首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Laser-Raman spectra of L-α-dimyristoylphosphatidylcholine (DMPC) liposomes in the spectral range 1000–1200 cm?1 were obtained as a function of temperature from ?80 to +50°C. The triplet found in this spectral region was resolved into Lorentzian components by means of an iterative computer program. The peak intensities, band widths, and band areas of the resolved 1062 cm?1 and 1130 cm?1 bands, assigned to CC stretching vibrations of trans segments, were evaluated as a function of temperature. While the peak intensities of the bands decrease substantially with temperature, the band widths show a considerable increase. The change in band areas is therefore smaller than the change in peak heights. Experiments with all trans carboxylic acids showed that in these compounds the area of the Raman bands at 1062 cm?1 and 1130 cm?1 is proportional to the number of trans bonds. The variation with temperature of the number of trans and gauche bonds in the studied phospholipid is reflected by the change of the area of the 1130 cm?1 Raman band.  相似文献   

2.
Conformational disorder in lipid bilayer systems is commonly measured with reference to the intensity of the 1130 cm?1 Raman band. However, estimates of the concentration of gauche bonds may vary by a factor of six according to the model used to relate intensity and concentration. In an effort to narrow the wide range in these estimates, we have measured the intensity of the 1130 cm?1 band of crystalline n-C21H44 in its orthorhombic and hexagonal phases. On transition to the hexagonal phase, the intensity of the 1130 cm?1 band is much reduced. It is assumed that the observed intensity reduction results from the introduction of gauche bonds whose number can be independently estimated from other features in the Raman and infrared spectra. From these measurements we conclude that the intensity of the 1130 cm?1 band is not linearly related to the concentration of gauche bonds and that a disproportionately large decrease in the 1130 cm?1 band intensity results from the introduction of a low concentration of gauche bonds. Thus previous estimates of gauche bond concentrations based on the assumption of a linear relation have tended to greatly overestimate the gauche bond concentration. These results derived from experiment are in accord with those of Pink et al. (Pink, D.A., Green, T.J. and Chapman, D. (1980) Biochemistry 19, 349–356) derived from theory.  相似文献   

3.
We have investigated the phase characteristics of 1,2-bis(tricosa-10,12-diynoyl)-sn-glycero-3-phosphocholine (DC23PC), a phosphatidylcholine with diacetylenic groups in the acyl chains, and its saturated analog 1,2-ditricosanoyl-sn-glycero-3-phosphocholine (DTPC), using Fourier-transform infrared spectroscopy (FTIR). Previous studies on the phase behavior of DC23PC in H2O have shown that DC23PC exhibits: (1) formation of cylindrical structures (‘tubules’) by cooling fluid phase multilamellar vesicles (MLVs) through Tm (43° C), and 2) metastability of small unilamellar vesicles (SUVs) in the liquid-crystalline state some 40° C below Tm, with subsequent formation of a gel phase comprised of multilamellar sheets at 2° C. The sheets form tubules when heated and cooled through Tm. FTIR results presented here indicate that as metastable SUVs are cooled toward the transition to bilayer sheets, spectroscopic changes occur before the calorimetric transition as measured by a reduction in the CH2 symmetric stretch frequency and bandwidth. In spite of the vastly different morphologies, the sheet gel phase formed from SUVs is spectroscopically similar to the tubule gel phase. The C-H stretch region of DC23PC gel phase shows bands at 2937 and 2810 cm−1 not observed in the saturated analog of DC23PC, which may be related to perturbations in the acyl chains introduced by the diacetylenic moiety. The narrow CH2 scissoring mode at 1470 cm−1 and the prominent CH2 wagging progression indicate that DC23PC gel phase was highly ordered acyl chains with extended regions of all-trans methylene segments. In addition, the 13 cm−1 reduction in the C  O stretch frequency (1733–1720 cm−1) during the induction of DC23PC gel phase indicates that the interfacial region is dehydrated and rigid in the gel phase.  相似文献   

4.
Age-mediated deacetylation of hyaluronic acid and dermatan sulfate, and shift of sulfate ester configuration were indicated by infrared spectroscopy. Hyaluronic acid and the three dermatan sulfates (DS18, DS18 and DS35), sequentially precipitated from adult skin with 18%, 28% and 35% ethanol, were analyzed at varying ages. At age 75 years, loss of infrared bands in the 1650-1600 cm−1 region, at 1380 cm−1 and 1320 cm−1 and appearance of a band at 1560 cm−1 were characteristic of hyaluronic acid and DS35,·moreover, in DS28 and DS35 the intensities of the bands at 840 cm−1 and 860 cm were, respectively, decreased and increased. A low intensity band in the 805-785 cm−1 region was observed in the spectra of DS18 (19–35 years), DS28 (70–80 years) and DS35 (all ages). It intensified in DS28 of the 80-years-olds. In the 75±5-year-old group. ninhydrin-positive material of hyaluronic acid and DS35 increased, while reducing GlcNAc of hyaluronic acid decreased. The data demonstrated hyaluronic acid and DS35 deacetylation and suggested a decrease of equatorial sulfates with infrared band at 840 cm−1 and an incrase of axial sulfates with band at 860 cm−1 in DS28 and DS35 of the 75±5-yearl-old set. Equatorial sulfates with band in the 805±785 cm−1 region apparently decreased in DS18 after 35 years and increased in DS28 of the oldest group.  相似文献   

5.
Raman spectra are presented for sarcoplasmic reticulum membranes. Interpretation of the 1000–1130 cm?1 region of the spectrum indicates that the sarcoplasmic reticulum membrane may be more fluid than erythrocyte membranes that have been examined by the same technique. The fluidity of the membrane also manifests itself in the amide I portion of the membrane spectrum with a strong 1658 cm?1 band characteristic of CC stretching in hydrocarbon side chains exhibiting cis conformation. This band is unaltered in intensity and position in H2O and in 2H2O thus obscuring amide I protein conformation. Of particular interest is the appearance of strong, resonantly enhanced bands at 1160 and 1527 cm?1 attributable to membrane-associated carotenoids.  相似文献   

6.
《Inorganica chimica acta》1987,135(3):207-210
An FT-IR spectroscopic study concerning changes in the conformation of sugar in the dinucleotides; GpC and CpG, on platination and intercalation is presented. The results are compared with the FT-IR spectral data of 5′-CMP, 5′-GMP, 3′-GMP and their metal adducts. The spectra of free GpC, free CpG, proflavine-GpC, proflavine-CpG, and cis-[Pt(NH3)2(GpC)2]2+ exhibit the diagnostic band at 800 cm−1 which was assigned to a sugar phosphate vibrational mode and diagnostic of C3′-endo sugar pucker. In the case of 9-aminoacridine-GpC and cis-[Pt(NH3)2(CpG]+ the diagnostic bands of the C2′-endo and C3′-endo conformations are observed at 810–820 cm−1 and near 800 cm−1 respectively. The results are in good agreement with X-ray data. The infrared diagnostic bands are important for distinguishing the sugar pucker conformational changes.  相似文献   

7.
Molecular mechanisms underlying the peculiar spectral properties of the carotenoid astaxanthin in α-crustacyanin, the blue carotenoprotein isolated from the exoskeleton of the lobster Homarus gammarus, were investigated by comparing the basic electrooptical parameters of astaxanthin free in vitro with those of astaxanthin in the complex. Absorption and electroabsorption (Stark effect) spectra were obtained for α-crustacyanin in low-temperature glasses to provide information about the molecular interactions that lead to the large bathochromic shift of the spectra resulting from this complexation. The low-temperature spectra reveal the presence of at least three spectral forms of α-crustacyanin, with vibronic (0–0) transitions at 14 000 cm−1, 13 500 cm−1 and 11 600 cm−1 (corresponding to approximately 630, 660 and 780 nm, respectively, at room temperature) and with relative aboundance 85%, 10% and 5%. The longer wavelength absorbing species have not previously been detected. The changes in polarizability and in permanent dipole moments associated with the S0→S2 electronic transition for all these forms are about 1.5 times larger than for isolated astaxanthin. The results are discussed with reference to the symmetric polarization model for astaxanthin in α-crustacyanin.  相似文献   

8.
《Carbohydrate research》1987,163(1):9-14
Laser-Raman spectra of Na+ kappa-carrageenan, Na+ neocarrabiose 4-sulphate, and neocarrabiose in the region 700–1500 cm−1 are reported for solutions in H2O and D2O. The C-1-H-1α vibration, coupled with COH related modes, is assigned to a band at 840 cm−1, close to the maximum of the symmetrical COS stretching (∼850 cm−1). The symmetrical SO stretch is proposed to occur near 1040 cm−1 and is probably coupled with COH vibrations which give rise to strong bands in the region 1000–1100 cm−1. The intense band in the region 730–740 cm−1 is ascribed to a complex ring vibration.  相似文献   

9.
Abstract

The interaction of DNA and RNA with Cu(II), Mg(II), [Co(NH3)6]3+ [Co(NH3)5Cl]2+ chlorides and, cis- and trans-Pt(NH3)2Cl2 (CIS-DDP, trans-DDP) has been studied by Fourier Transform Infrared (FT-IR) spectroscopy and a correlation between metal-base binding and conformational transitions in the sugar pucker has been established. It has been found that RNA did not change from A-form on complexation with metals, whereas DNA exhibited a B to Z transition. The marker bands for the A-form (C′3-endo-anti conformation) were found to be near 810–816 cm?1, while the bands at 825 and 690 cm?1 are marker bands for the B- conformation (C′2-endo, anti), The B to Z (C3-endo, syn conformation) transition is characterized by the shift of the band at 825 cm?1 to 810–816 cm?1 and the shift of the guanine band at 690 cm?1 to about 600–624 cm?1.  相似文献   

10.
I.r. spectroscopy (the KBr pressed disc method) has been successfully used for the determination of degree of benzylation in chitin. The band at 1550 cm−1 was assigned an internal standard and the 700 cm−1 band was assigned an analytic band. Degree of substitution look up the relative curve of ratio of A700/A1550 against the degree of substitution.  相似文献   

11.
Secondary structure of 11 S globulin, a major storage protein of soybean seeds, has been investigated in aqueous solution by FT-IR spectroscopy. Conformational changes in the native protein upon thermal and chemical denaturation have been monitored by observing changes in the frequency position and peak intensity of the various bands. The frequency of the Amide I band of the native protein shifts by 4 cm−1 from 1643 cm−1 to 1647 cm−1 when denatured, while the corresponding intensity of the Amide I band compared to the native protein, decreases by 30 and 67%, respectively, for the urea and thermally denatured proteins, indicating gross conformational changes in the secondary structure. Trifluoroethanol, an α-helix promoter shifts the Amide I band from 1643 cm−1 to 1651 cm−1, typical of α-helix, with a corresponding increase in intensity by 14% relative to the native protein. Derivative spectroscopy, allowing resolution of overlapping bands, shows that the native protein mainly consists of ß-sheet, ß-turns and disordered structure with very little α-helix. On denaturation, ß-sheet disappeared almost completely with urea, while this is less so with thermal denaturation.  相似文献   

12.
The oxovanadium(IV), acetatomanganese(III), chloroiron(III), nickel(II), copper(II), zinc(II) and palladium(II) of 3,3′-(1,2-phenylenediimino)diacrolein were prepared and investigated by means of mass, electronic, vibrational, NMR and ESR spectroscopy as well as magnetic susceptibility measurements. The acetatomanganese(III) and chloroiron(III) complexes were confirmed to be of high spin type. The absorption bands appearing in the energy range greater than 23 000 cm−1 were attributed to π→π* transitions within a ligand molecule and charge- transfer transitions from metal to ligand. The metal complexes assume the square-planar configuration type since the ligand-field bands were detected in the 12 700–18 500 cm−1 region. Strong bands appearing at 1601 and 1627 cm−1 were assigned to the CC and CO stretching vibrational modes, respectively, and were shifted to lower frequency upon metal-coordination. A VO stretching band was observed at 982 cm−1 for the oxovanadium(IV) complex and a CO stretching band was observed at 1547 cm−1 for the acetatomanganese(III) complex. Upon complex formation the amine proton signal is found to vanish and the aldehydic methine proton signal in the lowest field is shifted upfield for the nickel(II), zinc(II) and palladium(II) complexes. 13C NMR spectra support the coordination structure of the complexes which is revealed by 1H NMR spectra. As judged by the spin Hamiltonian parameters, the oxovanadium(IV) complex is of a square- planar type with an unpaired electron in the dxy orbital and the copper(II) complex assumes a distorted square-planar coordination due to the presence of five- and six-membered chelate rings with an unpaired electron in the dx2−y2 orbital.  相似文献   

13.
The high-energy intraconfigurational spin-forbidden bands expected in the region of 20 000 cm−1 have been uncovered in the spectra of a number of trans-diacidobis(ethylenediamine) chromium(III)complexes. These bands have been fitted to the quadrate components of the cubic transition 4A2g → 2T2g including spin-orbit interaction. Two interconfigurational spin-forbidden bands in the spectrum of trans-[Cr(en)2(dmf)2](ClO4)3 have been uncovered and interpretted.  相似文献   

14.
《Inorganica chimica acta》1986,123(4):231-236
Complexes of pig kidney diamine oxidase with azide, thiocyanate, and cyanide have been characterized by EPR and circular dichroism spectroscopy. Cu(II) d-d bands are observed in the CD spectrum of the resting enzyme at ≈800 nm (12 500 cm−1) and 575 nm (17 400 cm−1). Anion binding produces characteristic changes in the CD spectra. N3/SCN → Cu(II) ligand-to-metal charge-transfer transitions are located at 390 nm (25 600 cm−1) and 365 nm (27 400 cm−1), respectively. In addition, an intense new band grew in at ≈500 nm (20 000 cm−1) when azide or thiocyanate were added, which may be assigned as a Cu(II) electronic transition that gains rotational strength in the anion complex. EPR spectra established that the Cu(II)-anion complexes are tetragonal; however, the magnitudes of the anion-induced shifts in the EPR parameters were consistent with substantial perturbations of the Cu(II) electronic ground state in the thiocyanate and cyanide complexes. Prominent superhyperfine splitting was apparent in the EPR spectra of the diamine oxidase complexes with thiocyanate and cyanide. The superhyperfine structure is (at least) partially attributable to endogenous Cu(II) ligands, probably from imidazole.  相似文献   

15.
To investigate molecular effects of 1‐Ethyl‐3‐(3‐dimethylaminopropyl) carbodiimide (EDC), EDC/N‐hydroxysuccinimide (NHS), glyceraldehyde cross‐linking as well as polymerization temperature and concentration on the three‐dimensional (3D) collagen hydrogels, we analyzed the structures in situ by Raman microspectroscopy. The increased intensity of the 814 and 936 cm?1 Raman bands corresponding to the C—C stretch of a protein backbone and a shift in the amide III bands from 1241 cm?1/1268 cm?1 in controls to 1247 cm?1/1283 cm?1 in glyceraldehyde‐treated gels indicated changes to the alignment of the collagen molecules, fibrils/fibers and/or changes to the secondary structure on glyceraldehyde treatment. The increased intensity of 1450 cm?1 band and the appearance of a strong peak at 1468 cm?1 reflected a change in the motion of lysine/arginine CH2 groups. For the EDC‐treated collagen hydrogels, the increased intensity of 823 cm?1 peak corresponding to the C—C stretch of the protein backbone indicated that EDC also changed the packing of collagen molecules. The 23% decrease in the ratio of 1238 cm?1 to 1271 cm?1 amide III band intensities in the EDC‐modified samples compared with the controls indicated changes to the alignment of the collagen molecules/fibrils and/or the secondary structure. A change in the motion of lysine/arginine CH2 groups was detected as well. The addition of NHS did not induce additional Raman shifts compared to the effect of EDC alone with the exception of a 1416 cm?1 band corresponding to a COO? stretch. Overall, the Raman spectra suggest that glyceraldehyde affects the collagen states within 3D hydrogels to a greater extent compared to EDC and the effects of temperature and concentration are minimal and/or not detectable. © 2012 Wiley Periodicals, Inc. Biopolymers 99: 349–356, 2013.  相似文献   

16.
《Biophysical journal》2020,118(12):2997-3007
We aimed to investigate insulin amyloid fibril polymorphism caused by salt effects and heating temperature and to visualize the structural differences of the polymorphisms in situ using Raman imaging without labeling. The time course monitoring for amyloid formation was carried out in an acidic condition without any salts and with two species of salts (NaCl and Na2SO4) by heating at 60, 70, 80, and 90°C. The intensity ratio of two Raman bands at 1672 and 1657 cm−1 due to antiparallel β-sheet and α-helix structures, respectively, was revealed to be an indicator of amyloid fibril formation, and the relative proportion of the β-sheet structure was higher in the case with salts, especially at a higher temperature with Na2SO4. In conjunction with the secondary structural changes of proteins, the S-S stretching vibrational mode of a disulfide bond (∼514 cm−1) and the ratio of the tyrosine doublet I850/I826 were also found to be markers distinguishing polymorphisms of insulin amyloid fibrils by principal component analysis. Especially, amyloid fibrils with Na2SO4 media formed the gauche-gauche-gauche conformation of disulfide bond at a higher rate, but without any salts, the gauche-gauche-gauche conformation was partially transformed into the gauche-gauche-trans conformation at higher temperatures. The different environments of the hydroxyl groups of the tyrosine residue were assumed to be caused by fibril polymorphism. Raman imaging using these marker bands also successfully visualized the two- and three- dimensional structural differences of amyloid polymorphisms. These results demonstrate the potential of Raman imaging as a diagnostic tool for polymorphisms in tissues of amyloid-related diseases.  相似文献   

17.
The relative intensities of the CH stretching vibrations are used to study the interaction of lecithin liposomes with valinomycin, a mobile carrier for alkali ions. In the case of dipalmitoyl lecithin liposomes, the lipid phase transition is not significantly affected by valinomycin. However, in dimyristoylphosphatidylcholine liposomes, the phase transition is broadened by the addition of 1 mol% valinomycin even at low K+ concentrations. This indicates that the carrier interacts with the hydrophobic core of the bilayer. In addition, these experiments showed that the lipid phase transitions which are reflected by the methylene groups and the terminal methyl groups are nearly equivalent. Therefore a reevaluation of the assignment of the CH stretching bands seemed necessary. Our Raman spectroscopic investigation of ω-deuterated dipalmitoyl lecithin liposomes improves the assignment of CH stretch vibrations to methylene and methyl groups. The deuteration displaces the methyl group vibrations to the 2050–2250 cm?1 region and produces gross intensity changes of the bands at 2883 and 2936 cm?1. These changes lead to the conclusion that both bands arise from vibrations which can be attributed simultaneously to the methylene and methyl groups of the fatty acid chains. The displacement of the CH3 group vibrations from their original positions enhances the intensity ratios (per centimeter), 28832847 and 29362847, for the CH2- groups which are used to monitor the lipid phase transition, and implies that the contributions of the CH3 groups to the phase transition curves are unimportant. Our finding that the -CD3 groups reflect no phase transition supports this statement.  相似文献   

18.
《Inorganica chimica acta》1988,145(1):141-147
Aqueous solutions of dioxouranium(VI) (pH range 0 to 4) give rise to bands at 954 and 938 cm−1 attributable to the v3(MO2) stretching modes of the UO22+ and (UO2)2(OH)22+ cations, respectively. A shoulder at 916 cm−1 is assigned to the v3(MO2) mode of hydrolysed dioxouranium(VI) species of higher nuclearity. Infrared spectro-electrochemical studies using a thin-layer reflection-absorption cell have facilitated the study of the reduction of aqueous solutions of dioxouranium(VI) to yield dioxouranium(V) which may be further reduced to uranium(IV). The electrogeneration of dioxouranium(V) is monitored by following the increase in intensity of a band at 914 cm−1 which is present in the spectra at potentials between −0.2 and −0.8 V. The dioxouranium(V) species is predominantly in the form UO2+, which may be in solution or incorporated into an insoluble phase of uranium oxides which deposit onto the working electrode. The UVO bond length is estimated to be 1.76 Å, 0.03 Å longer than the UVIO bond in aqueous solution. The maximum concentration of UO2+able to be achieved is highly dependent on the pH and is optimum at pH 3.4. Changes in the pH of the solution under study can be monitored by infrared spectroscopy during the course of the reduction by determining the relative concentrations of hydrolysed dioxouranium(VI) species.  相似文献   

19.
The B -to-A conformational transition of calf thymus DNA fibers was followed employing Raman spectroscopy. The transition was induced by soaking DNA fibers in water/ethanol mixtures increasing from 60 to 85% ethanol (v/v). Intensity changes of 17 Raman vibrational bands were quantified in the region from 400 to 860 cm?1. Two bands at 500 and 784 cm?1 were employed as internal standards. These bands do not appear to change in intensity with ethanol concentration. Large intensity changes relative to these two bands are observed between 70 and 74% ethanol for backbone vibrations at 708, 808, and 835 cm?1, and base vibrations at 682, 730, and 750 cm?1. These results indicate that a highly cooperative conformational change takes place between different portions of DNA in the B -to-A transition. Relative intensity changes preceding the onset of the major transition are observed in only two bands; at 835 cm?1, assigned to a ribose–phosphate vibration, and at 750 cm?1, assigned to thymine. The implications of these pretransition changes are discussed.  相似文献   

20.
Abstract

Fourier Transform Infrared (FT-IR) spectra of solid samples of DNA and RNA obtained from freeze-drying at solid CO2 and liquid nitrogen temperatures, have been recorded and correlation between the conformational transitions and spectral changes is proposed. It is concluded that an equilibrium exists between A, B and Z conformations at low temperatures for the DNA molecule, which is temperature dependent, whereas the RNA molecule exhibits only the A conformation. The results have been compared with the metal-adducts of DNA and RNA, where one of the conformations is predominant.

Marker infrared bands for the B conformer have been found to be the strong band at 825 cm?1 (sugar conformer mode) and a band with medium intensity at 690 cm?1 (guanine breathing mode). The A conformation showed characteristic bands at 810 and 675 cm?1. The B to Z conformational transition was characterized by the strong absorption bands near 820-810 cm?1 and at 665-600 cm?1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号