首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Pig kidney brush-border membrane vesicles were solubilized using a final concentration of 1% Triton X-100, found optimal for quantitative reconstitution of d-glucose transport into liposomes. Using reconstituted proteoliposomes, selective permeability towards d-glucose compared to other sugars tested was shown as well as the main features of d-glucose transport in native membranes, namely sodium dependence and phlorizin inhibition of d-glucose accumulation. After removal of Triton X-100 from the detergent extract, some membrane proteins (about 40%), which are insoluble in the absence of detergent, were isolated. Among these proteins resolubilized by 1% Triton X-100, the component catalyzing the d-glucose transport was located by gel-filtration chromatography separation, using reconstitution of transport as the assay. The active fraction displayed a molecular size of 50 Å; when analyzed on SDS polyacrylamide gel electrophoresis, it contained one major protein subunit with an apparent molecular weight close to 65 000. We conclude that this protein fraction is involved in d-glucose transport by renal brush borders.  相似文献   

2.
Uridine diphosphate D-glucose dehydrogenase of Aerobacter aerogenes   总被引:1,自引:0,他引:1  
Uridine diphosphate d-glucose dehydrogenase (EC 1.1.1.22) from Aerobacter aerogenes has been partially purified and its properties have been investigated. The molecular weight of the enzyme is between 70,000 and 100,000. Uridine diphosphate d-glucose is a substrate; the diphosphoglucose derivatives of adenosine, cytidine, guanosine, and thymidine are not substrates. Nicotinamide adenine dinucleotide (NAD), but not nicotinamide adenine dinucleotide phosphate, is active as hydrogen acceptor. The pH optimum is between 9.4 and 9.7; the K(m) is 0.6 mm for uridine diphosphate d-glucose and 0.06 mm for NAD. Inhibition of the enzyme by uridine diphosphate d-xylose is noncooperative and of mixed type; the K(i) is 0.08 mm. Thus, uridine diphosphate d-glucose dehydrogenase from A. aerogenes differs from the enzyme from mammalian liver, higher plants, and Cryptococcus laurentii, in which uridine diphosphate d-xylose functions as a cooperative, allosteric feedback inhibitor.  相似文献   

3.
Target sizes of the renal sodium-d-glucose cotransport system in brush-border membranes of calf kidney cortex were estimated by radiation inactivation. In brush-border vesicles irradiated at ?50°C with 1.5 MeV electron beams, sodium-dependent phlorizin binding, and Na+-dependent d-glucose tracer exchange decreased exponentially with increasing doses of radiation (0.4–4.4 Mrad). Inactivation of phlorizin binding was due to a reduction in the number of high-affinity phlorizin binding sites but not in their affinity. The molecular weight of the Na+-dependent phlorizin binding unit was estimated to be 230 000 ± 38 000. From the tracer exchange experiments a molecular weight of 345 000 ± 24 500 was calculated for the d-glucose transport unit. The validity of these target size measurements was established by concomitant measurements of two brush-border enzymes, alkaline phosphatase and γ-glutamyltransferase, whose target sizes were found to be 68 570 ± 2670 and 73 500 ± 2270, respectively. These findings provide further evidence for the assumption that the sodium-d-glucose cotransport system is a multimeric structure, in which distinct complexes are responsible for phlorizin binding and d-glucose translocation.  相似文献   

4.
The transport of d-glucose by brush border membranes isolated from the rabbit renal cortex was studied. At concentrations less than 2 mM, the rate of d-glucose uptake increased linearly with the concentration of the sugar. No evidence was found for a “high-affinity” (μM) saturable site. Saturation was indicated at concentrations of d-glucose greater than 5 mM. The uptake of d-glucose was stereospecific and selectively inhibited by d-galactose and other sugars. Phlorizin inhibited the uptake of d-glucose in the presence and absence of Na+. The glycoside was a potent inhibitor of the efflux of d-glucose. Preloading the brush border membrane vesicles with d-glucose, but not with l-glucose, accelerated exchange diffusion of d-glucose. These results demonstrate that the uptake of d-glucose by renal brush borders represents transport into an intravesicular space rather than solely binding. The rate of d-glucose uptake was increased when the Na+ in the extravesicular medium was high and the membranes were preloaded with a Na+-free medium. The rate of d-glucose uptake was inhibited by preloading the brush border membranes with Na+. These results are consistent with the Na+ gradient hypothesis for d-glucose transport in the kidney. Thus, the presence of a Na+-dependent facilitated transport of d-glucose in isolated renal brush border membranes is indicated. This finding is consistent with what is known of the transport of the sugar in more physiologically intact preparations and suggests that the membranes serve as an effective model system in examining the mechanism of d-glucose transport in the kidney.  相似文献   

5.
A modification, utilising mutarotase, of an enzymic, colorimetric system for determining d-glucose with d-glucose oxidase, peroxidase, and ABTS was satisfactory for the assay of the anomers of d-glucose in aqueous solution. The time required for a single assay is ≈ 10 min, and the lower limit is 0.4 μg of d-glucose. The method is applicable to the anomer analysis of d-glucose released by enzymic hydrolysis of d-glucosides.  相似文献   

6.
The most stable structures of two poly(ethylene oxide) (PEO) model cofactors, beta-1-O-galloyl-3,6-( R)-hexahydroxydiphenoyl- d-glucose (corilagin) and 1,3,6-tri-O-galloyl-beta- d-glucose (TGG), are calculated using molecular modeling and PM3 semiempirical molecular orbital theories. The theoretical PM3 structures agree with interpreted structures from experimental NMR; the glucopyranose ring of corilagin has a boat and TGG a chair conformation, for which the heats of formation, torsion angles, distances, van der Waals surface, and the infrared spectra are calculated.  相似文献   

7.
The glucose transporter in the plasma membrane of rat skeletal muscle has been identified by two approaches. In one, the transporter was detected as the polypeptide that was differentially labeled by photolysis with [3H]cytochalasin B in the presence of l- and d-glucose. [3H]Cytochalasin B is a high-affinity ligand for the transporter that is displaced by d-glucose. In the other, the transporter was detected by means of its reaction with rabbit antibodies against the purified glucose transporter from human erythrocytes. By both procedures, the transporter was found to be a polypeptide with a mobility corresponding to a molecular weight of 45,000–50,000 upon sodium dodecyl sulfate-polyacrylamide gel electrophoresis.  相似文献   

8.
Dextransucrase and the mechanism for dextran biosynthesis   总被引:1,自引:0,他引:1  
Remaud-Simeon and co-workers [Moulis, C.; Joucla, G.; Harrison, D.; Fabre, E.; Potocki-Veronese, G.; Monsan, P.; Remaud-Simeon, M. J. Biol. Chem., 2006, 281, 31254-31267] have recently proposed that a truncated Escherichia coli recombinant B-512F dextransucrase uses sucrose and the hydrolysis product of sucrose, d-glucose, as initiator primers for the nonreducing-end synthesis of dextran. Using 14C-labeled d-glucose in a dextransucrase-sucrose digest, it was found that <0.02% of the d-glucose appears in a dextran of Mn 84,420, showing that d-glucose is not an initiator primer, and when the dextran was treated with 0.01 M HCl at 80 °C for 90 min and a separate sample with invertase at 50 °C for 24 h, no d-fructose was formed, indicating that sucrose is not present at the reducing-end of dextran, showing that sucrose also was not an initiator primer. It is further shown that both d-glucose and dextran are covalently attached to B-512FMC dextransucrase at the active site during polymerization. A pulse reaction with [14C]-sucrose and a chase reaction with nonlabeled sucrose, followed by dextran isolation, reduction, and acid hydrolysis, gave 14C-glucitol in the pulsed dextran, which was significantly decreased in the chased dextran, showing that the d-glucose moieties of sucrose are added to the reducing-ends of the covalently linked growing dextran chains. The molecular size of dextran is shown to be inversely proportional to the concentration of the enzyme, indicating a highly processive mechanism in which d-glucose is rapidly added to the reducing-ends of the growing chains, which are extruded from the active site of dextransucrase. It is also shown how the three conserved amino acids (Asp551, Glu589, and Asp 622) at the active sites of glucansucrases participate in the polymerization of dextran and related glucans from a single active site by the addition of the d-glucose moiety of sucrose to the reducing-ends of the covalently linked glucan chains in a two catalytic-site, insertion mechanism.  相似文献   

9.
The properties of the d-glucose transport system of Zymomonas mobilis were determined by measuring the uptake of nonmetabolizable analogs (2-deoxy-d-glucose and d-xylose) by wild-type cells and the uptake of d-glucose itself by a mutant lacking glucokinase. d-Glucose was transported by a constitutive, stereospecific, carrier-mediated facilitated diffusion system, whereby its intracellular concentration quickly reached a plateau close to but not above the external concentration. d-Xylose was transported by the d-glucose system, as evidenced by inhibition of its uptake by d-glucose. d-Fructose was not an efficient competitive inhibitor of d-glucose uptake, indicating that it has a low affinity for the d-glucose transport system. The apparent K(m) of d-glucose transport was in the range of 5 to 15 mM, with a V(max) of 200 to 300 nmol min mg of protein. The K(m) of Z. mobilis glucokinase (0.25 to 0.4 mM) was 1 order of magnitude lower than the K(m) for d-glucose transport, although the V(max) values for transport and phosphorylation were similar. Thus, glucose transport cannot be expected to be rate limiting at concentrations of extracellular glucose normally used in fermentation processes, which greatly exceed the K(m) for the transport system. The low-affinity, high-velocity, nonconcentrative system for d-glucose transport described here is consistent with the natural occurrence of Z. mobilis in high-sugar environments and with the capacity of Z. mobilis for rapid conversion of glucose to metabolic products with low energetic yield.  相似文献   

10.
The uptake of radioactively labeled hexoses and pentoses into the sorbitol-impermeable (3)H(2)O space (the space surrounded by the inner envelope membrane) of spinach (Spinacia oleracea L.) chloroplasts has been studied using silicone layer filtering centrifugation. Of the compounds tested, d-xylose, d-mannose, l-arabinose, and d-glucose are transported most rapidly, followed by d-fructose and l-arabinose. The rate of l-glucose uptake is only about 5% of that of d-glucose.The transport of d-glucose and d-fructose shows saturation characteristics, the K(m) for d-glucose was found to be about 20 mm. All sugars transport and phloretin inhibit d-glucose transport. The temperature dependency of d-glucose transport appears to have an activation energy of 17 kcal/mol.With low external concentrations of d-glucose the transport into the chloroplasts proceeds until nearly the external concentration is reached inside the chloroplasts.d-glucose transport is inhibited by high d-glucose concentrations in the medium. It is concluded that d-glucose and other hexoses are transported by carrier-mediated diffusion across the inner envelope membrane. This transport is similar to the transport of d-glucose into erythrocytes.  相似文献   

11.
d-Ribose is active in glycation and rapidly produces advanced glycation end products, leading to cell death and to cognitive impairment in mice. Glycated serum protein (GSP) is a relatively short-term biomarker for glycemic control in diabetes mellitus. However, whether d-ribose is related to GSP is unclear. The aim of this work was to identify the contribution of d-ribose to GSP compared to d-glucose. Here, we showed that the yield of glycated human serum albumin with d-ribose was at least two-fold higher than that with d-glucose in a 2-week incubation. The glycation of human serum albumin (HSA) with d-ribose was much faster than that with d-glucose, as determined by monitoring changes in the fluorescent intensity of glycation products with time. Liquid chromatography-mass spectrometry/mass spectrometry revealed that 17 and 7 lysine residues on HSA were glycated in the presence of d-ribose and d-glucose, respectively, even when the concentration ratio [d-ribose]/[d-glucose] was 1/50. The intraperitoneal injection of d-ribose significantly increased the GSP levels in Sprague Dawley rats, but the injection of d-glucose did not. The level of d-ribose was more positively associated with GSP than the level of d-glucose in streptozotocin-treated rats. In diabetic patients, the levels of both d-ribose and d-glucose were closely related to the level of GSP. Together, these in vitro and in vivo findings indicated that d-ribose is an important contributor to the glycation of serum protein, compared to d-glucose. To assess GSP levels in diabetes mellitus, we should consider the contribution from d-ribose, which plays a nonnegligible role.  相似文献   

12.
In the apical membrane of epithelial cells from the small intestine and the kidney, the high-affinity Na+/d-glucose cotransporter SGLT1 plays a crucial role in selective sugar absorption and reabsorption. How sugars are selected at the molecular level is, however, poorly understood. Here atomic force microscopy (AFM) was employed to investigate the substrate specificity of rbSGLT1 on the single-molecule level, while competitive-uptake assays with isotope-labeled sugars were performed in the study of the stereospecificity of the overall transport. rbSGLT1-transfected Chinese hamster ovary (CHO) cells were used for both approaches. Evidence of binding of d-glucose to the extracellular surface of rbSGLT1 could be obtained using AFM tips carrying 1-thio-d-glucose coupled at the C1 position to a PEG linker via a vinylsulfon group. Competition experiments with monosaccharides in solution revealed the following selectivity ranking of binding: 2-deoxy-d-glucose >or= 6-deoxy-d-glucose > d-glucose > d-galactose >or= alpha-methyl glucoside; 3-deoxy-d-glucose, d-xylose, and l-glucose did not measurably affect binding. These results were different from those of competitive alpha-methyl glucoside transport assays, where the ranking of inhibition was as follows: d-glucose > d-galactose > 6-deoxy-d-glucose; no uptake inhibition by d-xylose, 3-deoxy-d-glucose, 2-deoxy-d-glucose, or l-glucose was observed. Taken together, these results suggest that the substrate specificity of SGLT1 is determined by different recognition sites: one possibly located at the surface of the transporter and others located close to or within the translocation pathway.  相似文献   

13.
A hydrogen peroxide permselective membrane with asymmetric structure was prepared and d-glucose oxidase (EC 1.1.3.4) was immobilized onto the porous layer. The activity of the immobilized d-glucose oxidase membrane was 0.34 units cm?2 and the activity yield was 6.8% of that of the native enzyme. Optimum pH, optimum temperature, pH stability and temperature stability were found to be pH 5.0, 30–40°C, pH 4.0–7.0 and below 55°C, respectively. The apparent Michaelis constant of the immobilized d-glucose oxidase membrane was 1.6 × 10?3 mol l?1 and that of free enzyme was 4.8 × 10?2 mol l?1. An enzyme electrode was constructed by combination of a hydrogen peroxide electrode with the immobilized d-glucose oxidase membrane. The enzyme electrode responded linearly to d-glucose over the concentration 0–1000 mg dl?1 within 10 s. When the enzyme electrode was applied to the determination of d-glucose in human serum, within day precision (CV) was 1.29% for d-glucose concentration with a mean value of 106.8 mg dl?1. The correlation coefficient between the enzyme electrode method and the conventional colorimetric method using a free enzyme was 0.984. The immobilized d-glucose oxidase membrane was sufficiently stable to perform 1000 assays (2 to 4 weeks operation) for the determination of d-glucose in human whole blood. The dried membrane retained 77% of its initial activity after storage at 4°C for 16 months.  相似文献   

14.
The mechanism of d-glucose transport in the marine bacterium Serratia marinorubra was investigated. Uptake is mediated by a single, constitutive phosphoenolpyruvate:sugar phosphotransferase system (PTS), resulting in phosphorylation of d-glucose to d-glucose phosphate during transport. The system is saturable (K(m) = 6.4 x 10 M) and highly temperature dependent, with a Q(10) of 3.5 between 5 and 15 degrees C. The system is highly specific for d-glucose; structurally related sugars and sugar alcohols did not significantly compete with d-glucose for transport. The PTS requires Mg (K(m) = 2.5 x 10 M), but its activity is otherwise unaffected by salinity changes over the range tested (0 to 35 per thousand). S. marinorubra differs from other gram-negative organisms (Escherichia coli and Salmonella typhimurium) in that its glycerol (non-PTS substrate) permease is not regulated by the presence of glucose (PTS substrate).  相似文献   

15.
Pneumococcal C-substance, a ribitol teichoic acid containing choline phosphate   总被引:44,自引:6,他引:38  
1. Pneumococcal C-substance was isolated from the non-capsulated Pneumococcus 1-192R, A.T.C.C. 12213, by extraction with trichloroacetic acid solution followed by chromatography on DEAE-cellulose (HCO(3) (-) form). 2. The polymer contains 7.0% of phosphorus and 6.0% of nitrogen and is composed of phosphate, N-acetyl-d-galactosamine, d-glucose, N-acetyldiaminotrideoxyhexose, ribitol and choline in the molecular proportions 2:1:1:1:1:1. 3. After acid hydrolysis, d-galactosamine hydrochloride and galactosamine 6-phosphate were isolated in crystalline form and crystalline derivatives of d-glucose and anhydroribitol were obtained. A product of partial acid hydrolysis was provisionally characterized as 6'-O-phosphoryl-[O-beta-d-galactosaminyl-(1'-->6)-d-glucose]. 4. C-substance contains free amino groups accessible to attack by 1-fluoro-2,4-dinitrobenzene and nitrous acid. 5. Choline phosphate and ribitol phosphate are units in the polymer. 6. Treatment with hot alkali gave a fragment comprising phosphate, d-galactosamine, d-glucose, diaminotrideoxyhexose and ribitol in the molecular proportions 2:1:1:1:1. 7. After selective N-acetylation, the fragment contained one of its phosphate groups as a phosphomonoester and one as a phosphodiester, shown by potentiometric titration and by treatment with a phosphomonoesterase. 8. C-substance from seven other strains of Pneumococcus possesses a structure common to that described for the strain 1-192R. 9. Capsular materials from 26 different strains of Pneumococcus were analysed for suspected contamination by C-substance. In 19 cases the presence of C-substance with the normal structure was demonstrated, and in the remaining seven cases the contaminating C-substance was probably similarly constituted. 10. F-substance was isolated and the associated fatty acid material analysed.  相似文献   

16.
Ethanol fermentation by cells of Zymomonas mobilis immobilized in calcium alginate gel has been studied using 5 to 30 wt% initial d-glucose in the medium. Up to 27% d-glucose was completely fermented and the maximum ethanol concentration of 12.6% (w/v) was obtained using an immobilized cell concentration of 58 g dry wt l?1 of bead volume. The ethanol yield coefficient was almost unaffected by initial d-glucose concentration and its value was >95% of theoretical. The rates of ethanol production and d-glucose utilization first increased, with an increase in initial d-glucose concentration up to 13.6%, and then started to decrease upon a further increase in initial d-glucose concentration. Cell leakage from the calcium alginate beads was very low.  相似文献   

17.
Benzoquinone can replace O2 as an electron acceptor in the oxidation of d-glucose catalysed by A. niger d-glucose oxidase. As a result, a useful chemical, hydroquinone, is formed in nearly 100% yield. A column packed with d-glucose oxidase immobilized onto alumina was operated for two weeks with no measurable decline in its catalytic efficiency and produced more than one hundred grams of hydroquinone.  相似文献   

18.
Trehalose phosphorylase from the basidiomycete Pleurotus ostreatus (PoTPase) was isolated from fungal fruit bodies through approximately 500-fold purification with a yield of 44%. Combined analyses by SDS-PAGE and gelfiltration show that PoTPase is a functional monomer of approximately 55 kDa molecular mass. PoTPase catalyzes the phosphorolysis of alpha,alpha-trehalose, yielding alpha-d-glucose 1-phosphate (alphaGlc 1-P) and alpha-d-glucose as the products. The optimum pH of PoTPase for alpha,alpha-trehalose phosphorolysis and synthesis is 6.8 and 6.2, respectively. Apparent substrate binding affinities (K(m)) were determined at pH 6.8 and 30 degrees C: alpha,alpha-trehalose (79 mM); phosphate (3.5 mM); d-glucose (40 mM); alphaGlc 1-P (4.1mM). A series of structural analogues of d-glucose were tested as glucosyl acceptors for the enzymatic reaction with alphaGlc 1-P, and robust activity with d-mannose (3%), 2-deoxy d-glucose (8%), 2-fluoro d-glucose (15%) and 2-keto-d-glucose (50%) was detected. Arsenate replaces, with 30% relative activity, phosphate in the conversion of alpha,alpha-trehalose, and vanadate strongly inhibits the enzyme activity (K(i) approximately 4 microM). PoTPase has a half-life (t(0.5)) of approximately 1 h at 30 degrees C in the absence of stabilizing compounds such as alpha,alpha-trehalose (300 mM; t(0.5)=11.5 h), glycerol (20%, w/v; t(0.5)=6.5h) or polyethylenglycol (PEG) 4000 (26%, w/v; t(0.5)=70 h). Covalent modification of PoTPase with activated derivatives of PEG 5000 increases the stability by up to 600-fold. Sucrose was converted to alpha,alpha-trehalose in approximately 60% yield using a coupled enzyme system composed of sucrose phosphorylase from Leuconostoc mesenteroides, glucose isomerase from Streptomyces murinus and the appropriately stabilized PoTPase.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号