首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
(1) The effect of glycophorin, a major intrinsic glycoprotein of the human erythrocyte membrane, on lipid polymorphism has been investigated by 31P-NMR (at 36.4 MHz) and by freeze-fracture electron microscopy. (2) Incorporation of glycophorin into vesicles of 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) results in the formation of unilamellar vesicles (1000–5000 Å diameter) which exhibit 31P-NMR bilayer spectra over a wide range of temperature. A reduction in the chemical shift anisotropy (Δσcsaeff) and an increase in spectral linewidth in comparison to dioleoylphosphatidylcholine liposomes may suggest a decrease in phospholipid headgroup order. (3) 1,2-Dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE), in the presence of excess water, undergoes a bilayer to hexagonal (HII) phospholipid arrangement as the temperature is increased above 0°C. Incorporation of glycophorin into this system stabilizes the bilayer configuration, prohibiting the formation of the HII phase. (4) Cosonication of glycophorin with DOPE in aqueous solution (pH 7.4) produces small, stable unilamellar vesicles (300–1000 Å diameter), unlike DOPE alone which is unstable and precipitates from solution. (5) The current study demonstrates the bilayer stabilizing capacity of an intrinsic membrane protein, glycophorin, most likely by means of a strong hydrophobic interaction between the membrane spanning portion of glycophorin and the hydrophobic region of the phospholipid.  相似文献   

2.
The major lipids of Tetrahymena membranes have been purified by thin-layer and high pressure liquid chromatography and the phosphatidylethanolamine and aminoethylphosphonate lipids were examined in detail. 31P-NMR, X-ray diffraction and freeze-fracture electron microscopy were employed to describe the phase behavior of these lipids. The phosphatidylethanolamine was found to form a hexagonal phase above 10°C. The aminoethylphosphonate formed a lamellar phase up to 20°C, but converted to a hexagonal phase structure at 40°C. Small amounts of phosphatidylcholine stabilized the lamellar phase for the aminoethylphosphonate. 31P-NMR spectra of the intact ciliary membranes were consistent with a phospholipid bilayer at 30°C, suggesting that phosphatidylcholine in the membrane stabilized the lamellar form, even though most of the lipid of that membrane prefers a hexagonal phase in pure form at 30°C. 31P-NMR spectra also showed a distinctive difference in the chemical shift tensor of the aminoethylphosphonolipid, when compared to that of phosphatidylethanolamine, due to the difference in chemical structure of the polar headgroups of the two lipids.  相似文献   

3.
The following results are reported in this paper: The interaction of gramicidin with [11,11-2H2]dioleoylphosphatidylcholine (DOPC) and [11,11-2H2]dioleoylphosphatidylethanolamine (DOPE) at different stages of hydration was studied by 2H- and 31P-nuclear magnetic resonance. In the L alpha phase in excess water the acyl chains of phosphatidylethanolamine (PE) are more ordered than phosphatidylcholine (PC) most likely as the result of the lower headgroup hydration of the former lipid. In excess water gramicidin incorporation above 5 mol % in DOPC causes a bilayer----hexagonal HII phase change. In the HII phase acyl chain order is virtually unaffected by gramicidin but the peptide restricts the fast chain motions. At low water content gramicidin cannot induce the HII phase but it markedly decreases chain order in the DOPC bilayer. Increasing water content results in separation between a gramicidin-poor and a gramicidin-rich L alpha phase with decreased order of the entire lipid molecule. Further increase in hydration reverts at low gramicidin contents the phase separation and at high gramicidin contents results in a direct change of the disordered lamellar to the hexagonal HII phase. Gramicidin also promotes HII phase formation in the PE system but interacts much less strongly with PE than with PC. The results support our hypothesis that gramicidin, by a combination of strong intermolecular attraction forces and its pronounced cone shape, both involving the four tryptophans at the COOH-terminus, has a strong tendency to organize, with the appropriate lipid, in intramembranous cylindrical structures such as is found in the HII phase.  相似文献   

4.
31P-NMR is used to characterize the phase behavior of phosphonolipids in both model and biological membranes. (1′,2′-Dipalmitoyl-sn-glyceryl)-2-aminoethylphosphonate gives rise to static chemical shift tensor elements (?87, 5 and 63 ppm) which differ considerably from those reported for the analogous phospholipid, 1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine (?81, ?20 and 105 ppm). Phosphonolipid, as well as a mixture of phosphonolipid and 1,2-dipalmitoyl-sn-glycero-3-phosphocholine, in aqueous dispersion gives rise to 31P spectra which may be interpreted in terms of lamellar structures. A mixture of phosphonolipid and egg phosphatidylethanolamine exhibits a bilayer-to-hexagonal phase transition with a concomitant decrease by one-half in the value of the 31P chemical shift anisotropies of both the phosphonate and phosphate resonances. The chemical shift anisotropy associated with phosphonolipid has been found to be consistently smaller than that observed for the analogous phospholipid. 31P-NMR spectra of total lipid extracts of Tetrahymena sp. indicate that both phospho- and phosphonolipids have a bilayer organization between ?20 and 20°C.  相似文献   

5.
Frequency-resolved fluorescence measurements have been performed to quantitate the lateral stress of the lipid layer containing nonbilayer phase preferring dioleoylphosphatidylethanolamine (DOPE). On the basis of a new rotational diffusion model, the wobbling diffusion constant (Dw), the curvature-related hopping diffusion constant (DH), and the two local orientational order parameters ([P2] and [P4]) of 1-palmitoyl-2-[[2-[4-(6-phenyl-trans-1,3,5-hexatrienyl)phenyl]ethyl] carbonyl]-3-sn-phosphatidylcholine (DPH-PC) in fully hydrated DOPE and DOPE/dioleoylphosphatidylcholine (DOPC) mixtures were calculated from the frequency-domain anisotropy data. The values of [P2], [P4], and DH for DOPE were found to increase significantly at approximately 12 degrees C, the known lamellar liquid crystalline (L alpha) to inverted hexagonal (HII) phase transition temperature of DOPE. Similar features as well as a decline of Dw were detected in the DOPE/DOPC mixtures as the DOPE content was increased from 85% to 90% at 23 degrees C, corresponding to the known lyotropic phase transition of the DOPE/DOPC. In contrast, for DOPC (0-40 degrees C) and DOPE/DOPC (0-100% DOPE at 3 degrees C), which remained in the L alpha phase, these changes were not detected. The most probable local orientation of DPH-PC in the DOPE/DOPC mixtures shifted progressively toward the normal of the lipid/water interface as the content of DOPE increased. We concluded that the curvature-related lateral stress in the lipid layer increases with the content of the nonbilayer phase preferring lipids.  相似文献   

6.
Solid-state proton nuclear magnetic resonance has been used to examine surface hydration in suspensions of monomethyldioleoylphosphatidylethanolamine (MeDOPE). The magic-angle spinning (MAS) 1H spectra for aqueous suspensions of MeDOPE in the L alpha phase exhibited two resonances of roughly equal intensity that could be ascribed to water protons, but both their spin-lattice relaxation times and chemical shifts converged upon conversion to the hexagonal phase. Only a single water peak was observed for analogous samples of dioleoylphosphatidylcholine (DOPC). MAS-assisted two-dimensional nuclear Overhauser effect spectroscopy (NOESY) was conducted for multibilayers of both MeDOPE and DOPC. Through-space interactions were identified between pairs of lipid protons, as expected from their chemical structure. For lamellar suspensions of MeDOPE, positive NOESY cross-peaks were observed between the downfield-shifted water resonance (only) and both CH2N and NH2CH3+ protons of the lipid headgroup. These cross-peaks were not observed in the NOESY spectra of MeDOPE in its hexagonal or cubic phases or for lamellar DOPC reference samples. Taken together, the observation of two water peaks, spin-lattice relaxation behavior, and NOESY connectivities in MeDOPE suspensions support the interpretation that the low-field water peak corresponds to hydrogen-bonded interlamellar water interacting strongly with the lipid. Such a population of water molecules exists in association with MeDOPE in the lamellar phase but not for its inverted phases or for lamellar dispersions of DOPC.  相似文献   

7.
Incorporation of the helical antimicrobial peptide alamethicin from aqueous phase into hydrated phases of dioleoylphosphatidylethanolamine (DOPE) and dioleoylphosphatidylcholine (DOPC) was investigated within a range of peptide concentrations and temperatures by time-resolved synchrotron X-ray diffraction. It was found that alamethicin influences the organizations of the non-bilayer-forming (DOPE) and the bilayer-forming (DOPC) lipids in different ways. In DOPC, only the bilayer thickness was affected, while in DOPE new phases were induced. At low peptide concentrations (<1.10(-4) M), an inverted hexagonal (H(II)) phase was observed as with DOPE dispersions in pure buffer solution. A coexistence of two cubic structures was found at the critical peptide concentration for induction of new lipid/peptide phases. The first one Q224 (space group Pn3m) was identified within the entire temperature region studied (from 1 to 45 degrees C) and was found in coexistence with H(II)-phase domains. The second lipid/peptide cubic structure was present only at temperatures below 16 degrees C and its X-ray reflections were better fitted by a Q212 (P4(3)32) space group, rather than by the expected Q229 (Im3m) space group. At alamethicin concentrations of 1 mM and higher, a nonlamellar phase transition from a Q224 cubic phase into an H(II) phase was observed. Within the investigated range of peptide concentrations, lamellar structures of two different bilayer periods were established with the bilayer-forming lipid DOPC. They correspond to lipid domains of associated and nonassociated helical peptide. The obtained X-ray results suggest that the amphiphilic alamethicin molecules adsorb from the aqueous phase at the lipid head group/water interface of the DOPE and DOPC membranes. At sufficiently high (>1.10(-4) M) solution concentrations, the peptide is probably accommodated in the head group region of the lipids thus inducing structural features of mixed lipid/peptide phases.  相似文献   

8.
A model membrane system composed of egg sphingomyelin (SM), 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC), and cholesterol was studied with static and magic angle spinning (31)P NMR spectroscopy. This model membrane system is of significant biological relevance since it is known to form lipid rafts. (31)P NMR under magic angle spinning conditions resolves the SM and DOPC headgroup resonances allowing for extraction of the (31)P NMR parameters for the individual lipid components. The isotropic chemical shift, chemical shift anisotropy, and asymmetry parameter can be extracted from the spinning side band manifold of the individual components that form liquid-ordered and liquid-disordered domains. The magnitude of the (31)P chemical shift anisotropy and the line width is used to determine headgroup mobility and monitor the gel-to-gel and gel-to-liquid crystalline phase transitions of SM as a function of temperature in these mixtures. Spin-spin relaxation measurements are in agreement with the line width results, reflecting mobility differences and some heterogeneities. It will be shown that the presence of DOPC and/or cholesterol greatly impacts the headgroup mobility of SM both above and below the liquid crystalline phase transition temperature, whereas DOPC displays only minor variations in these lipid mixtures.  相似文献   

9.
10.
11.
The role of the tryptophan-residues in gramicidin-induced HII phase formation was investigated in dioleoylphosphatidylcholine (DOPC) model membranes. 31P-NMR and small angle X-ray diffraction measurements showed, that gramicidin A and C (in which tryptophan-11 is replaced by tyrosine) induce a similar extent of HII phase formation, whereas for gramicidin B and synthetic analogs in which one tryptophan, either at position 9 or 11 is replaced by phenylalanine, a dramatic decrease of the HII phase inducing activity can be observed. Modification of all four tryptophans by means of formylation of the indole NH group leads to a complete block of HII phase formation. Sucrose density centrifugation experiments on the various peptide/lipid samples showed a quantitative incorporation of the peptide into the lipid. For all samples in a 1/10 molar ratio of peptide to lipid distinct bands were found, indicative of a phase separation. For the gramicidin A'/DOPC mixture these bands were analyzed and the macroscopic organization was determined by 31P-NMR and small-angle X-ray diffraction. The results demonstrate that a quantitative phase separation had occurred between a lamellar phase with a gramicidin/lipid ratio of 1/15 and a hexagonal HII phase, which is highly enriched in gramicidin. A study on the hydration properties of tryptophan-N-formylated gramicidin in mixtures with DOPC showed that this analog has a similar dehydrating effect on the lipid headgroup as the unmodified gramicidin. In addition both the hydration study and sucrose density centrifugation experiments showed that, like gramicidin also its analogs have a tendency to aggregate, but with differences in aggregation behaviour which seemed related to their HII phase inducing activity. It is proposed that the main driving force for HII phase formation is the tendency of gramicidin molecules to self-associate and organize into tubular structures such as found in the HII phase and that whether gramicidin (analogs) form these or other types of aggregates depends on their tertiary structure, which is determined by intra- as well as intermolecular aromatic-aromatic stacking interactions.  相似文献   

12.
The phase behaviour of mixtures of recombined milk membrane lipids dioleoylphosphatidylcholine (DOPC), sphingomyelin (SM), dioleoylphosphatidylethanolamine (DOPE), phosphatidylinositol (PI) and dioleoylphosphatidylserine (DOPS) in 60% water was examined as a function of temperature between 5 and 90 degrees C. The aim was to examine under which lipid composition the average properties turn from balanced over to hydrophobic. The phase boundaries were determined by small angle X-ray diffraction (SAXD) and differential scanning calorimetry (DSC). The lamellar phase was dominating in the DOPC/SM/DOPE system. The phase boundary for the reversed hexagonal phase was only observed at high DOPE content within the examined temperature interval. The anionic phospholipids PI and DOPS induced a swollen lamellar phase, but no significant change of the transition between the lamellar phase and the reversed hexagonal phase was observed.  相似文献   

13.
The phase behavior of partially hydrated 1, 2-dioleoylphosphatidylethanolamine (DOPE) has been studied using differential scanning calorimetry and X-ray diffraction methods together with water sorption isotherms. DOPE liposomes were dehydrated in the H(II) phase at 29 degrees C and in the L(alpha) phase at 0 degrees C by vapor phase equilibration over saturated salt solutions. Other samples were prepared by hydration of dried DOPE by vapor phase equilibration at 29 degrees C and 0 degrees C. Five lipid phases (lamellar liquid crystalline, L(alpha); lamellar gel, L(beta); inverted hexagonal, H(II); inverted ribbon, P(delta); and lamellar crystalline, L(c)) and the ice phase were observed depending on the water content and temperature. The ice phase did not form in DOPE suspensions containing <9 wt% water. The L(c) phase was observed in samples with a water content of 2-6 wt% that were annealed at 0 degrees C for 2 or more days. The L(c) phase melted at 5-20 degrees C producing the H(II) phase. The P(delta) phase was observed at water contents of <0.5 wt%. The phase diagram, which includes five lipid phases and two water phases (ice and liquid water), has been constructed. The freeze-induced dehydration of DOPE has been described with the aid of the phase diagram.  相似文献   

14.
(1) Dipalmitoyl- and dioleoylthionphosphatidylcholine, which are phosphatidylcholine analogues in which the double bonded oxygen of the phosphate group is replaced by a sulfur atom, have been synthesized in 50–60% yields by condensation of diacylglycerol with phosphorus thionchloride in the presence of choline toluene-sulfonate. Dioleoylthionphosphatidylethanolamine has been prepared by the phospholipase D-catalyzed base exchange reaction. (2) Freeze-fracturing of aqueous dispersions of the thionphospholipids reveals that the thionphosphatidylcholines are organized in extended bilayers whereas dioleoylthionphosphatidylethanolamine above 0°C forms the hexagonal HII phase similar to dioleoylphosphatidylethanolamine. The gel → liquid crystalline phase transition of the dipalmitoylthionphosphatidylcholine occurs at 44°C which is only slightly higher than the transition temperature of dipalmitoylphosphatidylcholine which together with other data demonstrates that the thionphospholipids closely resemble the natural phospholipids in physicochemical behaviour. (3) Proton decoupled 31P-NMR spectra of aqueous dispersions of thionphosphatidylcholines have the characteristic asymmetrical line-shape with a low-field shoulder and a high-field peak typical of phospholipids organized in extended bilayers in which the phosphate group can undergo fast axial rotation. The 31P-NMR spectrum of the thionphosphatidylethanolamine in the hexagonal HII phase has a line-shape with a reversed asymmetry and an effective chemical shift anisotropy half of that of thionphospholipids organized in bilayers which is caused by fast lateral diffusion of the lipids around the cylinders of the hexagonal HII phase as has been observed for the corresponding phosphatidylethanolamines. (4) Since the 31P-NMR resonance of the thionphospholipids is completely separated from that of natural phospholipids, these lipids can be used to study by 31P-NMR the motional and structural properties of individual lipids in mixed systems. This is demonstrated for various lipid mixtures in which non-bilayer lipid structures have been induced by variations in composition, temperature and presence of divalent cations. It is shown that bilayer → non-bilayer transitions can be modulated by gel → liquid crystalline phase transitions and that typical bilayer forming lipids can be incorporated into non-bilayer structures such as the hexagonal HII phase.  相似文献   

15.
31P-NMR and UV spectroscopies were used to study the interactions between cationic amphiphile-containing lipid bilayers and either a phosphorothioate oligonucleotide (OligoS) (n=21) or polyadenylic acid (PolyA) (n approximately 18,000). Multilamellar vesicles (MLVs) were composed of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) or 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE) in binary mixture with either of the cationic lipids, N-[1-(2, 3-dioleoyloxy)propyl]-N',N',N'-trimethylammonium chloride (DOTAP) or cetyltrimethylammonium bromide (CTAB). A UV-difference assay showed that OligoS binding ceased above a 1:1 anion/cation ratio, while PolyA binding continued until a 2:1 ratio was reached, indicating a 'flat' conformation for bound OligoS, but not necessarily for PolyA. Cross-polarization (31)P-NMR of the nucleotide chains bound to 100% DOTAP MLVs produced spectra virtually identical to those of dry powders of OligoS or PolyA, indicating effective immobilization of the surface-bound nucleotide chains. Hahn echo (31)P-NMR showed that MLVs composed of binary mixtures of POPC with DOTAP or CTAB retained a lamellar bilayer architecture upon adding nucleotide chains. At less than stoichiometric anion/cation ratios little or no signal attributable to free nucleotide chains was visible. A narrow signal at the chemical shift expected for phosphorothiodiesters or phosphodiesters became visible at greater levels of added OligoS or PolyA, respectively, indicating the presence of mobile nucleotide chains. Salt addition caused complete desorption of the nucleotide chains. When POPC was replaced with DOPE, binding of OligoS or PolyA produced non-bilayer lipid phases in the presence of DOTAP, but not in the presence of CTAB.  相似文献   

16.
The effect of dolichol and dolichyl phosphate on fusion between large unilamellar vesicles comprised of 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) and 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE) was studied using a fluorescence resonance energy transfer assay. The influence of dolichyl phosphate on the transbilayer movement of DOPC in multilamellar vesicles (MLV) and large unilamellar vesicles (LUV) composed of DOPC and DOPE (1:2) was investigated by using the phosphatidylcholine-specific transfer protein. 31P-NMR and freeze-fracture electron microscopy were employed to study the macroscopic organization of DOPC and DOPE containing model membranes in the absence or presence of dolichyl phosphate. The results indicate that both dolichol and dolichyl phosphate enhance vesicle fusion in a comparable and concentration-dependent way; the amount of exchangeable PC from MLVs is increased by dolichyl phosphate, probably as a result of fusion processes; dolichyl phosphate destabilizes the bilayer organization in MLVs comprised of DOPE and DOPC, resulting in the formation of hexagonal (HII) phase and 'lipidic' particles.  相似文献   

17.
Covalent attachment of methoxypoly(ethylene glycol) (MPEG) 5000 to the surface of unilamellar liposomes composed of egg phosphatidylcholine and dioleoylphosphatidylethanolamine (DOPE) (8:2) containing paramagnetic chelates, either entrapped within the interior volume of the liposomes, or associated with the membrane surface, had no effect upon the measured spin-lattice relaxation rates (1/T1) for water in these systems. 31P-NMR studies indicate no destabilization of dioleoylphosphatidylcholine (DOPC)/(DOPE) (1:1) vesicles following attachment of MPEG. However, in DOPC/DOPE (1:3) mixtures, covalent modification with MPEG results in a destabilization of multilamellar vesicles into smaller vesicular structures. These results indicate that covalent attachment of poly(ethylene glycol) to liposomal magnetic resonance agents may prove a useful method for increasing their utility as vascular MR agents by extending their lifetime in the circulation, without decreasing the relaxivity of paramagnetic species associated with the liposome, but that the presence of PEG covalently attached to the membrane surface may modify the polymorphic phase behavior of the lipid system to which it is covalently linked.  相似文献   

18.
The effect of solubilized hydrophobic peptides on the phase behavior of dioleoylphosphatidylcholine (DOPC)/water system was studied by 2H- and 31P-NMR spectroscopy and by x-ray diffraction, and partial phase diagrams were constructed. The utilized peptides were HCO-AWW(LA)5WWA-NHCH2CH2OH (WALP16), which is an artificial peptide designed to resemble a transmembrane part of a membrane protein; and VEYAGIALFFVAAVLTLWSMLQYLSAAR (Pgs peptide E), a peptide that is identical to one of the putative transmembrane segments of the membrane-associated protein phosphatidylglycerophosphate synthase (Pgs) in Escherichia coli. Circular dichroism spectroscopy suggests that both peptides are mostly alpha-helical in DOPC vesicles. The most striking features in the phase diagram of the WALP16/DOPC/water system are 1) a single lamellar liquid crystalline (L alpha) phase forms only at very low peptide concentrations. 2) At low water content and above a peptide/lipid molar ratio of approximately 1:75 a reversed hexagonal liquid crystalline (H[II]) phase coexists with an L alpha phase, while in excess water this phase forms at a peptide/lipid molar ratio of approximately 1:25. 3) At peptide/lipid ratios > or =1:6 a single H(II) phase is stable. Also, the Pgs peptide E strongly affects the phase behavior, and a single L alpha phase is only found at low peptide concentrations (peptide/lipid molar ratios <1:50), and water concentrations <45% (w/w). Higher peptide content results in coexistence of L alpha and isotropic phases. Generally, the fraction of the isotropic phase increases with increasing temperature and water concentration, and at 80% (w/w) water content only a single isotropic phase is stable at 55 degrees C. Thus, both peptides were found to be able to induce nonlamellar phases, although different in structure, in the DOPC/water system. The phase transitions, the extensions of the one-phase regions, and the phase structures observed for the two systems are discussed in terms of the molecular structure of the two peptides and the matching between the hydrophobic lengths of the peptides and the bilayer thickness of DOPC.  相似文献   

19.
Molecular dynamics simulations and 31P-NMR spin-lattice (R1) relaxation rates from 0.022 to 21.1 T of fluid phase dipalmitoylphosphatidylcholine bilayers are compared. Agreement between experiment and direct prediction from simulation indicates that the dominant slow relaxation (correlation) times of the dipolar and chemical shift anisotropy spin-lattice relaxation are ∼10 ns and 3 ns, respectively. Overall reorientation of the lipid body, consisting of the phosphorus, glycerol, and acyl chains, is well described within a rigid-body model. Wobble, with D = 1-2 × 108 s−1, is the primary component of the 10 ns relaxation; this timescale is consistent with the tumbling of a lipid-sized cylinder in a medium with the viscosity of liquid hexadecane. The value for D|| the diffusion constant for rotation about the long axis of the lipid body, is difficult to determine precisely because of averaging by fast motions and wobble; it is tentatively estimated to be 1 × 107 s−1. The resulting D||/D ≈ 0.1 implies that axial rotation is strongly modulated by interactions at the lipid/water interface. Rigid-body modeling and potential of mean force evaluations show that the choline group is relatively uncoupled from the rest of the lipid. This is consistent with the ratio of chemical shift anisotropy and dipolar correlation times reported here and the previous observations that 31P-NMR lineshapes are axially symmetric even in the gel phase of dipalmitoylphosphatidylcholine.  相似文献   

20.
1. The 129 MHz 31P-NMR spectrum of Acholeplasma laidlawii membranes is very similar to the spectrum of the derived liposomes and is a typical "solid state" spectrum in which the major contribution to the linewidth is made by the chemical shift anisotropy. From the value of the chemical shift anisotropy an order parameter of 0.15 is estimated for the lipid phosphates in both membranes. 2. The 31P-NMR spectrum of the A. laidlawii membrane is insensitive to pronase digestion of 4-60% of the membrane proteins and subsequent cytochrome C binding. These results indicate that either no strong lipid polar headgroup-protein interactions occur in the membrane or that the lipid-protein "complexes" in the membrane have a fast rotation (Tc shorter than 10(-6)S) along an axis perpendicular to the plane of the membrane. 3. Phospholipase A2 degrades all the phosphatidylglycerol in the membrane. The resulting membrane contains a phosphoglycolipid as the sole phosphorus-containing compound. The 31P-NMR spectrum of these membranes is identical to the spectrum of the native membranes suggesting a similar motion for the phosphate groups in both lipids. 4. Ca2+ binding to liposomes prepared from either the total polar lipids or the total phosphorus-containing lipids isolated from the A. laidlawii membrane does not affect the 21P-NMR spectrum. 5. The 31P-NMR spectrum of the membranes and derived liposomes, however, is sensitive to lipid phase transitions. When the membrane lipids are in the gel state a broadening of the 31P resonance occurs demonstrating that the polar head group motion in a biological membrane is more restricted below the lipid-phase transition temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号