首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 843 毫秒
1.
We have shown recently that the azathioprine metabolite 6-Thio-GTP causes immunosuppression by blockade of GTPase activation in T lymphocytes. In the present study, we describe a new molecular mechanism by which 6-Thio-GTP blocks GTPase activation. Although 6-Thio-GTP could bind to various small GTPases, it specifically blocked activation of Rac1 and Rac2 but not of closely related Rho family members such as Cdc42 and RhoA in primary T cells upon stimulation with alphaCD28 or fibronectin. Binding of 6-Thio-GTP to Rac1 did not suppress Rac effector coupling directly but blocked Vav1 exchange activity upon 6-Thio-GTP hydrolysis, suggesting that 6-Thio-GTP loading leads to accumulation of 6-Thio-GDP-loaded, inactive Rac proteins over time by inhibiting Vav activity. In the absence of apoptosis, blockade of Vav-mediated Rac1 activation led to a blockade of ezrin-radixin-moesin dephosphorylation in primary T cells and suppression of T cell-APC conjugation. Azathioprine-generated 6-Thio-GTP thus prevents the development of an effective immune response via blockade of Vav activity on Rac proteins. These findings provide novel insights into the immunosuppressive effects of azathioprine and suggest that antagonists of the Vav-Rac signaling pathway may be useful for suppression of T cell-dependent pathogenic immune responses.  相似文献   

2.
Kuromi  Hiroshi  Kidokoro  Yoshi 《Brain Cell Biology》2003,32(5-8):551-565
Drosophila neuromuscular junctions (DNMJs) are malleable and its synaptic strength changes with activities. Mobilization and recruitment of synaptic vesicles (SVs), and replenishment of SV pools in the presynaptic terminal are involved in control of synaptic efficacy. We have studied dynamics of SVs using a fluorescent styryl dye, FM1-43, which is loaded into SVs during endocytosis and released during exocytosis, and identified two SV pools. The exo/endo cycling pool (ECP) is loaded with FM1-43 during low frequency nerve stimulation and releases FM1-43 during exocytosis induced by high K+. The ECP locates close to release sites in the periphery of presynaptic boutons. The reserve pool (RP) is loaded and unloaded only during high frequency stimulation and resides primarily in the center of boutons. The size of ECP closely correlates with the efficacy of synaptic transmission during low frequency neuronal firing. An increase of cAMP facilitates SV movement from RP to ECP. Post-tetanic potentiation (PTP) correlates well with recruitment of SVs from RP. Neither PTP nor post-tetanic recruitment of SVs from RP occurs in memory mutants that have defects in the cAMP/PKA cascade. Cyotochalasin D slows mobilization of SVs from RP, suggesting involvement of actin filaments in SV movement. During repetitive nerve stimulation the ECP is replenished, while RP replenishment occurs after tetanic stimulation in the absence of external Ca2+. Mobilization of internal Ca2+ stores underlies RP replenishment. SV dynamics is involved in synaptic plasticity and DNMJs are suitable for further studies.  相似文献   

3.
CD5 acts as a coreceptor on T lymphocytes and plays an important role in T-cell signaling and T-cell–B-cell interactions. Costimulation of T lymphocytes with anti-CD5 antibodies results in an increase of the intracellular Ca2+ levels, and subsequently in the activation of Ca2+/calmodulin-dependent (CaM) kinase type IV. In the present study, we have characterized the initial signaling pathway induced by anti-CD5 costimulation. The activation of phosphatidylinositol (PI) 3-kinase through tyrosine phosphorylation of its p85 subunit is a proximal event in the CD5-signaling pathway and leads to the activation of the lipid kinase activity of the p110 subunit. The PI 3-kinase inhibitors wortmannin and LY294002 inhibit the CD5-induced response as assessed in interleukin-2 (IL-2) secretion experiments. The expression of an inactivated Rac1 mutant (Rac1 · N17) in T lymphocytes transfected with an IL-2 promoter-driven reporter construct also abrogates the response to CD5 costimulation, while the expression of a constitutively active Rac1 mutant (Rac1-V12) completely replaces the CD5 costimulatory signal. The Rac1-specific guanine nucleotide exchange factor Vav is heavily phosphorylated on tyrosine residues upon CD5 costimulation, which is a prerequisite for its activation. A role for Vav in the CD5-induced signaling pathway is further supported by the findings that the expression of a dominant negative Vav mutant (Vav-C) completely abolishes the response to CD5 costimulation while the expression of a constitutively active Vav mutant [Vav(Δ1–65)] makes the CD5 costimulation signal superfluous. Wortmannin is unable to block the Vav(Δ1–65)- or Rac1 · V12-induced signals, indicating that both Vav and Rac1 function downstream from PI 3-kinase. Vav and Rac1 both act upstream from the CD5-induced activation of CaM kinase IV, since KN-62, an inhibitor of CaM kinases, and a dominant negative CaM kinase IV mutant block the Vav(Δ1–65)-and Rac1 · V12-mediated signals. We propose a model for the CD5-induced signaling pathway in which the PI 3-kinase lipid products, together with tyrosine phosphorylation, activate Vav, resulting in the activation of Rac1 by the Vav-mediated exchange of GDP for GTP.  相似文献   

4.
Phagocytosis and the subsequent destruction of invading pathogens by macrophages are indispensable steps in host immune responses to microbial infections. Low-power laser irradiation (LPLI) has been found to exert photobiological effects on immune responses, but the signaling mechanisms underlying this photobiomodulation of phagocytosis remains largely unknown. Here, we demonstrated for the first time that LPLI enhanced the phagocytic activity of macrophages by stimulating the activation of Rac1. The overexpression of constitutively activated Rac1 clearly enhanced LPLI-induced phagocytosis, whereas the overexpression of dominant negative Rac1 exerted the opposite effect. The phosphorylation of cofilin was involved in the effects of LPLI on phagocytosis, which was regulated by the membrane translocation and activation of Rac1. Furthermore, the photoactivation of Rac1 was dependent on the Src/PI3K/Vav1 pathway. The inhibition of the Src/PI3K pathway significantly suppressed LPLI-induced actin polymerization and phagocytosis enhancement. Additionally, LPLI-treated mice exhibited increased survival and a decreased organ bacterial load when challenged with Listeria monocytogenes, indicating that LPLI enhanced macrophage phagocytosis in vivo. These findings highlight the important roles of the Src/PI3K/Vav1/Rac1/cofilin pathway in regulating macrophage phagocytosis and provide a potential strategy for treating phagocytic deficiency via LPLI.  相似文献   

5.
Ca2+ influx into synaptic compartments during activity is a key mediator of neuronal plasticity. Although the role of presynaptic Ca2+ in triggering vesicle fusion though the Ca2+ sensor synaptotagmin 1 (Syt 1) is established, molecular mechanisms that underlie responses to postsynaptic Ca2+ influx remain unclear. In this study, we demonstrate that fusion-competent Syt 4 vesicles localize postsynaptically at both neuromuscular junctions (NMJs) and central nervous system synapses in Drosophila melanogaster. Syt 4 messenger RNA and protein expression are strongly regulated by neuronal activity, whereas altered levels of postsynaptic Syt 4 modify synaptic growth and presynaptic release properties. Syt 4 is required for known forms of activity-dependent structural plasticity at NMJs. Synaptic proliferation and retrograde signaling mediated by Syt 4 requires functional C2A and C2B Ca2+–binding sites, as well as serine 284, an evolutionarily conserved substitution for a key Ca2+-binding aspartic acid found in other synaptotagmins. These data suggest that Syt 4 regulates activity-dependent release of postsynaptic retrograde signals that promote synaptic plasticity, similar to the role of Syt 1 as a Ca2+ sensor for presynaptic vesicle fusion.  相似文献   

6.
Vascular endothelial growth factor (VEGF) signaling is critical for both normal and disease-associated vascular development. Dysregulated VEGF signaling has been implicated in ischemic stroke, tumor angiogenesis, and many other vascular diseases. VEGF signals through several effectors, including the Rho family of small GTPases. As a member of this family, Rac1 promotes VEGF-induced endothelial cell migration by stimulating the formation of lamellipodia and membrane ruffles. To form these membrane protrusions, Rac1 is activated by guanine nucleotide exchange factors (GEFs) that catalyze the exchange of GDP for GTP. The goal of this study was to identify the GEF responsible for activating Rac1 in response to VEGF stimulation. We have found that VEGF stimulates biphasic activation of Rac1 and for these studies we focused on the peak of activation that occurs at 30 min. Inhibition of VEGFR-2 signaling blocks VEGF-induced Rac1 activation. Using a Rac1 nucleotide-free mutant (G15ARac1), which has a high affinity for binding activated GEFs, we show that the Rac GEF Vav2 associates with G15ARac1 after VEGF stimulation. Additionally, we show that depleting endothelial cells of endogenous Vav2 with siRNA prevents VEGF-induced Rac1 activation. Moreover, Vav2 is tyrosine phosphorylated upon VEGF treatment, which temporally correlates with Rac1 activation and requires VEGFR-2 signaling and Src kinase activity. Finally, we show that depressing Vav2 expression by siRNA impairs VEGF-induced endothelial cell migration. Taken together, our results provide evidence that Vav2 acts downstream of VEGF to activate Rac1.  相似文献   

7.
8.
The Rho family GTPases are pivotal for T cell signaling; however, the regulation of these proteins is not fully known. One well studied regulator of Rho GTPases is Vav1; a hematopoietic cell-specific guanine nucleotide exchange factor critical for signaling in T cells, including stimulation of the nuclear factor of activated T cells (NFAT). Surprisingly, Vav1 associates with Ly-GDI, a hematopoietic cell-specific guanine nucleotide dissociation inhibitor of Rac. Here, we studied the functional significance of the interaction between Vav1 and Ly-GDI in T cells. Upon organization of the immunological synapse, both Ly-GDI and Vav1 relocalize to T cell extensions in contact with the antigen-presenting cell. Ly-GDI is phosphorylated on tyrosine residues following T cell receptor stimulation, and it associates with the Src homology 2 region of an adapter protein, Shc. In addition, the interaction between Ly-GDI and Vav1 requires tyrosine phosphorylation. Overexpression of Ly-GDI alone is inhibitory to NFAT stimulation and calcium mobilization. However, when co-expressed with Vav1, Ly-GDI enhances Vav1 induction of NFAT activation, phospholipase Cgamma phosphorylation, and calcium mobilization. Moreover, Ly-GDI does not alter the regulation of these phenomena when coexpressed with oncogenic Vav1. Since oncogenic Vav1 does not bind Ly-GDI, this suggests that the functional cooperativity of Ly-GDI and Vav1 is dependent upon their association. Thus, our data suggest that the interaction of Vav1 and Ly-GDI creates a fine tuning mechanism for the regulation of intracellular signaling pathways leading to NFAT stimulation.  相似文献   

9.
10.
Although Vav can act as a guanine nucleotide exchange factor for RhoA, Rac1, and Cdc42, its transforming activity has been ascribed primarily to its ability to activate Rac1. However, because activated Vav, but not Rac-specific guanine nucleotide exchange factors, exhibits very potent focus-forming transforming activity when assayed in NIH 3T3 cells, Vav transforming activity must also involve activation of Rac-independent pathways. In this study, we determined the involvement of other Rho family proteins and their signaling pathways in Vav transformation. We found that RhoA, Rac1, and Cdc42 functions are all required for Vav transforming activity. Furthermore, we determined that Vav activation of nuclear factor-kappaB and the Jun NH2-terminal kinase mitogen-activated protein kinase (MAPK) is necessary for full transformation by Vav, whereas p38 MAPK does not seem to play an important role. We also determined that Vav is a weak activator of Elk-1 via a Ras- and MAPK/extracellular signal-regulated kinase kinase-dependent pathway, and this activity was essential for Vav transformation. Thus, we conclude that full Vav transforming activation is mediated by the activation of multiple small GTPases and their subsequent activation of signaling pathways that regulate changes in gene expression. Because Vav is activated by the epidermal growth factor receptor and other tyrosine kinases involved in cancer development, defining the role of aberrant Vav signaling may identify activities of receptor tyrosine kinases important for human oncogenesis.  相似文献   

11.
Cognitive and behavioral disorders are thought to be a result of neuronal dysfunction, but the underlying molecular defects remain largely unknown. An important signaling pathway involved in the regulation of neuronal function is the cyclic AMP/Protein kinase A pathway. We here show an essential role for coronin 1, which is encoded in a genomic region associated with neurobehavioral dysfunction, in the modulation of cyclic AMP/PKA signaling. We found that coronin 1 is specifically expressed in excitatory but not inhibitory neurons and that coronin 1 deficiency results in loss of excitatory synapses and severe neurobehavioral disabilities, including reduced anxiety, social deficits, increased aggression, and learning defects. Electrophysiological analysis of excitatory synaptic transmission in amygdala revealed that coronin 1 was essential for cyclic–AMP–protein kinase A–dependent presynaptic plasticity. We further show that upon cell surface stimulation, coronin 1 interacted with the G protein subtype Gαs to stimulate the cAMP/PKA pathway. The absence of coronin 1 or expression of coronin 1 mutants unable to interact with Gαs resulted in a marked reduction in cAMP signaling. Strikingly, synaptic plasticity and behavioral defects of coronin 1–deficient mice were restored by in vivo infusion of a membrane-permeable cAMP analogue. Together these results identify coronin 1 as being important for cognition and behavior through its activity in promoting cAMP/PKA-dependent synaptic plasticity and may open novel avenues for the dissection of signal transduction pathways involved in neurobehavioral processes.  相似文献   

12.
Reorganization of the actin cytoskeleton is an early cellular response to a variety of extracellular signals. Dissection of pathways leading to actin rearrangement has focused largely on those initiated by growth factor receptors or integrins, although stimulation of G protein-coupled receptors also leads to cytoskeletal changes. In transfected Cos-7SH cells, activation of the chemoattractant formyl peptide receptor induces cortical actin polymerization and a decrease in the number of central actin bundles. In this report, we show that cytoskeletal reorganization can be transduced by G protein βγ heterodimers (Gβγ), phosphoinositide 3-kinase γ (PI3-Kγ), a guanosine exchange factor (GEF) for Rac, and Rac. Expression of inactive variants of either PI3-Kγ, the Rac GEF Vav, or Rac blocked the actin rearrangement. Neither wortmannin nor LY294002, pharmacologic inhibitors of PI3-K, could inhibit the actin rearrangement induced by a constitutively active Rac. The inhibition of cytoskeletal reorganization by the dominant negative Vav variants could be rescued by coexpression of a constitutively active form of Rac. In contrast, a Vav variant with its pleckstrin homology (PH) domain missing constitutively induced JNK activation and led to cytoskeletal reorganization, even without stimulation by PI3-Kγ. This suggests that the PH domain of Vav controls the guanosine exchange activity of Vav, perhaps by a mechanism regulated by D3 phosphoinositides generated by PI3-K. Taken together, these findings delineate a pathway leading from activation of a G protein-coupled receptor to actin reorganization which sequentially involves Gβγ, PI3-Kγ, a Rac GEF, and Rac.  相似文献   

13.
Long-lasting synaptic plasticity involves changes in both synaptic morphology and electrical signaling (here referred to as structural and functional plasticity). Recent studies have revealed a myriad of molecules and signaling processes that are critical for each of these two forms of plasticity, but whether and how they are mechanistically linked to achieve coordinated changes remain controversial.It is well accepted that functional plasticity at the excitatory synapse is dependent upon the activities of glutamate receptors. While the activation of NMDARs (N-methyl-D-aspartic acid receptors) and/or mGluRs (metabotropic glutamate receptors) is required for the induction of many forms of plasticity, AMPARs (alpha-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid receptors), the principal mediators of fast excitatory synaptic transmission, are the ultimate targets of modifications that express functional plasticity. Investigations exploring structural plasticity have been mainly focused on the small membranous protrusions on the dendrites called spines. The morphological regulation of these spines is mediated by the reorganization of the actin cytoskeleton, the predominant structural component of the synapse. In this regard, the Rho family of GTPases, particularly Rac1, RhoA and Cdc42, is found to be the central regulator of spine actin and structural plasticity of the synapse.It is thought that the collaborative interaction between functional and structural factors underlies the sustained or permanent nature of long-lasting synaptic plasticity such as long-term potentiation (LTP) and long-term depression (LTD), the most extensively studied forms of synaptic plasticity widely regarded as cellular mechanisms for learning and memory. However, data specifically pertaining to whether and how these two distinct components are linked at the molecular level remain sparse. In this regard, we have identified a number of synaptic proteins that are involved in both structural and functional changes during mGluR-dependent LTD (mGluR-LTD). Among these are the GluA2 (formerly called GluR2) subunit of AMPARs, Rac1 and Rac1-activated kinases. We have discovered that these proteins interact and reciprocally regulate each other, which led us to hypothesize that the GluA2–Rac1 interaction may serve as a coordinator between functional and morphological plasticity. In this review, we will briefly discuss the available evidence to support such a hypothesis.  相似文献   

14.
The morphogenesis of dendritic spines, the major sites of excitatory synaptic transmission in the brain, is important in synaptic development and plasticity. We have identified an ephrinB-EphB receptor trans-synaptic signaling pathway which regulates the morphogenesis and maturation of dendritic spines in hippocampal neurons. Activation of the EphB receptor induces translocation of the Rho-GEF kalirin to synapses and activation of Rac1 and its effector PAK. Overexpression of dominant-negative EphB receptor, catalytically inactive kalirin, or dominant-negative Rac1, or inhibition of PAK eliminates ephrin-induced spine development. This novel signal transduction pathway may be critical for the regulation of the actin cytoskeleton controlling spine morphogenesis during development and plasticity.  相似文献   

15.
Curcumin, a natural and crystalline compound isolated from the plant Curcuma longa with low toxicity in normal cells, has been shown to protect against carcinogenesis and prevent tumor development. However, little is known about antimetastasis effects and mechanism of curcumin in lung cancer. Rac1 is an important small Rho GTPases family protein and has been widely implicated in cytoskeleton rearrangements and cancer cell migration, invasion and metastasis. In this study, we examined the influence of curcumin on in vitro invasiveness of human lung cancer cells and the expressions of Rac1. The results indicate that curcumin at 10 μM slightly reduced the proliferation of 801D lung cancer cells but showed an obvious inhibitory effect on epidermal growth factor or transforming growth factor β1-induced lung cancer cell migration and invasion. Meanwhile, we demonstrated that the suppression of invasiveness correlated with inhibition of Rac1/PAK1 signaling pathways and matrix metalloproteinase (MMP) 2 and 9 protein expression by combining curcumin treatment with the methods of Rac1 gene silence and overexpression in lung cancer cells. Laser confocal microscope also showed that Rac1-regulated actin cytoskeleton rearrangement may be involved in anti-invasion effect of curcumin on lung cancer cell. At last, through xenograft experiments, we confirmed the connection between Rac1 and the growth and metastasis inhibitory effect of curcumin in vivo. In summary, these data demonstrated that low-toxic levels of curcumin could efficiently inhibit migration and invasion of lung cancer cells through inhibition of Rac1/PAK1 signaling pathway and MMP-2 and MMP-9 expression, which provided a novel insight into the molecular mechanism of curcumin against lung cancer.  相似文献   

16.
17.
18.
The chemokine CXCL12 promotes T lymphocyte adhesion mediated by the integrin alpha4beta1. CXCL12 activates the GTPase Rac, as well as Vav1, a guanine-nucleotide exchange factor for Rac, concomitant with up-regulation of alpha4beta1-dependent adhesion. Inhibition of CXCL12-promoted Rac and Vav1 activation by transfection of dominant negative Rac or Vav1 forms, or by transfection of their siRNA, remarkably impaired the increase in T lymphocyte attachment to alpha4beta1 ligands in response to this chemokine. Importantly, inhibition of Vav1 expression by RNA interference resulted in a blockade of Rac activation in response to CXCL12. Adhesions in flow chambers and soluble binding assays using these transfectants indicated that initial ligand binding and adhesion strengthening mediated by alpha4beta1 were dependent on Vav1 and Rac activation by CXCL12. Finally, CXCL12-promoted T-cell transendothelial migration involving alpha4beta1-mediated adhesion was notably inhibited by expression of dominant negative Vav1 and Rac. These results indicate that activation of Vav1-Rac signaling pathway by CXCL12 represents an important inside-out event controlling efficient up-regulation of alpha4beta1-dependent T lymphocyte adhesion.  相似文献   

19.
The generation of novel genes and proteins throughout evolution has been proposed to occur as a result of whole genome and gene duplications, exon shuffling, and retrotransposition events. The analysis of such genes might thus shed light into the functional complexity associated with highly evolved species. One such case is represented by TBC1D3, a primate-specific gene, harboring a TBC domain. Because TBC domains encode Rab-specific GAP activities, TBC-containing proteins are predicted to play a major role in endocytosis and intracellular traffic. Here, we show that the TBC1D3 gene originated late in evolution, likely through a duplication of the RNTRE locus, and underwent gene amplification during primate speciation. Despite possessing a TBC domain, TBC1D3 is apparently devoid of Rab-GAP activity. However, TBC1D3 regulates the optimal rate of epidermal growth factor–mediated macropinocytosis by participating in a novel pathway involving ARF6 and RAB5. In addition, TBC1D3 binds and colocalize to GGA3, an ARF6-effector, in an ARF6-dependent manner, and synergize with it in promoting macropinocytosis, suggesting that the two proteins act together in this process. Accordingly, GGA3 siRNA-mediated ablation impaired TBC1D3-induced macropinocytosis. We thus uncover a novel signaling pathway that appeared after primate speciation. Within this pathway, a TBC1D3:GGA3 complex contributes to optimal propagation of signals, ultimately facilitating the macropinocytic process.  相似文献   

20.
Activity-dependent rapid structural and functional modifications of central excitatory synapses contribute to synapse maturation, experience-dependent plasticity, and learning and memory and are associated with neurodevelopmental and psychiatric disorders. However, the signal transduction mechanisms that link glutamate receptor activation to intracellular effectors that accomplish structural and functional plasticity are not well understood. Here we report that NMDA receptor activation in pyramidal neurons causes CaMKII-dependent phosphorylation of the guanine-nucleotide exchange factor (GEF) kalirin-7 at residue threonine 95, regulating its GEF activity, leading to activation of small GTPase Rac1 and rapid enlargement of existing spines. Kalirin-7 also interacts with AMPA receptors and controls their synaptic expression. By demonstrating that kalirin expression and spine localization are required for activity-dependent spine enlargement and enhancement of AMPAR-mediated synaptic transmission, our study identifies a signaling pathway that controls structural and functional spine plasticity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号