首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 156 毫秒
1.
吕富成  马建勇  曹云  延晓冬 《生态学报》2022,42(7):2810-2821
森林生态系统是陆地碳循环的重要组成部分,其固碳能力显著高于其他陆地生态系统,研究森林生态系统碳通量是认识和理解全球变化对碳循环影响的关键。碳循环模型是研究森林生态系统碳通量有效工具。以长白山温带落叶阔叶林、千烟洲亚热带常绿针叶林、鼎湖山亚热带常绿阔叶林和西双版纳热带雨林等4种中国典型森林生态系统为研究对象,利用涡度相关2003-2012年观测数据,评估FORCCHN模型对生态系统呼吸(ER),总初级生产力(GPP),净生态系统生产力(NEP)的模型效果。结果表明:(1) FORCCHN模型能够较好的模拟中国4种典型森林生态系统不同时间尺度的碳通量。落叶阔叶林和常绿针叶林ER和GPP的逐日变化模拟效果较好(ER的相关系数分别为0.94和0.92,GPP的相关系数分别为0.86和0.74);(2)4种森林生态系统碳通量季节动态模拟值和观测值显著相关(P<0.01),ER、GPP、NEP的观测值和模拟值的R2分别为0.77-0.93、0.54-0.88和0.15-0.38;模型可以很好地模拟森林生态系统不同季节碳汇(NEP>0),碳源(NEP<0)的变化规律;(3)4种森林生态系统碳通量模拟值与观测值的年际变化有很好的吻合度,但在数值大小上存在差异,模型高估了常绿阔叶林的ER和GPP,略微低估了其他3种森林生态系统ER和GPP。  相似文献   

2.
荒漠草原是陆地生态系统中最为脆弱且受人类干扰较为严重的生态类型之一,精准模拟其碳水通量及对人为干扰的响应,不仅能够揭示其复杂的生态学过程,而且还可为人为生态修复和保护提供决策依据。生态模型能够有效地模拟陆地生态系统的碳水循环过程,但模型众多的参数及其取值的合理性限制了其普遍应用,故探索参数优化是提升生态模型应用的有效途径。利用PEST参数优化方法和涡度相关观测数据对Biome-BGC模型的生理生态参数进行优化,在评估参数优化效果的基础上模拟了1986-2018年宁夏盐池荒漠草原区人工灌丛生态系统的总初级生产力(Gross primary productivity,GPP)和蒸散(Evapotranspiration,ET)。结果表明:(1)参数优化可以改善Biome-BGC模型对荒漠草原区人工灌丛生态系统GPP和ET的模拟效果,参数优化后模拟的GPP和ET均更接近于观测值,其中月尺度的模拟效果更佳;(2)基于PEST的Biome-BGC模型参数优化方法具有较强的普适性,优化后的参数可推广应用于荒漠草原区人工灌丛生态系统长时间序列的GPP和ET模拟;(3)宁夏盐池荒漠草原区人工灌丛生态系统的GPP在1986-2018年呈缓慢上升趋势,增幅为1.47 g C m-2 a-1,但ET的年际变化率较大,且无显著变化趋势。  相似文献   

3.
陆地生态系统是全球第二大碳库,其碳收支一直是气候变化研究的热点领域,而研究二氧化碳(CO2)施肥效应又是全球变化碳循环领域较为关注的前沿部分。CO2与生态系统关系复杂,当前仍无法厘清CO2对陆地生态系统碳循环的影响作用。基于太阳辐射数据、气温数据及归一化植被指数数据等,利用光能利用率遥感模型,模拟2019年甘南地区的碳循环,选取三个指标,即GPP (陆地生态系统总初级生产力)、NPP (净初级生产力)和NEP (净生态系统生产力)来分析甘南地区植被固碳的时空变化特征及CO2施肥效应。结果表明:(1)甘南地区2019年植被固碳总量约为2611 tC。甘南地区生态系统GPP、NPP和NEP季节性特征明显,其值均在夏季达到最高;而在空间上,GPP、NPP表现为东高西低的特征,NEP呈现出北高南低的分布特征。(2) CO2对GPP、NPP存在正向的施肥效应,分别增加了14.4%和14.3%;而对NEP具有负向反馈效应,使其减少了0.3%,并且CO2对NEP的影响整体也表现为北高南低的特征。研究揭示出:虽然CO2在提升GPP和NPP时,正向的施肥效应明显,但是对甘南地区的NEP,即固碳量来说,CO2的影响却很有限。因此在研究CO2施肥效应时不应一概而论,生态地理环境对其的影响不可忽视。研究可以为揭示陆地生态系统碳循环的动态机制提供一定的理论依据。  相似文献   

4.
北方草地是我国天然草地主体部分,其生态功能对提升生态系统稳定性、保障国家生态安全具有重要的作用。在北方草地生态功能分区基础上,开展2011-2015年不同功能区内防风固沙、土壤保持、水源涵养等生态功能评估,探明其现状和空间格局,为北方草地生态功能分区研究提供评估数据,也为推进草地生态系统保护与修复工作提供科技支撑。结果表明:(1)北方草地防风固沙能力为32.44 t hm-2 a-1,防风固沙量为89.22亿t/a。半干旱草原区防风固沙能力和固沙量最大,分别为68.76 t hm-2 a-1和29.16亿t/a,其固沙量占北方草地固沙总量的32.68%。(2)北方草地土壤保持能力为124.5 t hm-2 a-1,土壤保持量为243.59亿t/a。土壤保持功能的空间异质性较大,暖性灌草丛区土壤保持能力最大,为431.52 t hm-2 a-1;高寒草甸区土壤保持量最多,为105.36亿t/a,占北方草地土壤保持总量的43.19%。(3)北方草地水源涵养能力为93.03 m3 hm-2 a-1,水源涵养量为288.98亿m3/a。高寒草甸区和高寒草原区水源涵养能力较大,分别为211.09 m3 hm-2 a-1和118.04 m3 hm-2 a-1。两个区域的水源涵养量也较多,分别为125.36亿m3/a和72.13亿m3/a,合占北方草地水源涵养总量的68.34%。整体上,北方半干旱草原区、暖性灌草丛区、高寒草甸区和高寒草原区对发挥我国草地防风固沙、土壤保持、水源涵养等生态多功能效益、提升生态系统服务和稳定性具有极其重要的作用。  相似文献   

5.
刘凤  曾永年 《生态学报》2021,41(14):5792-5803
陆地生态系统碳循环能够综合反映全球气候变化及区域响应,是全球及区域气候变化及人类活动影响研究的重要内容。青海高原作为青藏高原的重要组成部分,在全球及区域气候与环境变化中具有极其重要的作用。因此,研究青海高原植被碳源/汇时空变化及气候因子的影响具有重要意义。采用土壤呼吸模型和改进的CASA模型,结合MODIS、气象数据估算了青海高原2000-2015年植被净生态系统生产力(NEP),分析了植被NEP、碳汇的年际时空分布、年际动态变化、多年累积空间分布与植被NEP变异系数,定量分析了降水量、气温对植被NEP的影响。结果表明:1)2000-2015年,青海高原植被年NEP空间分布特点呈东高西低、南高北低,由西北向东南逐步增加趋势,年NEP多年平均值为128.40 gC m-2a-1;2)青海高原不同生态区植被NEP与碳汇量空间分异显著,碳汇区约占植被分布区面积的73.11%,其中,祁连山生态区和三江源生态区为主要的碳汇区;3)2000-2015年,青海高原植被碳汇功能逐步增强,年固碳量为-3.2-64.42 TgC,年际变化呈平稳上升;4)受自然与人为因素的协同影响,青海高原年NEP呈现逐步好转的趋势,平均趋势系数为1.52,NEP增加的区域占植被总面积的25.72%;5)青海高原植被NEP变异系数空间分布以较低、中等波动为主,稳定性颇高;6)降水量对植被NEP以促进作用为主,气温以抑制作用为主,气温对青海高原植被NEP的影响占主导地位。  相似文献   

6.
高寒灌丛草甸和草甸均是青藏高原广泛分布的植被类型,在生态系统碳通量和区域碳循环中具有极其重要的作用。然而迄今为止,对其碳通量动态的时空变异还缺乏比较分析,对碳通量的季节和年际变异的主导影响因子认识还不够清晰,不利于深入理解生态系统碳通量格局及其形成机制。该研究选取位于青藏高原东部海北站高寒灌丛草甸和高原腹地当雄站高寒草原化草甸年降水量相近的5年(2004–2008年)的涡度相关CO_2通量连续观测数据,对生态系统净初级生产力(NEP)及其组分,包括总初级生产力(GPP)和生态系统呼吸的季节、年际动态及其影响因子进行了对比分析。结果表明:灌丛草甸的CO_2通量无论是季节还是年际累积量均高于草原化草甸,并且连续5年表现为"碳汇",平均每年NEP为70 g C·m~(–2)·a~(–1),高寒草原化草甸平均每年NEP为–5 g C·m~(–2)·a~(–1),几乎处于碳平衡状态,但其源/汇动态极不稳定,在2006年–88 g C·m~(–2)·a~(–1)的"碳源"至2008年54 g C·m~(–2)·a~(–1)的"碳汇"之间转换,具有较大的变异性。这两种高寒生态系统源/汇动态的差异主要源于归一化植被指数(NDVI)的差异,因为NDVI无论在年际水平还是季节水平都是NEP最直接的影响因子;其次,灌丛草甸还具有较高的碳利用效率(CUE,CUE=NEP/GPP),而年降水量和NDVI是决定两生态系统CUE大小的关键因子。两地区除了CO_2通量大小的差异外,其环境影响因子也有所不同。采用结构方程模型进行的通径分析表明,灌丛草甸生长季节CO_2通量的主要限制因子是温度,NEP和GPP主要受气温控制,随着气温升高而增加;而草原化草甸的CO_2通量多以季节性干旱导致的水分限制为主,其次才是气温的影响,受二者的共同限制。此外,两生态系统生长季节生态系统呼吸主要受GPP和5 cm土壤温度的直接影响,其中GPP起主导作用,非生长季节生态系统呼吸主要受5 cm土壤温度影响。该研究还表明,水热因子的协调度是决定青藏高原高寒草地GPP和NEP的关键要素。  相似文献   

7.
在2017年1月1日-2017年12月31日期间,采用涡度相关法对位于亚热带-暖温带气候过渡区的河南宝天曼国家级自然保护区的65年生锐齿栎(Quercus aliena)天然次生林的碳通量进行了连续观测。结果表明:在观测期间,该森林生态系统在生长季5-10月份为碳汇,非生长季各月为碳源,净碳吸收量与释放量分别在7月和4月达到最大。净生态系统生产力为569.4 g C m-2a-1,生态系统呼吸为529.9 g C m-2a-1,总生态系统生产力为1099.3 g C m-2a-1。30min尺度上夜间净生态系统碳交换量与5cm深度土壤温度的关系可用指数方程表示(R2=0.21,P < 0.001),其温度敏感性系数(Temperature sensitivity coefficient,Q10)为2.2。如果排除夜间通量观测的误差,处在海拔较高地区的夜间低温和非生长季的低温抑制了生态系统呼吸排放,可能导致全年生态系统呼吸量较低。在生长季5-10月份,各月的白天净生态系统碳交换量对光合有效辐射的响应符合直角双曲线模型,初始光能利用效率、平均最大光合速率和白天平均生态系统呼吸强度呈明显的季节变化,范围分别是0.06-0.12 μmol CO2 μmol-1 photon、0.44-1.47 mg CO2 m-2s-1和0.07-0.19 mg CO2 m-2s-1。夏季7、8月份,较高的饱和水汽压差对白天锐齿栎林的碳吸收有明显的抑制作用;生长季末期9月份较高的土壤含水量对白天锐齿栎林的碳吸收也产生了抑制作用,表明生长末期降水过多影响森林的碳吸收。  相似文献   

8.
 草甸草原是青藏高原的重要植被类型, 与其他植被类型相比, 其碳交换过程和驱动机理的研究仍较薄弱。利用青海湖东北岸草甸草原的涡度相关系统观测的连续数据(2010年7月1日–2011年6月30日), 分析了草甸草原CO2通量特征及其驱动因子。结果表明: 草甸草原净生态系统CO2交换量(NEE)在植物生长季的5–9月, 其日变化主要受控于光合光量子通量密度(PPFD); 而非生长季(10月21日–4月19日)和生长季初(4月下旬)、末期(10月中上旬) NEE的日变化主要受气温(Ta)的影响。CO2
日最大吸收值和释放值分别出现在7月1日(11.37 g CO2·m–2·d–1)和10月21日(4.04 g CO2·m–2·d–1)。逐日NEE主要受控于Ta, 两者关系可用指数线性(explinear)方程表示(R2 = 0.54, p < 0.01)。叶面积指数(LAI)和增强型植被指数(EVI)对逐日NEE的影响表现为渐近饱和型, LAI和Ta交互作用明显(p < 0.05), EVI的主效应强烈(p < 0.001)。生态系统的呼吸熵(Q10)为2.42, 总呼吸(Reco)约占总初级生产力(GPP)的74%。生长季适度的昼夜温差(<14.8 ℃)有利于系统的碳蓄积。研究时段该草甸草原作为碳汇从大气吸收271.31 g CO2· m–2。  相似文献   

9.
1961-2010年中国区域氮沉降时空格局模拟研究   总被引:6,自引:0,他引:6  
顾峰雪  黄玫  张远东  闫慧敏  李洁  郭瑞  钟秀丽 《生态学报》2016,36(12):3591-3600
由于人类活动的干扰,近年来,通过沉降和施肥形式进入陆地生态系统的氮素持续增加,众多研究表明,中国已经成为继欧洲和北美之后的第三大氮沉降区。氮与陆地生态系统生物地球化学循环的一系列过程都相互联系,碳循环及其格局也受到氮的影响,因此大气氮沉降的变化受到广泛关注,探明区域大气氮沉降的时空格局对评估氮沉降对陆地生态系统碳循环的影响具有重要意义。构建了一个基于降水、能源消费和施肥数据的氮沉降时空格局模拟方法,通过与观测数据的比较说明该模拟方法能够较好地模拟氮沉降的时空变化,在此基础上,利用该方法模拟了1961-2010年中国区域氮沉降的时空格局。结果表明:(1)1961-2010年中国区域年平均氮沉降速率为0.81 g N m-2 a-1,由20世纪60年代的0.31 g N m-2 a-1增加到21世纪初的1.71 g N m-2 a-1,年增长率为0.04 g N m-2 a-1。总氮沉降量由20世纪60年代的2.85 TgN/a增加至15.68 TgN/a。(2)NHx-N的沉降速率大约是NOy-N的4倍,是主要的氮沉降形式。1961-2010年我国湿沉降平均速率为0.63 g N m-2 a-1,是干沉降速率(0.17 g N m-2 a-1)的3.63倍,是氮素进入陆地生态系统的重要途径。(3)在空间上,我国的大气氮沉降速率呈现出由东南向西北梯度递减的格局,华北、华中和东北的农田是氮沉降速率最大的区域,同时也是氮沉降速率增长最快的区域。  相似文献   

10.
叶许春  杨晓霞  刘福红  吴娟  刘佳 《生态学报》2021,41(17):6949-6959
长江流域是我国重要的工农业生产区和生态安全屏障。深入开展长江流域陆地植被总初级生产力(GPP)时空变化特征和驱动因子研究,对了解变化环境下区域植被生长状况和生物固碳能力、掌握生态环境质量具有重要意义。基于MODIS GPP遥感数据产品、土地利用和气象观测数据,采用趋势分析和偏相关分析法,系统研究了2000-2015年间长江流域陆地植被GPP时空变化特征,探讨了不同二级水资源区内气候因子对GPP变化影响的空间差异,揭示了不同土地利用类型GPP变化特征以及气候因子作用。结果表明:1)长江流域陆地植被覆盖区GPP在0.3-2765 gC m-2 a-1之间,均值约990.46 gC m-2 a-1,多年平均GPP总量为1.735 P gC;2)近年来,长江流域GPP呈不显著上升趋势,趋势率为2.39 gC m-2 a-1。空间上,GPP上升区和下降区分别占总流域面积的68%和32%。各二级水资源区内,除了洞庭湖流域和太湖流域GPP呈下降趋势外,其他区GPP均呈上升趋势;3)不同土地利用类型GPP均值在198.50-1276.90 gC m-2 a-1之间。各土地利用类型中除水田GPP呈微弱下降外,其他均呈上升趋势,尤其是高、中、低覆盖度草地GPP上升趋势较为显著;4)不同气候因子对植被GPP变化的影响程度在不同二级水资源区、不同土地利用类型间均存在一定差异,但就长江流域整体而言,GPP年际变化受温度影响显著,其次是蒸发,而降水等其他气候因子的影响不大。  相似文献   

11.
以青藏高原玛沁地区高寒草甸和沱沱河地区高寒荒漠草原为观测研究站,利用涡动协方差技术获取高寒生态系统水平上的CO2通量以及水和能量通量,通过REddyProc、随机森林(Random Forest, RF)进行了数据后处理,探究了不同下垫面典型环境因子对净生态系统CO2交换量(Net Ecosystem Exchange, NEE)的影响机制。结果表明:1)玛沁高寒草甸在6—7月以吸收为主,表现为碳汇,吸收峰值出现在11:00—12:00(北京时,下同)之间,而在3、4、5、8月以排放为主,表现为碳源,排放峰值出现在21:00—23:00之间;沱沱河高寒荒漠在3—8月以吸收为主,表现为净碳汇,吸收峰值出现在13:00—14:00之间;整个生长季前后(3—8月),玛沁和沱沱河的累计NEE分别为79.50 g C/m2和79.24 g C/m2,都表现为碳汇。2)不同尺度不同下垫面,气象因子对NEE的重要程度不同,小时尺度上,高寒草甸辐射对NEE的重要性最大,高寒荒漠草原蒸散发对NEE的重要性最大;日尺度...  相似文献   

12.
Carbon balance of different aged Scots pine forests in Southern Finland   总被引:4,自引:0,他引:4  
We estimated annual net ecosystem exchange (NEE) of a chronosequence of four Scots pine stands in southern Finland during years 2000–2002 using eddy covariance (EC). Net ecosystem productivity (NEP) was estimated using growth measurements and modelled mass losses of woody debris. The stands were 4, 12, 40 and 75 years old. The 4‐year‐old clearcut was a source of carbon throughout the year combining a low gross primary productivity (GPP) with a total ecosystem respiration (TER) similar to the forest stands. The annual NEE of the clearcut, measured by EC, was 386 g C m?2. Tree growth was negligible and the estimated NEP was ?262 g C m?2 a?1. The annual GPPs at the other sites were close to each other (928?1072 g C m?2 a?1), but TER differed markedly, being greatest at the 12‐year‐old site (905 g C m?2 a?1) and smallest in the 75‐year‐old stand (616 g C m?2 a?1). Measurements of soil CO2 efflux showed that different rates of soil respiration largely explained the differences in TER. The NEE and NEP of the 12‐year‐old stand were close to zero. The forested stands were sinks of carbon. They had similar annual patterns of carbon exchange and half‐hourly eddy fluxes were highly correlated, indicating similar responses to the environment. The NEE in the 40‐year‐old stand varied between ?179 and –192 g C m?2 a?1, while NEP was between 214 and 242 g C m?2 a?1. The annual NEE of the 75‐year‐old stand was 323 g C m?2 and NEP was 252 g C m?2. This indicates that there was no reduction in carbon sink strength with stand age.  相似文献   

13.
Three years of eddy covariance measurements were used to characterize the seasonal and interannual variability of the CO2 fluxes above an alpine meadow (3250 m a.s.l.) on the Qinghai‐Tibetan Plateau, China. This alpine meadow was a weak sink for atmospheric CO2, with a net ecosystem production (NEP) of 78.5, 91.7, and 192.5 g C m?2 yr?1 in 2002, 2003, and 2004, respectively. The prominent, high NEP in 2004 resulted from the combination of high gross primary production (GPP) and low ecosystem respiration (Re) during the growing season. The period of net absorption of CO2 in 2004, 179 days, was 10 days longer than that in 2002 and 5 days longer than that in 2003. Moreover, the date on which the mean air temperature first exceeded 5.0°C was 10 days earlier in 2004 (DOY110) than in 2002 or 2003. This date agrees well with that on which the green aboveground biomass (Green AGB) started to increase. The relationship between light‐use efficiency and Green AGB was similar among the three years. In 2002, however, earlier senescence possibly caused low autumn GPP, and thus the annual NEP, to be lower. The low summertime Re in 2004 was apparently caused by lower soil temperatures and the relatively lower temperature dependence of Re in comparison with the other years. These results suggest that (1) the Qinghai‐Tibetan Plateau plays a potentially significant role in global carbon sequestration, because alpine meadow covers about one‐third of this vast plateau, and (2) the annual NEP in the alpine meadow was comprehensively controlled by the temperature environment, including its effect on biomass growth.  相似文献   

14.
基于Biome-BGC模型的西双版纳橡胶林碳收支模拟   总被引:1,自引:0,他引:1  
以西双版纳橡胶适宜种植区(海拔550—600m)的橡胶林(Hevea brasiliensis)为研究对象,应用参数同化后的Biome-BGC模型模拟了1959—2012年橡胶林的碳循环。结果表明,(1)与涡度相关监测结果相比,橡胶林年总初级生产力(Gross Primary Productivity,GPP)、年总呼吸(Total Respiration,Rt)的模拟精度分别为98.37%和90%。由于对年GPP的过低估计和对年Rt的过高估计,年净生态系统交换量(Net Ecosystem Exchange,NEE)的模拟值比实测值低157.35 g C m~(-2)a~(-1)。但若考虑干胶碳(139g C m~(-2)a~(-1)),模拟值与实测值十分接近;(2)橡胶林在模拟进行的前8年里因异养呼吸较高,以碳排放为主,NEE平均约357 g C m~(-2)a~(-1);之后转为以碳固定为主,NEE平均约~(-1)46 g C m~(-2)a~(-1);(3)橡胶林在40年的更新周期中可固定碳1835 g C m~(-2),是一个弱的碳汇。但与热带雨林相同周期固碳6720 g C m~(-2)相比,仍为碳源。以上结果为深入了解橡胶种植对区域碳循环的影响提供了科学依据,建议当地政府一方面要有计划的对老胶林进行更新,以维持当前橡胶林生态系统中的碳平衡;另一方面要注重对热带雨林的保护,从而实现区域经济和生态环境保护的协调发展。  相似文献   

15.
Detailed information from the Swedish National Forest Inventory was used to simulate the carbon balance for Sweden by the process-based model Biome-BGC. A few shortcomings of the model were identified and solutions to those are proposed and also used in the simulations. The model was calibrated against CO2 flux data from 3 forests in central Sweden and then applied to the whole country divided into 30 districts and 4 age classes. Gross primary production (GPP) ranged over districts and age classes from 0.20 to 1.71 kg C m−2 y−1 and net ecosystem production (NEP) ranged from −0.01 to 0.44. The 10- to 30-year age class was the strongest carbon sink because of its relatively low respiration rates. When the simulation results were scaled up to the whole country, GPP and NEP were 175 and 29 Mton C y−1, respectively, for the 22.7 Mha of forests in Sweden. A climate change scenario was simulated by assuming a 4°C increase in temperature and a doubling of the CO2 concentration; GPP and NEP then increased to 253 and 48 Mton C y−1, respectively. A sensitivity analysis showed that at present CO2 concentrations NEP would peak at an increase of 5°C for the mean annual temperature. At higher CO2 levels NEP showed a logarithmic increase.  相似文献   

16.
马文婧  李英年  张法伟  韩琳 《生态学报》2023,43(3):1102-1112
青藏高原草甸草原是生态系统中重要的植被类型,准确评估高寒草甸草原生态系统碳源汇状况及碳储量变化尤为重要。基于涡度相关系统观测,分析了2009年至2016年8年期间青海湖北岸草甸草原环境因子以及碳通量的变化特征,运用结构方程模型(SEM)分析环境因子对总初级生产力(GPP)、净生态系统CO2交换量(NEE)、生态系统呼吸(Re)的调控机制。结果表明:2009—2016年8年NEE日均值在-2.02—0.88 gC m-2 d-1之间,5—9月NEE为负值,表现为碳吸收,雨热同期的6、7、8月是CO2净吸收最强的时期,平均每月吸收CO2 39.85 gC m-2 month-1,NEE负值日数约占全年的48%,10月—翌年4月为正值,表现为碳释放,初春3月和秋末11月是CO2净释放最强的时期;Re日均值为1.69 gC m-2 d-1,受季节温度的影响,呈夏季强,冬季弱的态...  相似文献   

17.
林黛仪  周平  徐卫  李吉跃  林雯 《生态学报》2024,44(4):1429-1440
广东南岭保存着世界上同纬度带上最完整的亚热带植被,森林资源丰富,具有巨大的固碳潜力。然而,目前该地区不同森林植被类型的碳收支年积累量特征及月动态规律尚不明确。选择广东南岭国家级自然保护区内沟谷常绿阔叶林、山地常绿阔叶林、针阔叶混交林和山顶常绿阔叶矮林4种典型森林植被为研究对象,运用集成生物圈模型(IBIS)对其2020年总初级生产力(GPP)、净初级生产力(NPP)、净生态系统生产力(NEP)和土壤异养呼吸(Rh)进行模拟,利用样地调查数据对NPP模拟结果进行验证,分析该地区不同植被类型的碳收支年积累量特征及月变化特征。研究结果表明,2020年南岭不同植被类型GPP、NPP、NEP和Rh的平均值分别为1.709、0.718、0.596和0.123 kg C m-2 a-1,4种植被类型中GPP最高的是沟谷常绿阔叶林,NPP、NEP最高的是山地常绿阔叶林,山顶常绿阔叶矮林的GPP、NPP和NEP均相对较低。南岭不同植被类型全年各月均表现出碳汇(NEP>0),逐月NPP和NEP均表现为双峰变化规律...  相似文献   

18.
Accurate estimation of gross primary production (GPP) of ecosystem is needed to evaluate terrestrial carbon cycle at various spatial and temporal scales. Eddy covariance (EC) technique provides continuous measurements of net ecosystem CO2 exchange (NEE) and can be used to separate GPP from NEE in real time series. However, seasonal and inter-annual variation and consequently ecosystem carbon budget is still very difficult to simulate from climatic and environment. To address this limitation, we develop a growing season indicator (GSI) based on low temperature and soil water stress to model and predict intra and inter-annual dynamic of gross primary productivity (GPP). Validation of this new index was conducted using continuous six-year consective EC measurement from 2004 to 2009 at a Tibetan alpine meadow. Simulated GPP agreed well with the observed GPP in terms of seasonal and inter-annual variation. The six-year correlation coefficients on seasonal scale between GSI and scalar GPP derived from EC reached more than 0.85 no matter in dry years or wet years. In addition, the temporal GPP estimation derived from GSI model was quite similar to those from observed values by EC measurement. Moreover, accumulated GSI values can predict annual variability of net ecosystem production (NEP). Higher yearly accumulated GSI corresponded to more annual NEP. When cumulative GSI arrived up to 92, the target ecosystem was a carbon sink. This is probably a threshold which Tibetan alpine meadow changes from carbon source to carbon sink. It is indicated that the GSI model is a simple, alternative approach to estimating GPP and has the potential to simulate spatial GPP in a larger scale. However, the performance of GSI model in other vegetation types or regions still needs a further verification.  相似文献   

19.
Aims Recent studies have shown that alpine meadows on the Qinghai-Tibetan plateau act as significant CO2 sinks. On the plateau, alpine shrub meadow is one of typical grassland ecosystems. The major alpine shrub on the plateau is Potentilla fruticosa L. (Rosaceae), which is distributed widely from 3 200 to 4 000 m. Shrub species play an important role on carbon sequestration in grassland ecosystems. In addition, alpine shrubs are sensitive to climate change such as global warming. Considering global warming, the biomass and productivity of P. fruticosa will increase on Qinghai-Tibetan Plateau. Thus, understanding the carbon dynamics in alpine shrub meadow and the role of shrubs around the upper distribution limit at present is essential to predict the change in carbon sequestration on the plateau. However, the role of shrubs on the carbon dynamics in alpine shrub meadow remains unclear. The objectives of the present study were to evaluate the magnitude of CO2 exchange of P. fruticosa shrub patches around the upper distribution limit and to elucidate the role of P. fruticosa on ecosystem CO2 fluxes in an alpine meadow.Methods We used the static acrylic chamber technique to measure and estimate the net ecosystem productivity (NEP), ecosystem respiration (R e), and gross primary productivity (GPP) of P. fruticosa shrub patches at three elevations around the species' upper distribution limit. Ecosystem CO2 fluxes and environmental factors were measured from 17 to 20 July 2008 at 3 400, 3 600, and 3 800 m a.s.l. We examined the maximum GPP at infinite light (GPP max) and maximum R e (R emax) during the experimental time at each elevation in relation to aboveground biomass and environmental factors, including air and soil temperature, and soil water content.Important findings Patches of P. fruticosa around the species' upper distribution limit absorbed CO2, at least during the daytime. Maximum NEP at infinite light (NEP max) and GPP max of shrub patches in the alpine meadow varied among the three elevations, with the highest values at 3 400 m and the lowest at 3 800 m. GPP max was positively correlated with the green biomass of P. fruticosa more strongly than with total green biomass, suggesting that P. fruticosa is the major contributor to CO2 uptake in the alpine shrub meadow. Air temperature influenced the potential GPP at the shrub-patch scale. R emax was correlated with aboveground biomass and R emax normalized by aboveground biomass was influenced by soil water content. Potentilla fruticosa height (biomass) and frequency increased clearly as elevation decreased, which promotes the large-scale spatial variation of carbon uptake and the strength of the carbon sink at lower elevations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号