首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Carbohydrate research》1986,148(2):209-219
Epoxidation of trans- and cis-1,3,4-trideoxy-5,6-O-isopropylidene-d-glycero-hex-3-enulose (2) by alkaline hydrogen peroxide gave a mixture of 3,4-anhydro-1-deoxy-5,6-O-isopropylidene-d-arabino- and -d-xylo-hexulose that was resolved by chromatography. Epoxidation of 2 with 3-chloroperbenzoic acid gave (1S)-1-acetoxy-1,2-anhydro-3,4-O-isopropylidene-d-erythrose hydrate and (1R)-1-acetoxy-1,2-anhydro-3,4-O-isopropylidene-d-threose hydrate. Reduction of 2 followed by epoxidation and oxidation gave the corresponding epoxides with the d-ribo and d-lyxo configurations. Structures and configurations of the above compounds were established on the basis of their analytical and spectroscopic data, and by chemical transformations.  相似文献   

2.
The reaction of 1-aryl-(1,2-dideoxy-d-glycero-β-l-gluco-heptofurano)[1,2-d]imidazolidine-2-thiones with benzyl chloride and an equivalent amount of sodium hydrogencarbonate yields 1-aryl-2-(benzylthio)-(1,2-dideoxy-d-glycero-β-l-gluco-heptofurano)[1,2-d]-2-imidazolines (2). If the reaction is carried out in the absence of sodium hydrogencarbonate, the 1-aryl-2-(benzylthio)-4-(d-galacto-pentitol-1-yl)imidazoles are obtained. These compounds are also obtained by acid-catalyzed isomerization of compounds 2.  相似文献   

3.
Acid-catalysed condensation of methyl β-d-glycero-l-manno-heptopyranoside with cyclohexanone yielded an approximately 3:1 mixture of the 2,3:6,7- and 2,3:4,7-di-O-cyclohexylideneheptosides (1 and 2), which could be separated either as their benzoates (3 and 4) or as their methyl ethers (5 and 6). The latter compounds afforded the 4- and 6-methyl ethers (7 and 8) of d-glycero-l-manno-heptitol.  相似文献   

4.
《Carbohydrate research》1987,166(2):211-217
6-O-Benzyl-7,8-dideoxy-1,2:3,4-di-O-isopropylidene-l-glycero-α-d-galacto-oct-7-ynopyranose reacted with tributyltin hydride to afford (Z-6-O-benzyl-7,8-dideoxy-1,2:3,4-di-O-isopropylidene-8-(tributylstannyl)-l-glycero-α-d-galacto-oct-7-enopyranose, which was subsequently isomerized to the E-olefin 4. Replacement of the tributyltin moietey with lithium in 4 afforded the vinyl anion which reacted with 3-O-benzyl-1,2-O-isopropylidene-α-d-xylo-pentodialdo-1,4-furanose, furnishing 3-O-benzyl-6-C-[(E)-6-O-benzyl-7-deoxy-1,2:3,4-di-O-isopropylidene-l-glycero-α-d-galacto-heptopyranos-7-ylidene] -60-deoxy-1,2-O-isopropylidene-α-d-gluco- (6) and -β-l-ido-furanose (7) in yields of ∼70 or ∼87% (depending on the temperature of the reaction). The configurations of the new chiral centers in 6 and 7 were determined by their conversion into 3-O-benzyl-1,2-O-isopropylidene-α-d-gluco- and -β-l-ido-furanose, respectively. Oxidation of 6 and 7 gave the same enone, 3-O-benzyl-6-C-[(E)-6-O-benzyl-7-deoxy-1,2:3,4-di-O-isopropylidene-l-glycero-α-d-galacto- heoptopyranos-7-ylidene]-6-deoxy-1,2-O-isopropylidene-α-d-xylo-hexofuranos-5-ulose.  相似文献   

5.
Oxidative dimerization of 7,8-dideoxy-1,2:3,4-di-O-isopropylidene-d-glycero-α-d-galacto-oct-7-ynopyranoside (1) gave a high yield of the diyne 2, readily reduced by lithium aluminum hydride to the trans,trans-diene (4). The structures of 2 and 4 were established spectroscopically and by degradation of 4 to d-glycero-d-galacto-heptitol (perscitol). A mixture of the alkyne 1 and its 7-epimer 10 was readily oxidized by dimethyl sulfoxide-acetic anhydride to the 6-ketone 11, and the 8-alkene analog was similarly prepared from the alkenes derived from 1 and 10. Likewise, oxidation of 6,7-dideoxy-1,2-O-isopropylidene-α-d-gluco(and β-L-ido)-hept-6-enopyranose gave the corresponding 5-ketone. The acetylenic ketone 11 gave a crystalline oxime and (2,4-dinitrophenyl)hydrazone, the latter being accompanied by the product of attack of the reagent at the acetylene terminus (C-8). Previous work had shown that formyl-methylenetriphenylphosphorane did not convert 1,2:3,4-di-O-isopropylidene-6-aldehydo-α-d-galacto-hexodialdo-1,5-pyranose into the corresponding C8 unsaturated aldehyde, although the latter was obtainable via1 and 10 by an ethynylation-hydroboration sequence. The Wittig route with formylmethylenetriphenylphosphorane is shown to be satisfactory for obtaining C7 unsaturated aldehydes from 3-O-benzyl-1,2-O-isopropylidene-5-aldehydo-α-d-xylo-pentodialdo-1,4-furanose (22) and the 3-epimer of 22, respectively. These reactions provide convenient access to higher-carbon sugars and chiral dienes for synthesis of optically pure products of cyclo-addition reactions.  相似文献   

6.
Photo-oxygenation of 3-hydroxymethyl-5-(2,3-O-isopropylidene-β-d-erythrofuranosyl)-2-methylfuran, 5-(1,2:3,4-di-O-isopropylidene-d-arabino-tetritol-1-yl)-3-(1-hydroxyethyl)-2-methylfuran (8a), and 2-methyl-5-(1,2,3,4-tetra-O-acetyl-d-arabino-tetritol-1-yl)-3-furoic acid (8b) yielded the corresponding endo-peroxides, which were transformed into 4-hydroxymethyl-6-(2,3-O-isopropylidene-β-d-erythrofuranosyl)-3-methylpyridazine, 6-(1,2:3,4-di-O-isopropylidene-d-arabino-tetritol-1-yl)-4-(1-hydroxyethyl)-3-methylpyridazine, and 6-(d-arabino-tetritol-1-yl)-3-methylpyridazine by treatment with hydrazine. The γ-di-ketones (Z)-1-(1,2:3,4-di-O-isopropylidene-d-arabino-tetritol-1-yl)-3-(1-hydroxyethyl)pent-2-ene-1,4-dione and d-arabino-6,7,8,9-tetraacetoxy-4-methoxynonane-2,5-dione can be obtained by reduction of the endo-peroxides 9a and 9b (derived from 8a and 8b, respectively) with dimethyl sulphide. The C → O rearrangement reported for C-glycosyl endo-peroxides was also observed for 9a.  相似文献   

7.
D-manno-3-Heptulose (5) was synthesized by dimethyl sulfoxide-phosphorus pentaoxide oxidation of 1,2:3,4:6,7-tri-O-isopropylidene-D-glycero-D-manno-heptitol (3, prepared from volemitol), followed by hydrolysis. D-ido-3-Heptulose (8) was synthesized similarly by oxidation of 1,2:4,5:6,7-tri-O-isopropylidene-D-glycero-l-galacto-heptitol (7, prepared from D-glycero-l-galacto-heptitol, 6). Another tri-O-isopropylidene derivative (11), having a free primary hydroxyl group, was produced in larger amount than 7, and 11 yielded D-glycero-l-galacto-heptose (14). Compound 8 was also synthesized by way of 1,2:4,5.6,7-tri-O-isopropylidene-D-glycero-l-gulo-heptitol (15). The production of 15 from D-glycero-l-gulo-heptitol (13) was accompanied by a larger amount of 2,3:4,5:6,7-tri-O-isopropylidene-D-glycero-D-ido-heptitol (17) which, upon oxidation followed by hydrolysis, yielded D-glycero-D-ido-heptose (18). One of the two tri-O-isopropylidene derivatives obtained by acetonation of perseitol, 2,3:4,5:6,7-tri-O-isopropylidene-D-glycero-D-galacto-heptitol (19), yielded D-glycero-D-galacto-heptose (20).  相似文献   

8.
《Carbohydrate research》1993,246(1):75-88
A stereocontrolled, facile total synthesis of ganglioside GD3 is described as an example of a proposed systematic approach to the preparation of gangliosides containing an α-sialyl-(2 → 8)-sialic acid unit α-glycosidically linked to O-3 of a d-galactose reesidue in their oligosaccharide chains. Glycosylation of 2-(trimethylsilyl)ethyl 6-O-benzoyl-, 3-O-benzoyl-, or 3-O-benzyl-β-d-galactopyranosides, or 2-(trimethylsilyl)ethyl 2,3,6,2′,6′-penta-O-benzyl-β-lactoside (7), with methyl [phenyl 5-acetamido-8-O-(5-acetamido-4,7,8,9- tetra-O-acetyl-3,5-dideoxy-d-glycero-α-d-galacto-2-nonulopyranosyl-ono-1′,9-lactone)-4,7-di-O-acetyl-3,5-dideoxy-2-thio- d-glycero-d-galacto-2-nonulopyranosid]onate (3), using N-iodosuccinimide-trifluoromethanesulfonic acid as a promoter, gave the corresponding α glycosides 8 (32%), 13 (33%), 14 (48%), and 17 (31%), respectively. The glycyl donor 3 was prepared from O-(5-acetamido-3,5-dideoxy-d-glycero-α-d-galacto-2-nonulopyranosylonic acid)-(2 → 8)-5-acetamido-3,5-dideoxy-d-glycero- d-galacto-2-nonulopyranosonic acid by treatment with Amberlite IR-120 (H+) in methanol, O-acetylation, and subsequent replacement of the anomeric acetoxy group with phenylthio. Compound 8 was converted into the methyl β-thioglycoside via O-benzoylation, replacement of the 2-(trimethylsilyl)ethyl group by acetyl, and introduction of the methylthio group by reaction with methylthiotrimethylsilane. Compound 17 was converted, via O-acetylation, selective removal of the 2-(trimethylsilyl)ethyl group, and reaction with trichloroacetonitrile, into the α-trichloroacetimidate, which was coupled with (2S,3R,4E)-2-azido-3O-benzoyl-4-octadecene-1,3-diol to give the β-glycoside. This glycoside was easily transformed, via selective reduction of the azido group, condensation with octadecanoic acid, O-deacylation, and hydrolysis of the methyl ester and lactone functions, into ganglioside GD3.  相似文献   

9.
Acid-catalyzed acetonation of d-glycero-d-galacto-heptose yields solely the 1,2:3,4:6,7-tri-O-isopropylidene pyranoid derivative, whereas d-glycero-l-gluco- and d-glycero-l-manno-heptose react in the furanose form to give 1,2:5,6-(major) and 1,2:6,7-di-O-isopropylidene-d-glycero-l-gluco-heptose (minor), and 2,3:5,6-(major) and 2,3:6,7-di-O-isopropylidene-d-glycero-l-manno-heptose (minor), respectively.  相似文献   

10.
The 3,4-O- and 1,2:3,4-di-O-isopropylidene derivatives (7 and 8) of l-dendroketose [4-C-(hydroxymethyl)-l-glycero-pentulose] (1) have been synthesized stereo-specifically from 4-C-(hydroxymethyl)-1,2:3,4-di-O-isopropylidene-l-erythro-pentitol (2).  相似文献   

11.
When kept at 105° for 2.5 h, weakly alkaline, syrupy d-erythrose was readily converted into a mixture containing mainly d-glycero-tetrulose, the previously unknown β-d-altro-l-glycero-3-octulofuranose (2), and α-d-gluco-l-glycero-3-octulopyranose, which were isolated as the corresponding acetates. Treatment of 2 with Dowex 50 (H+) resin yielded 3,8-anhydro-β-d-altro-l-glycero-octulopyranose, identified as its acetate. Previous discrepancies in the [α]d values for d-erythrose appear partly to originate in the self-aldol reaction. The dimerisation of d-erythrose 4-phosphate is also described.  相似文献   

12.
d-erythro-2,3-Hexodiulosono-1,4-lactone 2-arylhydrazones (2) were prepared by condensation of dehydro-d-arabino-ascorbic acid with the desired arylhydrazine. Reaction of 2 with hydroxylamine gave the 2-arylhydrazone 3-oximes (3). On boiling with acetic anhydride, 3 gave 2-aryl-4-(2,3-di-O-acetyl-d-erythro-glycerol-1-yl)-1,2,3-triazole-5-carboxylic acid 5,11-lactone (5), whereas the unacetylated triazole derivatives were obtained upon reaction of 3 with bromine in water. On treatment of 5 with hydrazine hydrate, 2-aryl-4-(d-erythro-glycerol-1-yl)-1,2,3-triazole-5-carboxylic acid 5-hydrazides (6) were obtained. Acetylation of 6 gave the hexaacetyl derivatives. Similarly, treatment of 5 with liquid ammonia gave the triazolecarboxamides (12). Vigorous acetylation of 12 with boiling acetic anhydride gave tetraacetates, whereas acetylation with acetic anhydride-pyridine gave triacetates. Periodate oxidation of 6 gave the 2-aryl-4-formyl-1,2,3-triazole-5-carboxylic acid 5-hydrazides (8), and, on reduction, 8 gave the 2-aryl-4-(hydroxymethyl)-1,2,3-triazole-5-carboxylic acid 5-hydrazides, characterized as acetates. Similarly, periodate oxidation of 12 gave the triazolealdehyde (15), and reduction of 15 gave the hydroxymethyl derivatives (16). Acetylation of 16 gave the mono- and di-acetates, and, on reaction with o-phenylenediamine, 15 afforded the triazoleimidazole. Controlled reaction of 3 with sodium hydroxide, followed by neutralization, gave 3-(d-erythro-glycerol-1-yl)-4,5-isoxazolinedione 4-arylhydrazones. Reaction of 3 with HBr-HOAc gave 5-O-acetyl-6-bromo-6-deoxy-d-erythro-2,3-hexodiulosono-1,4-lactone 2-arylhydrazone 3-oximes (21). Compounds 21 were converted into 4-(2-O-acetyl-3-bromo-3-deoxy-d-erythro-glycerol-1-yl)-2-aryl-1,2,3-triazole-5-carboxylic acid 5,11-lactone on treatment with acetic anhydride.  相似文献   

13.
Methyl 2,3-anhydro-4,6-O-benzylidene-3-C-nitro-β-d-allopyranoside (1), as well as its β-d-manno (2) and α- d-manno (3) isomers, reacted with dimethylamine to give the same, crystalline 3-(dimethylamino) adduct (4) of 1,5-anhydro-4,6-O-benzylidene-2-deoxy-2-(dimethylamino)-d-erythro-hex-1-en-3-ulose (5). The enulose 5 was obtained from 4 by the action of silica gel. Similarly, the β-d-gulo (6) and α-d-talo (7) stereoisomers of 13 afforded a 3-(dimethylamino) adduct (8) of the d-threo isomer (9) of 5. Reaction of dimethylamine with 5,6-anhydro-1,2-O-isopropylidene-6-C-nitro-α-d-glucofuranose (10) yielded a mixture of two diastereoisomeric (possibly anometic at C-6) 5-deoxy-5-(dimethylamino)-1,2-O-isopropylideric-α-d-hexodialdo-1,4:6,3-difuranoses (11). The β-glycoside 1 and the α-glycoside 3 reacted with methylmagnesium iodide to produce methyl 4,6-O-benzylidene-3-deoxy-3-C-methyl-3-(N-hydroxy-N-methylamino)-β- and -α-d-hexopyranosides (12) and (13), respectively; both products had the 1,2-trans configuration, but their configurations at the quaternary center C-3 have not been determined.  相似文献   

14.
2,6-Anhydro-1-deoxy-1-diazo-D-glycero-L-manno-heptitol (2) decomposes in 0.01M methanolic sodium methoxide with a half-life of approx. 18 min. Decomposition in aqueous solution is too rapid for spectrophotometric measurement. Seven products could be identified in methanolic and aqueous reaction mixtures. 2,6-Anhydro-1-deoxy-D-galacto-hept-1-enitol (6), 2,7-anhydro-1-deoxy-β-D-galacto-heptulopyranose (10), and 4-O-vinyl-D-lyxose (12) are products of rapid intramolecular reactions. The major portion consists of the direct solvolysis products 2,6-anhydro-1-O-methyl-D-glycero-L-manno-heptitol (3) and 2,6-anhydro-D-glycero-L-manno-heptitol (5).  相似文献   

15.
Photoamidation of 3-O-acetyl-1,2:5,6-di-O-isopropylidene-α-d-erythro-hex-3-enofuranose (1) afforded 3-O-acetyl-4-C-carbamoyl-1,2:5,6-di-O-isopropylidene-α-d-gulofuranose (2) and 3-O-acetyl-3-C-carbamoyl-1,2:5,6-di-O-isopropylidene-d-α-allofuranose (3) in 65 and 26% yields, respectively (based on consumed1). Treatment of2 with 5% hydrochloric acid in methanol yielded the spiro lactone5, which was deacetylated to yield7. Reduction of5 with sodium borohydride afforded 4-C-(hydroxymethyl)-1,2-O-isopropylidene-α-d-gulofuranose (9) in 79% yield. Oxidation of9 with sodium metaperiodate afforded a dialdose that was reduced with sodium borohydride to give 4-C-(hydroxymethyl)-1,2-O-isopropylidene-α-d-erythro-pentofuranose (11) in 88% yield. Treatment of the acetate12, derived from11, with trifluoroacetic acid, followed by acetylation, afforded the branched-chain sugar acetate14. Condensation of the glycosyl halide derived from14 withN6-benzoyl-N6, 9-bis-(trimethylsilyl)adenine yielded an equimolar anomeric mixture of protected nucleosides15 and16 in 40% yield. Treatment of the latter compounds with sodium methoxide in methanol afforded 9-[4-C-(hydroxymethyl)-β-d-erythro-pentofuranosyl]-adenine (17) and the α-d anomer18. The structure of3 was determined by correlation with the known 5,3′-hemiacetal of 3-C-(hydroxymethyl)-1,2-O-isopropylidene-α,α′-d-ribo-pentodialdose (25).  相似文献   

16.
Irradiation of a solution of 2-acetoxy-3,4,6-tri-O-acetyl-D-glucal (1) in 1:200 acetone-2-propanol with a high-pressure mercury-lamp gave 4,5,6,8-tetra-O-acetyl-3,7-anhydro-1-deoxy-2-C-methyl-D-glycero-D-gulo-octitol (2) (51.2%), -D-glycero-D-ido-octitol (3) (16.2%), and-D-glycero-D- galacto-octitol (4) (21.0%). The irradiation of 1 in 1:1 acetone-2-propanol gave 5,6,8-tri-O-acetyl-3,7-anhydro-1-deoxy-4-C-(1-hydroxy-1-methylethyl)-2-C-methyl-D-glycero-D-(gluco or manno, etc.)-octitol 2,4,41-orthoacetate (17%) and a 2:1:1 mixture of 2, 3, and 4 (64%). Moreover, the irradiation of 1 in 1:9 acetone-tert-butyl alcohol gave 2 (15%), 3 (9%), 4 (7%), and (4S)-4,5,6,8-tetra-O-acetyl-2,4:3,7-dianhydro-1-deoxy-2-C-methyl-D-gluco-octos-4-ulose (14%).  相似文献   

17.
Anti-Markovnikov hydration of the olefinic bond of 5,6-dideoxy-1,2-O-isopropylidene-3-O-p-tolylsulfonyl-α- d-xylo-hex-5-enofuranose (4) and methyl 5,6-dideoxy-2,3-di-O-p-tolylsulfonyl-α-l-arabino-hex-5-enofuranoside (11) by the addition of iodine trifluoroacetate, followed by hydrogenation in the presence of a Raney nickel catalyst in ethanol containing triethylamine, afforded 5-deoxy-1,2-O-ísopropylidene-3-O-p-tolylsulfonyl-α-d-xylo-hexofuranose (6) and methyl 5-deoxy-2,3-di-O-p-tolylsulfonyl-α-d-arabino-hexofuranoside (14), respectively. 5-deoxy-d-xylo-hexose and 5-deoxy-l-arabino-hexose were prepared from 6 and 14, respectively, by photolytic O-detosylation and acid hydrolysis. Syntheses of 9-(5-deoxy-β-d-xylo-hexofuranosyl)-adenine and 9-(5-deoxy-α-l-arabino-hexofuranosyl)adenine are also described. Application of the sodium naphthalene procedure, for O-detosylation, to 11 is reported in connection with an alternative synthetic route to methyl 5-deoxy-α-l-arabino- hexofuranoside.  相似文献   

18.
Addition of ethyl isocyanoacetate in strongly basic medium to the glycosuloses 1,2:5,6-di-O-isopropylidene-α-d-ribo-hexofuranos-3-ulose (1) and 1,2-O-isopropylidene-5-O-trityl-d-erythro-pentos-3-ulose (2) gave the unsaturated derivatives (E)- and (Z)-3-deoxy-3-C-ethoxycarbonyl(formylamino)methylene-1,2:5,6-di-O-isopropylidene-α-d-glucofuranose (3 and 4), and (E)-3-deoxy-3-C-ethoxycarbonyl(formylamino)methylene-1,2-O-isopropylidene-5-O-trityl-α-d-ribofuranose (5). In weakly basic medium, ethyl isocyanoacetate and 1 gave 3-C-ethoxycarbonyl(formylamino)methyl-1,2:5,6-di-O-isopropylidene-α-d-allofuranose (12) in good yield. The oxidation of 3 and 4 with osmium tetraoxide to 3-C-ethoxalyl-1,2:5,6-di-O-isopropylidene-α-d-glucofuranose (17), and its subsequent reduction to 3-C-(R)-1′,2′-dihydroxyethyl-1,2:5,6-di-O-isopropylidene-α-d-glucofuranose (18) and its (S) epimer (19) and to 3-C-(R)-ethoxycarbonyl(hydroxy)methyl-1,2:5,6-di-O-isopropylidene-α-d-glucofuranose (21) and its (S) epimer (22) are described. Hydride reductions of 12 yielded the corresponding 3-C-(1-formylamino-2-hydroxyethyl), 3-C-(2-hydroxy-1-methylaminoethyl), and 3-C-(R)-ethoxycarbonyl(methylamino)methyl derivatives (13, 14 and 16). Catalytic reduction of 3 and 4 yielded the 3-deoxy-3-C-(R)-ethoxycarbonyl-(formylamino)methyl derivative 6 and its 3-C-(S) epimer. Further reduction of 6 gave 3-deoxy-3-C-(R)-(1-formylamino-2-hydroxyethyl)-1,2:5,6-di-O-isopropylidene-α-d-allofuranose (23) which was deformylated with hydrazine acetate to 3-C-(R)-(1-amino-2-hydroxyethyl)-3-deoxy-1,2:5,6-di-O-isopropylidene-α-d-allofuranose (24). The configurations of the branched-chains in 16, 21, and 22 were determined by o.r.d.  相似文献   

19.
Addition of phenyl azide to 3,5-di-O-acetyl-6,7-dideoxy-1,2-O-isopropylidene-β-l-idio-hept-6-ynofuranose (1) and subsequent saponification gave a 4-substituted 1-phenyl-1,2,3-triazole derivative (3) whose optical rotatory dispersion (o.r.d.) curve was positive. The α-d-gluco analog (5) of 1 similarly gave the 5-epimer (7) of 3; its o.r.d. curve was negative. Both 3 and 7 were degraded to the known 1-phenyl-1,2,3-triazole-4-carboxaldehyde. Similarly, addition of 2,4,6-trimethylbenzonitrile N-oxide to 1 or 5 gave the corresponding, crystalline 3-mesitylisoxazoles as single products; 13C-n.m.r. spectroscopy was used to establish the orientation of addition. Related 3-mesitylisoxazoles (11 and 13) were obtained from 1,2:3,4-di-O-isopropylidene-d-glycero-α-d-galacto-oct-7-ynopyranose (10) and its l-glycero 6-epimer (12), respectively; 11 showed the expected, large levorotation, and the 6-epimer 13 was also levorotatory. Benzonitrile (N-phenyl)imine, prepared in situ from 1-(α-chlorobenzylidene)-2-phenylhydrazine and base, did not react with 10 (or its 6-epimer 12), but did react with the 6-keto analog to give a 5-substituted 1,3-diphenyl-1,2-diazole.  相似文献   

20.
Treatment of 2,3,6-trideoxy-1,4-di-O-(p-nitrobenzoyl)-3-(trifluoroacetamido)-l-lyxo-hexopyranose (1) with benzyl 2,3-dideoxy-d-glycero-pentopyranoside and p-toluenesulfonic acid gave a mixture of benzyl 2,3,6-trideoxy-4-O-p-nitrobenzoyl-3- (trifluoroacetamido)-l-lyxo-hexopyranoside (49%) and benzyl 2,3-dideoxy-4-O-[2,3,6-trideoxy-4-O-(p-nitrobenzoyl)-3-(trifluoroacetamido)-α-l-lyxo-hexopyranosyl]-d-glycero-pentopyranoside (4, 20 %). The structure of the disaccharide 4 was confirmed by a detailed, mass-spectrometric analysis in three modes, namely, negative- and positive-ion, chemical ionization, and electron impact. Similar treatment of the bis(p-nitrobenzoate) 1 with ethyl 2,3-dideoxy-d-glycero-pentopyranoside gave the ethyl glycoside and the desired disaccharide, showing that the transglycosylation is not restricted to benzyl glycosides. Removal of the p-nitrobenzoyl and the benzyl groups from 4 gave the disaccharide 2,3-dideoxy-4-O-(2,3,6-trideoxy-3-trifluoroacetamido-α-l-lyxo-hexopyranosyl)-d-glycero-pentopyranose.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号