首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Equilibrium dialysis experiments are used to measure excluded volumes for the non-electrolyte permeant [U-14C] erythritol in lipid bilayer systems. The data indicate amounts of water associated with the lipid membranes which correspond with amounts calculated from calorimetric measurements.The membrane systems can be described as composite elements consisting of the lipid bilayers and adjacent water layers on both sides. The finding that the permeant is excluded indicates that the water layers contribute to the permeability barrier.The mean thickness of the water layers is about 6 Å for planar bilayers in multilayered liposomes and 10 Å for curved bilayers in sonicated vesicles. Next to the difference in thickness of the water layers differences in interfacial adsorption between the two systems are apparent.  相似文献   

2.
The effect of synthetic polycations, polyallylamine, and polyethylenimine, on liposomes containing phosphatidylserine was investigated along with that of polylysine and divalent cations. The addition of polycations caused aggregation of sonicated vesicles composed of phosphatidylserine and phosphatidylcholine (molar ratio 1:4) as determined by measuring the turbidity changes. Liposomal turbidity increased 10 times compared with that of control liposomes at charge ratios of polymer/vesicle from 0.23 (polylysine) to 2.5 (linear polyethylenimine), while the turbidity was unchanged by the addition of Ca2+ or Mg2+ at charge ratios up to 500. These polycations also induced intermixing of liposomal membranes as indicated by resonance energy transfer between fluorescent lipids incorporated in lipid bilayers, without inducing drastic permeability changes as determined from the calcein release. Fifty percent intermixing of liposomes (0.05 mM as lipid concentration) was induced by these polycations at charge ratios of around 1.0. However, the highest resonance energy transfer was produced by the addition of polyallylamine, which caused multicycles of membrane intermixing between vesicles. Polycation-induced membrane intermixing and permeability changes of phosphatidylserine liposomes were also investigated. At charge ratios of around 1.0, these polymers caused resonance energy transfer of fluorescent lipids incorporated in separate vesicles; however, polyallylamine and branched polyethylenimine also caused permeability increases of liposomal membranes. Membrane intermixing and permeability changes of phosphatidylserine vesicles induced by polyallylamine were dependent on the polymer/vesicle charge ratio, and were different from those induced by Ca2+ since the latter caused half-maximal membrane intermixing or permeability change of phosphatidylserine vesicles at about 1 mM at the liposomal concentrations investigated.  相似文献   

3.
A Kintanar  A C Kunwar  E Oldfield 《Biochemistry》1986,25(21):6517-6524
We have investigated the deuterium (2H) nuclear magnetic resonance (NMR) spectra of two 2H-labeled fluorescence probes (trans,trans,trans-1,6-diphenylhexa-1,3,5-trienes, DPHs) incorporated into model lipid bilayer membrane systems at various temperatures. The membranes consisted of multilamellar bilayers of 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) containing varying concentrations of cholesterol. The conventional one-order parameter approach often used in the analysis of the NMR data of lipid membranes does not explain the observed temperature variations of the spectral features. Consistent with the molecular symmetry, the results have thus been analyzed in terms of an ordering matrix with more than one independent element. The molecular order parameter (SNMR), the order along the long molecular axis, in the pure lipid system varies from 0.49 to 0.26 as the temperature is increased from 25 to 57 degrees C. These values are somewhat larger than the order parameters obtained from fluorescence depolarization (SFLU) on sonicated DMPC vesicles. Such discrepancies probably arise from the looser packing of the sonicated vesicles. Addition of cholesterol to the model membranes causes the order parameter of the probe molecules to increase. At 35 degrees C, SNMR increases from 0.38 (with no cholesterol) to 0.92 (in the presence of 50 mol % cholesterol). These values are about 10% larger than those obtained from fluorescence depolarization studies on sonicated vesicles. The SNMR for DPH are somewhat larger than those obtained in earlier NMR studies of 2H-labeled cholesterol. However, they compare well with those obtained for 2H-labeled DMPC.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
Bipolar lipids from the membranes of archaebacterium Caldariella acidophila can form small unilamellar liposomes, when sonicated from lipid mixtures containing at least 25 mol% egg phosphatidylcholine. With increasing contents of archaebacterial lipid the inner radius of highly sonicated vesicles increases (from approx. 90 Å to approx. 160 Å) concomitant with an enhanced asymmetric distribution of the phosphatidylcholine molecules towards the outer face of the lipid bilayer membranes.  相似文献   

5.
Y Barenholz  N F Moore  R R Wagner 《Biochemistry》1976,15(16):3563-3570
The fluorescence probe 1,6-diphenyl-1,3,5-hexatriene was used to study and compare the dynamic properties of the hydrophobic region of vesicular stomatitis virus grown on L-929 cells, plasma membrane of L-929 cells prepared by two different methods, liposomes prepared from virus lipids and plasma membrane lipids, and intact L-929 cells. The rate of penetration of the probe into the hydrophobic region of the lipid bilayer was found to be much faster in the lipid vesicle bilayer as compared with the intact membrane, but in all cases the fluorescence anisotropy was constant with time. The L-cell plasma membranes, the vesicles prepared from the lipids derived from the plasma membranes, and intact cells are found to have much lower microviscosity values than the virus or virus lipid vesicles throughout a wide range of temperatures. The microviscosity of plasma membrane and plasma membrane lipid vesicles was found to depend on the procedure for plasma membrane preparation as the membranes prepared by different methods had different microviscosities. The intact virus and liposomes prepared from the virus lipids were found to have very similar microviscosity values. Plasma membrane and liposomes prepared from plasma membrane lipids also had similar microviscosity values. Factors affecting microviscosity in natural membranes and artificially mixed lipid membranes are discussed.  相似文献   

6.
The dependency of delta pH-relaxation kinetics across the membrane of sonicated small phospholipid vesicles on the concentration of internally entrapped buffer has been investigated by means of the pH-indicator dye pyranine. A very high contribution of lipid headgroups to the internal buffering power of the liposomes is observed, amounting to an equivalent phosphate buffer concentration of 110 mM. This localized two-dimensional proton/hydroxide ion reservoir must be considered in any determination of the H+/OH- permeability coefficient. Furthermore, it could have significance for energy-transduction across biological membranes. From the established linear relation between delta pH-relaxation rates and buffering power, net H+/OH- permeabilities of 3 X 10(-3) cm/s for soybean phospholipid (SBPL) and 1 X 10(-4) cm/s for diphytanoyl phosphatidylcholine (diphytanoyl PC) vesicles at pH 7.2 as well as buffering powers per lipid molecule of 6 X 10(-2) (pH-unit)-1 (SBPL) and 4 X 10(-2) (pH-unit)-1 (diphytanoyl PC) are calculated. In the case of diphytanoyl PC vesicles, delta pH-decay is accelerated by the presence of chloride ions.  相似文献   

7.
An ultrarapid filtration method was adapted to the determination of water and solute permeability of membrane vesicles. This method consisted of measuring substance washout from vesicles first loaded with 3H2O or labeled solutes, placed on filters, and rinsed at high rates for short periods. The retention of the vesicles on the filters was analyzed and was found to be a function of the nature and porosity of the filters as well as of the vesicle origin. Washing buffer flow rate and washing duration did not affect vesicle retention. The diffusional water permeability of cholesterol-free liposomes was determined at 16 degrees C. Its value was reduced by a factor of 2.5 when the liposomes were prepared with 20% cholesterol and a threefold increase was noted when the liposomes were preincubated with gramicidin (6 mg/g lipid). Water permeability of liposomes was strongly temperature-dependent: Ea = 15.3 kcal/mol. Diffusional water permeability of pink ghosts was also measured: a value of (4.4 +/- 0.2) X 10(-3) cm/s (n = 3) was obtained at 13 degrees C. This permeability was reduced by 45.2% with 0.4 mM HgCl2. The urea permeability of intestinal and renal brush-border membrane vesicles was (1.15 +/- 0.18) X 10(-6) cm/s (n = 7) and (1.67 +/- 0.08) X 10(-6) cm/s (n = 9), respectively. The renal value was reduced by a factor of 4.4 by 100 mM thiourea. This ultrarapid filtration technique provides an accurate method of transport measurement in sealed membranes such as liposomes and plasma membrane vesicles.  相似文献   

8.
We have compared ligand effects between polar and apolar anesthetic molecules upon water transport across phospholipid membranes by kinetic analysis of the osmotic swelling rate, using a stopped-flow technique. Chloroform and 1-hexanol were used as interfacial ligands, and carbon tetrachloride and n-hexane were used as their counterparts, representing lipid core action. Because anesthetics transform the solid-gel membrane into a liquid-crystalline state, and because phospholipid membranes display an anomaly in permeability at the phase transition, dimyristoylphosphatidylcholine vesicles were studied at temperatures above the main phase transition to avoid this anomaly. All these molecules increased the osmotic swelling rate. However, a significant difference was observed in the activation energy, delta Ep, between polar and apolar molecules; delta Ep was almost unaltered by the addition of polar molecules (chloroform and 1-hexanol), whereas it was decreased by apolar molecules (carbon tetrachloride and n-hexane). The obtained results were analyzed in terms of the dissolution-diffusion mechanism for water permeation across the lipid membrane. It is suggested that polar molecules affect water permeability by altering the partition of water between the membrane interior and water phase, and apolar molecules affect it by altering both the partition and the diffusion of water within the membrane interior.  相似文献   

9.
A C Newton  S L Cook  W H Huestis 《Biochemistry》1983,22(26):6110-6117
Band 3, the anion transport protein of human erythrocyte membranes, can be transferred from cells to liposomes and from liposomes back to cell membranes, retaining function and native orientation. After incubation with cells, sonicated phosphatidylcholine vesicles bind a transmembrane protein that comigrates with band 3 on sodium dodecyl sulfate-polyacrylamide gels. Like native red cell band 3, the vesicle-bound protein is cleaved by chymotrypsin into 65- and 30-kdalton fragments and is not cleaved by trypsin. The protein can be cross-linked by copper-phenanthroline oxidation either before or after transfer to vesicles; in either case, the vesicle fractions contain high molecular weight material that is dissociated into 95-kdalton species by mercaptoethanol. Band 3-vesicle complexes contain no detectable cell lipid and are specifically permeable to anions. Greater than 99% of their anion uptake can be blocked by the band 3 inhibitor 4,4'-diisothiocyano-2,2'-stilbenedisulfonic acid (DIDS). Red cells whose band 3 function has been blocked irreversibly by DIDS or eosin maleimide regain part of their anion permeability upon incubation with band 3-vesicle complexes. Under the conditions employed, an average of one copy of functional band 3 is delivered to half of the cells, increasing by 2.3-fold the number of cells containing functional anion transporters. Incubation of pure lipid vesicles or red cell membrane buds with either normal red cells or eosin maleimide inhibited cells has no detectable effect on the cells' anion permeability.  相似文献   

10.
The dynamic behaviour of model membranes in the form of sonicated liposomes in excess water was studied by means of 90 °C light scattering and turbidity measurements. Computer calculations based on the Rayleigh-Gans theory of light scattering were used to estimate the average size of lipid vesicles dispersed in water, taking into account the various structures of the vesicles. Normal reversible changes in the scattered light intensity and turbidity with temperature could be accounted for mainly by the change in the refractive index of the lipid and irreversible anomalous changes were explained on the basis of fusion of smaller aggregated vesicles.  相似文献   

11.
The dynamic behaviour of model membranes in the form of sonicated liposomes in excess water was studied by means of 90 degrees C light scattering and turbidity measurements. Computer calculations based on the Rayleigh-Gans theory of light scattering were used to estimate the average size of lipid vesicles dispersed in water, taking into account the various structures of the vesicles. Normal reversible changes in the scattered light intensity and turbidity with temperature could be accounted for mainly by the changes in the refractive index of the lipid and irreversible anomalous changes were explained on the basis of fusion of smaller aggregated vesicles.  相似文献   

12.
1. The effect of two series of hydrophilic and hydrophobic polymers on the stability, conductivity and permeability towards water and leucine of black lipid membranes and liposomes is reported. 2. The changes in properties of these membrane preparations is related to bulk phase viscosity and dielectric measurements together with monolayer studies. 3. The hydrophobic polymers dramatically increase membrane stability, had no effect on conductivity, but increased the permeability coefficient of leucine. 4. The hydrophilic polymers produced minor, but significant changes to membrane properties. 5. It is concluded that not only basic polymers but also neutral and acidic macromolecules can interact strongly with lipid membranes.  相似文献   

13.
Preparation and properties of arsonolipid containing liposomes   总被引:1,自引:0,他引:1  
Arsonolipids are analogs of phosphonolipids which have a chemically versatile head group. In preliminary cell culture studies, liposomes composed solely of arsonolipids or of phosholipid-arsonolipid mixtures, demonstrate a specific toxicity against cancer cells (Gortzi et al., unpublished results). The possibility of using such formulations as an alternative of arsenic trioxide with or without combination of other cytostatic agents (encapsulated in their aqueous interior) prompted the investigation of their physicochemical characteristics. Herein we compared the characteristics of arsonolipid containing vesicles with different lipid compositions. Experimental results and morphological observations reveal that non-sonicated formulations have different structures and stability (when both membrane integrity and aggregation are taken into account) depending on the acyl chain length of the arsonolipid. When phospholipids and especially cholesterol are included in their membranes almost all arsonolipids studied produce more stable vesicles. An interesting aspect of these arsonolipid containing vesicles is also their negative surface charge, which may be modulated by mixing phospholipids with arsonolipids. Sonicated vesicles have smaller sizes and profoundly higher stability, especially when containing cholesterol and phosphatidylcholine mixed with arsonolipids. The only exception is that of the arsonolipid with the C(12) acyl chain which was observed to produce long tubes which break down to cubes by sonication. In conclusion, these initial studies demonstrate that sonicated vesicles composed of arsonolipid and phospholipid mixtures mixed with cholesterol posses the stability required to be used as an arsonolipid delivery system. In addition, although cryo-electron microscopy demonstrated that the sonicated vesicles are elliptical in shape, their encapsulation efficiency is not significantly lower than sonicated phospholipid liposomes. Thereby, these vesicles may be also used for the delivery of other drug molecules which can be sufficiently retained in their aqueous interior.  相似文献   

14.
A method to determine the proton permeability coefficient of phospholipid membrane with the fluorescent probe pyranine is described. Very high proton permeability coefficients of liposomes from natural extracts are measured with great accuracy. The proton permeability appears to be linearly related to the fluidity of the bilayers. This relation as well as the comparison of the activation energies of proton permeability and fluidity support the hypothesis (Nichols J.W. and Deamer D.W. (1980) Proc. Natl. Acad. Sci. USA 77, 2038–2042) of a transfer process along a network of hydrogen bonded water molecules. It is suggested that the common lipid characteristics of biological membranes (net surface charge and unsaturation) favor a high proton permeability.  相似文献   

15.
Retinol and retinoic acid have been incorporated into the artificial membrane systems, planar bimolecular lipid membranes and liposomes, and their effects on several membrane parameters have been measured. 1. Retinol and retinoic acid increased the permeability of egg lecithin liposomes to K+, I? and glucose when incorporated into the membranes at levels as low as 0.5 membrane mol%. Retinoic acid influenced permeability more than did retinol for each of the solutes tested. 2. Retinol and retinoic acid both decreased the electrical resistance of egg lecithin-planar bimolecular lipid membranes from 0.5 to 8 membrane mol%. Retinoic acid effected a larger change than did retinol. 3. Retinol and retinoic acid increased the permeability of dimyristoylphosphatidylcholine and dipalmitoylphosphatidylcholine liposomes to water at 1.0 and 3.0 membrane mol%. A larger effect on water permeability was measured for retinoic acid than for retinol. 4. Retinol and retinoic acid at 1.0 and 3.0 membrane mol% were shown to lower the phase-transition temperature of liposomes composed of dimyristoylphosphatidylcholine or dipalmitoylphosphatidylcholine. Phase-transition temperatures were monitored by abrupt changes in water permeability and liposome size associated with the transition. Retinoic acid lowered the phase-transition temperature of dimyristoylphosphatidylcholine liposomes more than did retinol, while both retinoids had almost the same effect on dipalmitoylphosphatidylcholine liposomes.  相似文献   

16.
Response of isolated sperm plasma membranes from sea urchin to egg jelly   总被引:1,自引:0,他引:1  
The acrosome reaction in sea urchin sperm is induced by a glycoprotein jelly surrounding the egg and is accompanied by changes in ion permeability of sperm plasma membrane. In an attempt to learn what membrane components are involved in the response to jelly, we have begun to reassemble sperm membrane components into artificial membranes and assay for permeability changes mimicking those that occur in sperm. Jelly in sea water at concentrations that induce the acrosome reaction did not significantly change 45Ca2+ uptake of sonicated unilamellar vesicles made with soybean lipid only (ratio jelly:control uptake = 1.08 +/- 0.36 SD, n = 21). Experiments with pure lipid planar bilayers made with soybean lipid or a lipid extract from sperm and held at various voltages, also did not reveal substantial permeability changes at comparable jelly concentrations. Thus, jelly by itself does not change the conductance of a pure lipid bilayer. In contrast, significant (P----0.0005, t test for two sample means) 45Ca2+ uptake was observed with vesicles made by cosonicating soybean phospholipids and Strongylocentrotus purpuratus sperm membranes isolated by the method of Cross, N. L. [1983, J. Cell Sci. 59, 13-25] (ratio jelly: control uptake = 1.51 +/- 0.75, n = 20, 16 positive out of 20 experiments). The calcium uptake response of the mixed vesicles was also species-specific: it did not occur with jelly from Arbacia punctulata (ratio Arbacia jelly: control = 1.18 +/- 0.51; ratio Strongylocentrotus jelly: control = 1.71 +/- 0.97, n = 10; P----0.025, paired t statistic). Vesicles made with soybean lipid and an octyl glucoside extract of sperm membranes also responded to jelly with increased 45Ca2+ uptake. Our results indicate that we have the starting conditions to isolate and characterize the sperm membrane components that participate in the egg jelly induced permeability changes.  相似文献   

17.
N Zumbulyadis  D F O'Brien 《Biochemistry》1979,18(24):5427-5432
Proton and carbon-13 nuclear magnetic resonance (1H and 13C NMR) spectra of rhodopsin-phospholipid membrane vesicles and sonicated disk membranes are presented and discussed. The presence of rhodopsin in egg phosphatidylcholine vesicles results in homogeneous broadening of the methylene and methyl resonances. This effect is enhanced with increasing rhodopsin content and decreased by increasing temperature. The proton NMR data indicate the phospholipid molecules exchange rapidly (less than 10(-3) s) between the bulk membrane lipid and the lipid in the immediate proximity of the rhodopsin. These interactions result in a reduction in either or both the frequency and amplitude of the tilting motion of the acyl chains. The 13C NMR spectra identify the acyl chains and the glycerol backbone as the major sites of protein lipid interaction. In the disk membranes the saturated sn-1 acyl chain is significantly more strongly immobilized than the polyunsaturated sn-2 acyl chain. This suggest a membrane model in which the lipid molecules preferentially solvate the protein with the sn-1 chain, which we term an edge-on orientation. The NMR data on rhodopsin-asolectin membrane vesicles demonstrate that the lipid composition is not altered during reconstitution of the membranes from purified rhodopsin and lipids in detergent.  相似文献   

18.
N Oku  S Shibamoto  F Ito  H Gondo  M Nango 《Biochemistry》1987,26(25):8145-8150
For the purpose of cytoplasmic delivery of aqueous content in liposomes through endosomes, we synthesized a pH-sensitive polymer, cetylacetyl(imidazol-4-ylmethyl)polyethylenimine (CAIPEI), which generates polycations at acidic pH. CAIPEI in its aqueous phase caused aggregation of sonicated vesicles composed of phosphatidylserine (PS) and phosphatidylcholine (PC) (molar ratio 1:4) when the pH of the solution was lowered. The polymer also induced membrane intermixing as measured by resonance energy transfer between vesicles containing N-(7-nitro-2,1,3-benz[d]oxadiazol-4-yl)phosphatidylethanolamine and those containing N-Rhodamine phosphatidylethanolamine at pH 4-5, while the addition of CAIPEI caused neither aggregation of PC vesicles nor the intermixing of liposomal membranes between PC and PC/PS vesicles at any pH. The CAIPEI-induced membrane intermixing was dependent on the polymer/vesicle ratio rather than on the polymer concentration. Then the polymer was incorporated into the bilayers of PC vesicles. These CAIPEI vesicles also caused membrane intermixing with liposomes containing PS under acidic conditions. The reconstituted CAIPEI did not reduce the trapping efficiency of vesicles or increase their permeability to glucose even at low pH. The vesicles caused the low pH induced aggregation and membrane intermixing with other negatively charged liposomes containing phosphatidic acid or phosphatidylglycerol. These results suggest that the protonation of the polymer at acidic pH endows the CAIPEI vesicles with the activity to fuse with negatively charged liposomes.  相似文献   

19.
The behavior of dehydroergosterol in -α-dimyristoylphosphatidylcholine (DMPC) unsonicated multilamellar liposomes was characterized by absorption spectroscopy and fluorescence measurements. Dehydroergosterol exhibited a lowered absorption coefficient in multilamellar liposomes whiel the steady-state fluorescence anisotropy of dehydroergosterol in these membranes decreased significantly with increasing dehydroergosterol concentration, suggesting membrane sterol-sterol interactions. The comparative steady-state anisotropy of 0.9 mole percent dehydroergosterol in multilamellar liposomes was lower than in small unilamellar vesicles suggesting different sterol environments for dehydroergosterol. Dehydroergosterol fluorescence lifetime was relatively independent of membrane sterol content and yielded similar values in sonicated and unsonicated model membranes. In multilamellar liposomes containing 5 mole percent cholesterol, the gel-to-liqui crystalline phase transition of DMPC detected by 0.9 mole percent dehydroergosterol was significantly broadened when compared to the phase transition detected by dehydroergosterol in the absence of membrane cholesterol (Smutzer, G. et al. (1986) Biochim. Biophys. Acta 862, 361–371). In multilamellar liposomes containing 10 mole percent cholesterol, the major fluorescence lifetime of dehydroergosterol did not detect the gel-to-liquid crystalline phase transition of DMPC. Time-correlated fluorescence anisotropy decays of dehydroergosterol in DMPC multilamellar liposomes in the absence and presence of 5 mole percent cholesterol exhibited a single rotational correlation time near one nanosecond that was relatively independent of temperature and low concentrations of membrane cholesterol. The limiting anisotropy of 0.9 mole percent dehydroergosterol decreased above the gel-to-liquid crystalline phase transition in membranes without cholesterol and was not significantly affected by the phase transition in membranes containing 5 mole percent cholesterol. These results suggested hindered rotational diffusion of dehydroergosterol in multilamellar liposomes. Lifetime and time-correlated fluorescence measurements of 0.9 mole percent dehydroergosterol in multilamellar liposomes further suggested this fluorophore was detecting physical properties of the bulk membrane phospholipids in membranes devoid of cholesterol and was detecting sterol-rich regions in membranes of low sterol concentration.  相似文献   

20.
A novel class of cell-penetrating, nucleolar-targeting peptides (NrTPs), was recently developed from the rattlesnake venom toxin crotamine. Based on the intrinsic fluorescence of tyrosine or tryptophan residues, the partition of NrTPs and crotamine to membranes with variable lipid compositions was studied. Partition coefficient values (in the 10(2)-10(5) range) followed essentially the compositional trend POPC:POPG≤POPG相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号