phosphorylation of p66 by cyclin-dependent kinases suggests that p66 activity may be subject to cell cycle-dependent regulation. These results suggest that p66 is the chief mediator of PCNA-dependent DNA synthesis by DNA polymerase delta.  相似文献   

5.
DNA polymerases delta and alpha were purified from CV-1 cells, and their sensitivities to the inhibitors aphidicolin, (p-n-butylphenyl)deoxyguanosine triphosphate (BuPdGTP), and monoclonal antibodies directed against DNA polymerase alpha were determined. The effects of these inhibitors on DNA replication in permeabilized CV-1 cells were studied to investigate the potential roles of polymerases delta and alpha in DNA replication. Aphidicolin was shown to be a more potent inhibitor of DNA replication than of DNA polymerase alpha or delta activity. Inhibition of DNA replication by various concentrations of BuPdGTP was intermediate between inhibition of purified polymerase alpha or delta activity. Concentrations of BuPdGTP which totally abolished DNA polymerase alpha activity were much less effective in reducing DNA replication, as well as the activity of DNA polymerase delta. Monoclonal antibodies which specifically inhibited polymerase alpha activity reduced, but did not abolish, DNA replication in permeable cells. BuPdGTP, as well as anti-polymerase alpha antibodies, inhibited DNA replication in a nonlinear manner as a function of time. Depending upon the initial or final rates of inhibition of replication by BuPdGTP and anti-alpha antibodies, as little as 50%, or as much as 80%, of the replication activity can be attributed to polymerase alpha. The remaining replication activity (20-50%) is tentatively attributed to polymerase delta, because it was aphidicolin sensitive and resistant to both anti-polymerase alpha antibodies and low concentrations of BuPdGTP. A concentration of BuPdGTP which abolished polymerase alpha activity reduced, but did not abolish, both the synthesis and maturation of nascent DNA fragments.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
Mitkova AV  Biswas EE  Biswas SB 《Biochemistry》2002,41(16):5255-5265
Plasmid DNA replication in nuclear extracts of Saccharomyces cerevisiae in vitro has been shown to be S-phase specific, similar to that observed in vivo. We report here a reconstituted in vitro system with partially purified replication proteins, purified replication protein A (RPA), and recombinant proliferating cell nuclear antigen (PCNA). Nuclear extracts from S-phase, G(1)-phase, and unsynchronized yeast cells were fractionated by phosphocellulose chromatography. Protein fraction (polymerase fraction) enriched with replication proteins, including DNA polymerases (alpha, delta, etc.), was isolated, which was not capable of in vitro replication of supercoiled plasmid DNA. However, when purified yeast RPA and recombinant PCNA together were added to the polymerase fraction obtained from S-phase synchronized cells, in vitro plasmid DNA replication was restored. In vitro plasmid DNA replication with polymerase fractions from unsynchronized and G(1)-phase cells could not be reconstituted upon addition of purified RPA and PCNA. RPA and PCNA isolated from various phases of the cell cycle complemented the S-phase polymerase pool to the same extent. Reconstituted systems with the S-phase polymerase pool, complemented with either the RPA- and PCNA-containing fraction or purified RPA and recombinant PCNA together, were able to produce replication intermediates (ranging in size from 50 to 1500 bp) similar to that observed with the S-phase nuclear extract. Results presented here demonstrate that both RPA and PCNA are cell cycle-independent in their ability to stimulate in vitro plasmid DNA replication, whereas replication factors in the polymerase fractions are strictly S-phase dependent.  相似文献   

7.
C D Lu  J J Byrnes 《Biochemistry》1992,31(49):12403-12409
Proliferating cell nuclear antigen (PCNA) and PCNA-dependent DNA polymerase delta were partially purified and characterized from rabbit bone marrow. Rabbit DNA polymerase delta sediments at 8.2 S upon glycerol density gradient centrifugation. Similar to calf thymus PCNA-dependent DNA polymerase delta, a 125-123-kDa doublet and 48-kDa polypeptides correlate with DNA polymerase activity. Western blotting of rabbit DNA polymerase delta with polyclonal antibody to calf thymus PCNA-dependent DNA polymerase delta gives the same results as calf thymus delta; the 125-123-kDa doublet is recognized. PCNA-dependent DNA polymerase delta is resistant to inhibition by dideoxynucleotides and is relatively insensitive to inhibition by N2-[p-(n-butyl)phenyl]dGTP. A 3'-->5' exonuclease copurifies with the DNA polymerase. The processivity of DNA polymerase delta alone is very low but greatly increases with the addition of PCNA from rabbit bone marrow or calf thymus. Comparative studies of the original DNA polymerase delta from rabbit bone marrow demonstrate a lack of recognition by antibodies to calf thymus delta and a high degree of processivity in the absence of PCNA. Additionally, the originally described DNA polymerase delta is a single polypeptide of 122 kDa. These features would recategorize the original delta to the epsilon category by recently proposed convention. PCNA-dependent DNA polymerase delta is a relatively minor component of rabbit bone marrow compared to DNA polymerase alpha and PCNA-independent DNA polymerase delta (epsilon), the relative proportions being alpha, 60%; delta, 7%; and epsilon, 30%.  相似文献   

8.
The homotrimeric DNA replication protein proliferating cell nuclear antigen (PCNA) is regulated by both ubiquitylation and sumoylation. We study the appearance and the impact of these modifications on chromosomal replication in frog egg extracts. Xenopus laevis PCNA is modified on lysine 164 by sumoylation, monoubiquitylation, and diubiquitylation. Sumoylation and monoubiquitylation occur during the replication of undamaged DNA, whereas diubiquitylation occurs specifically in response to DNA damage. When lysine 164 modification is prevented, replication fork movement through undamaged DNA slows down and DNA polymerase delta fails to associate with replicating chromatin. When sumoylation alone is prevented, replication occurs normally and neither monoubiquitylation nor sumoylation are required for the replication of simple single-strand DNA templates. Our findings expand the repertoire of functions for PCNA ubiquitylation and sumoylation by elucidating a role for these modifications during the replication of undamaged DNA. Furthermore, they suggest that PCNA monoubiquitylation serves as a molecular gas pedal that controls the speed of replisome movement during S phase.  相似文献   

9.
The relationship between DNA polymerases alpha and delta are evaluated immunologically by monoclonal antibody specifically against DNA polymerase alpha and murine polyclonal antiserum against calf thymus DNA polymerase delta. DNA polymerases alpha and delta are found to be immunologically distinct. The structural relationship between the proliferating cell nuclear antigen (PCNA)-dependent calf DNA polymerase delta and DNA polymerase alpha from human and calf was analyzed by two-dimensional tryptic peptide mapping of the catalytic polypeptides. The results demonstrate that the catalytic polypeptides of the PCNA-dependent calf polymerase delta and DNA polymerase alpha are distinct, unrelated, and do not share any common structural determinants. The immunological and structural relationship between a recently identified PCNA-independent form of DNA polymerase delta from HeLa cells was also assessed. This PCNA-independent human polymerase delta was found to be immunologically unrelated to human polymerase alpha but to share some immunological and structural determinants with the PCNA-dependent calf thymus polymerase delta.  相似文献   

10.
The levels of DNA polymerase alpha, DNA polymerase delta, and its accessory protein, proliferating cell nuclear antigen (PCNA) were examined in the regenerating rat liver. The levels of DNA polymerase alpha and delta activities in regenerating liver extracts were determined by the use of the DNA polymerase alpha specific inhibitor, BuAdATP [2-(p-n-butylanilino)-9-(2-deoxy-beta-D-ribofuranosyl) adenine 5'-triphosphate], and monoclonal antibodies. These reagents showed that the total DNA polymerase activities increased ca. 4-fold during regeneration and that the fraction of DNA polymerase delta activity at the peak was 40% of the total DNA polymerase activity. Immunoblots and inhibition studies using specific antibodies showed that DNA polymerase delta and epsilon and PCNA were concomitantly induced after partial hepatectomy. The levels of both DNA polymerase delta and epsilon and PCNA reached their maxima at 24-36 h post hepatectomy, i.e., at the same time that in vivo DNA synthesis reached its peak. Partial purification and characterization of DNA polymerases delta and epsilon from the regenerating rat liver were also performed. These observations suggest that the variation of DNA polymerase delta and epsilon and PCNA during liver regeneration is closely related to DNA synthesis and is consistent with their involvement in DNA replication.  相似文献   

11.
DNA replication from the SV40 origin can be reconstituted in vitro using purified SV40 large T antigen, cellular topoisomerases I and II, replication factor A (RF-A), proliferating cell nuclear antigen (PCNA), replication factor C (RF-C), and a phosphocellulose fraction (IIA) made from human cell extracts (S100). Fraction IIA contains all DNA polymerase activity required for replication in vitro in addition to other factors. A newly identified factor has been purified from fraction IIA. This factor is required for complete reconstitution of SV40 DNA replication and co-purifies with a PCNA-stimulated DNA polymerase activity. This DNA polymerase activity is sensitive to aphidicolin, but is not inhibited by butylanilinodeoxyadenosine triphosphate or by monoclonal antibodies which block synthesis by DNA polymerase alpha. The polymerase activity is synergistically stimulated by the combination of RF-A, PCNA, and RF-C in an ATP-dependent manner. Purified calf thymus polymerase delta can fully replace the purified factor in DNA replication assays. We conclude that this factor, required for reconstitution of SV40 DNA replication in vitro, corresponds to human DNA polymerase delta.  相似文献   

12.
The interaction between proliferating cell nuclear antigen (PCNA) and DNA polymerase delta is essential for processive DNA synthesis during DNA replication/repair; however, the identity of the subunit of DNA polymerase delta that directly interacts with PCNA has not been resolved until now. In the present study we have used reciprocal co-immunoprecipitation experiments to determine which of the two subunits of core DNA polymerase delta, the 125-kDa catalytic subunit or the 50-kDa small subunit, directly interacts with PCNA. We found that PCNA co-immunoprecipitated with human p50, as well as calf thymus DNA polymerase delta heterodimer, but not with p125 alone, suggesting that PCNA directly interacts with p50 but not with p125. A PCNA-binding motif, similar to the sliding clamp-binding motif of bacteriophage RB69 DNA polymerase, was identified in the N terminus of p50. A 22-amino acid oligopeptide containing this sequence (MRPFL) was shown to bind PCNA by far Western analysis and to compete with p50 for binding to PCNA in co-immunoprecipitation experiments. The binding of p50 to PCNA was inhibited by p21, suggesting that the two proteins compete for the same binding site on PCNA. These results establish that the interaction of PCNA with DNA polymerase delta is mediated through the small subunit of the enzyme.  相似文献   

13.
DNA synthesis by two eukaryotic DNA polymerases, alpha and delta, was studied using a single-strand M13 DNA template primed at a unique site. In the presence of low amounts of either DNA polymerase alpha or delta, DNA synthesis was limited and short DNA strands of approximately 100 bases were produced. Addition of replication factors RF-A, PCNA and RF-C, which were previously shown to be required for SV40 DNA replication in vitro, differentially stimulated the activity of both DNA polymerases. RF-A and RF-C independently stimulated DNA polymerase alpha activity 4- to 6-fold, yielding relatively short DNA strands (less than 1 kb) and PCNA had no effect. In contrast, polymerase delta activity was stimulated co-operatively by PCNA, RF-A and RF-C approximately 25- to 30-fold, yielding relatively long DNA strands (up to 4 kb). Neither RF-C nor RF-A appear to correspond to known polymerase stimulatory factors. RF-A was previously shown to be required for initiation of DNA replication at the SV40 origin. Results presented here suggest that it also functions during elongation. The differential effects of these three replication factors on DNA polymerases alpha and delta is consistent with the model that the polymerases function at the replication fork on the lagging and leading strand templates respectively. We further suggest that co-ordinated synthesis of these strands requires dynamic protein-protein interactions between these replication factors and the two DNA polymerases.  相似文献   

14.
A panel of murine hybridoma cell lines which produce antibodies against polypeptides present in human placental DNA polymerase delta preparations was developed. Eight of these antibodies were characterized by virtue of their ability to inhibit DNA polymerase delta activity and immunoblot the 170-kDa catalytic polypeptide. Six of these eight antibodies inhibit DNA polymerase delta but not DNA polymerase alpha, showing that the two proteins are distinct. However, the other two monoclonal antibodies inhibited both DNA polymerase delta and alpha activities, providing the first evidence that these two proteins have a structural relationship. In addition to antibodies against the catalytic polypeptide we also identified 11 antibodies which recognize 120-, 100-, 88-, 75-, 62-, 36-, and 22-kDa polypeptides in DNA polymerase delta preparations, suggesting that these proteins might be part of a replication complex. The antibody to the 36-kDa polypeptide was shown to be directed against proliferating cell nuclear antigen/cyclin. These antibodies should prove useful for studies aimed at distinguishing between DNA polymerases alpha and delta and for the investigation of the functional roles of DNA polymerase delta polypeptides.  相似文献   

15.
An important not yet fully understood event in DNA replication is the DNA polymerase (pol) switch from pol alpha to pol delta. Indirect evidence suggested that the clamp loader replication factor C (RF-C) plays an important role, since a replication competent protein complex containing pol alpha, pol delta and RF-C could perform pol switching in the presence of proliferating cell nuclear antigen (PCNA). By using purified pol alpha/primase, pol delta, RF-C, PCNA and RP-A we show that: (i) RF-C can inhibit pol alpha in the presence of ATP prior to PCNA loading, (ii) RF-C decreases the affinity of pol alpha for the 3'OH primer ends, (iii) the inhibition of pol alpha by RF-C is released upon PCNA loading, (iv) ATP hydrolysis is required for PCNA loading and subsequent release of inhibition of pol alpha, (v) under these conditions a switching from pol alpha/primase to pol delta is evident. Thus, RF-C appears to be critical for the pol alpha to pol delta switching. Based on these results, a model is proposed in which RF-C induces the pol switching by sequestering the 3'-OH end from pol alpha and subsequently recruiting PCNA to DNA.  相似文献   

16.
The budding yeast Saccharomyces cerevisiae is proving to be an useful and accurate model for eukaryotic DNA replication. It contains both DNA polymerase alpha (I) and delta (III). Recently, proliferating cell nuclear antigen (PCNA), which in mammalian cells is an auxiliary subunit of DNA polymerase delta and is essential for in vitro leading strand SV40 DNA replication, was purified from yeast. We have now cloned the gene for yeast PCNA (POL30). The gene codes for an essential protein of 29 kDa, which shows 35% homology with human PCNA. Cell cycle expression studies, using synchronized cells, show that expression of both the PCNA (POL30) and the DNA polymerase delta (POL3, or CDC2) genes of yeast are regulated in an identical fashion to that of the DNA polymerase alpha (POL1) gene. Thus, steady state mRNA levels increase 10-100-fold in late G1 phase, peak in early S-phase, and decrease to low levels in late S-phase. In addition, in meiosis mRNA levels increase prior to initiation of premeiotic DNA synthesis.  相似文献   

17.
Proliferating cell nuclear antigen (PCNA/cyclin) is a 36-kDa polypeptide present in the nuclei of mitotically active cells. It is known to be involved in DNA replication through an association with DNA polymerase delta. We examined the total content as well as the subcellular distribution of PCNA in the oocyte and the egg of Xenopus laevis by employing immunocytological staining and immunoblot analysis. While oocytes are not capable of replicating chromosomes, PCNA is abundant in the nucleus (about 65 ng per nucleus). The oocyte cytoplasm, on the other hand, does not contain a significant quantity of this protein. The amount of total PCNA does not change appreciably during oocyte maturation and the subsequent stages of egg cleavage. Thus, PCNA belongs to a class of proteins which are stockpiled during oogenesis in order to be utilized later for early embryogenesis.  相似文献   

18.
Adeno-associated virus (AAV) replicates its DNA by a modified rolling-circle mechanism that exclusively uses leading strand displacement synthesis. To identify the enzymes directly involved in AAV DNA replication, we fractionated adenovirus-infected crude extracts and tested them in an in vitro replication system that required the presence of the AAV-encoded Rep protein and the AAV origins of DNA replication, thus faithfully reproducing in vivo viral DNA replication. Fractions that contained replication factor C (RFC) and proliferating cell nuclear antigen (PCNA) were found to be essential for reconstituting AAV DNA replication. These could be replaced by purified PCNA and RFC to retain full activity. We also found that fractions containing polymerase delta, but not polymerase epsilon or alpha, were capable of replicating AAV DNA in vitro. This was confirmed when highly purified polymerase delta complex purified from baculovirus expression clones was used. Curiously, as the components of the DNA replication system were purified, neither the cellular single-stranded DNA binding protein (RPA) nor the adenovirus-encoded DNA binding protein was found to be essential for DNA replication; both only modestly stimulated DNA synthesis on an AAV template. Also, in addition to polymerase delta, RFC, and PCNA, an as yet unidentified factor(s) is required for AAV DNA replication, which appeared to be enriched in adenovirus-infected cells. Finally, the absence of any apparent cellular DNA helicase requirement led us to develop an artificial AAV replication system in which polymerase delta, RFC, and PCNA were replaced with T4 DNA polymerase and gp32 protein. This system was capable of supporting AAV DNA replication, demonstrating that under some conditions the Rep helicase activity can function to unwind duplex DNA during strand displacement synthesis.  相似文献   

19.
Antibodies against human c-myc protein have been reported to inhibit DNA polymerase activity and endogenous DNA synthesis in isolated nuclei, suggesting a role for c-myc in DNA replication. Using the same antibody preparations, we observed equivalent inhibition of simian virus 40 DNA replication and DNA polymerase alpha and delta activities in vitro, as well as inhibition of DNA synthesis in isolated nuclei. However, the c-myc antibodies could be completely separated from the DNA synthesis inhibition activity. c-myc antibodies prepared in other laboratories also did not interfere with initiation of simian virus 40 DNA replication, DNA synthesis at replication forks, or DNA polymerase alpha or delta activity. Therefore, the previously reported inhibition of DNA synthesis by some antibody preparations resulted from the presence of an unidentified inhibitor of DNA polymerases alpha and delta and not from the action of c-myc antibodies.  相似文献   

20.
To investigate the cellular proteins involved in simian virus 40 (SV40) replication, extracts derived from human 293 cells have been fractionated into multiple components. When such fractions are combined with the virus-encoded T antigen (TAg) and SV40 origin containing plasmid DNA, efficient and complete replication is achieved, while each fraction alone is inactive. At present, a minimum of eight such cellular components have been identified. Previous experiments have demonstrated one of these to be the cell-cycle-regulated proliferating-cell nuclear antigen (PCNA). As PCNA has been identified as a processivity factor for DNA polymerase delta, we suggest that both polymerases alpha and delta are involved in this system. Three further fractions have been identified. One is a partially purified fraction which, under certain conditions, is required with TAg for the formation of a pre-synthesis complex of proteins at the replication origin. The second of these factors, RF-A, is a complex of three polypeptides which may function as a eucaryotic SSB. The third, RF-C, is a factor which is required, with PCNA, for coordinated leading- and lagging-strand synthesis at the replication fork. Complete synthesis and segregation of the daughter molecules also requires the presence of topoisomerases I and II. These results suggest a model for DNA synthesis which involves multiple stages prior to and during replicative DNA synthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号