首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The transient receptor potential cation channel subfamily V member 1 (TRPV1) is a transmembrane protein that can be activated by various physical and chemical stimuli and is associated with pain transduction. In recent years, TRPV1 was discovered to play essential roles in cancer tumorigenesis and development, as TRPV1 expression levels are altered in numerous cancer cell types. Several investigations have discovered direct associations between TRPV1 and cancer cell proliferation, cell death, and metastasis. Furthermore, about two dozen TRPV1 agonists/antagonists are under clinical trial, as TRPV1 is a potential drug target for treating various diseases. Hence, more researchers are focusing on the effects of TRPV1 agonists or antagonists on cancer tumorigenesis and development. However, both agonists and antagonists may reveal anti-cancer effects, and the effect may function via or be independent of TRPV1. In this review, we provide an overview of the impact of TRPV1 on cancer cell proliferation, cell death, and metastasis, as well as on cancer therapy and the tumor microenvironment, and consider the implications of using TRPV1 agonists and antagonists for future research and potential therapeutic approaches.  相似文献   

2.
TRPV1 (transient receptor potential vanilloid-1)是配体门控的非选择性阳离子通道,属于瞬时受体电位通道家族,能够被多种物理和化学刺激激活。TRPV1是药物研发的重要靶点之一,其异常刺激和表达与多种疾病的发病机制有关。一直以来,TRPV1因其调节剂优异的镇痛效果而备受关注。2021年诺贝尔生理学奖对温度和触觉感受器研究工作的认可,使TRPV1再一次成为关注的焦点。TRPV1已有20多年的研究基础,但是其门控机制和药物研发仍然是研究的难点。本文从TRPV1的生理功能、门控机制和药物发现的角度出发,综述了TRPV1的表达分布、功能特点和结构特征,重点阐述了3种门控机制及TRPV1调节剂在药物发现上的进展,并对未来的TRPV1药物进行展望。  相似文献   

3.
A series of 5′-halogenated resiniferatoxin analogs have been investigated in order to examine the effect of halogenation in the A-region on their binding and the functional pattern of agonism/antagonism for rat TRPV1 heterologously expressed in Chinese hamster ovary cells. Halogenation at the 5-position in the A-region of RTX and of 4-amino RTX shifted the agonism of parent compounds toward antagonism. The extent of antagonism was greater as the size of the halogen increased (I > Br > Cl > F) while the binding affinities were similar, as previously observed for our potent agonists. In this series, 5-bromo-4-amino RTX (39) showed very potent antagonism with Ki (ant) = 2.81 nM, which was thus 4.5-fold more potent than 5′-iodo RTX, previously reported as a potent TRPV1 antagonist. Molecular modeling analyses with selected agonists and the corresponding halogenated antagonists revealed a striking conformational difference. The 3-methoxy of the A-region in the agonists remained free to interact with the receptor whereas in the case of the antagonists, the compounds assumed a bent conformation, permitting the 3-methoxy to instead form an internal hydrogen bond with the C4-hydroxyl of the diterpene.  相似文献   

4.
Based on literature structures, we proposed a pharmacophore for NOP receptor ligands and used it as a guide for the design of a focused piperidine library and an optimization library. Potent NOP receptor agonists and antagonists were obtained from these libraries as well as a few potent, mu selective agonists.  相似文献   

5.
Activation of the capsaicin receptor (VR1 or TRPV1) in bronchial epithelial cells by capsaicinoids and other vanilloids promotes pro-inflammatory cytokine production and cell death. The purpose of this study was to investigate the role of TRPV1-mediated calcium flux from extracellular sources as an initiator of these responses and to define additional cellular pathways that control cell death. TRPV1 antagonists and reduction of calcium concentrations in treatment solutions attenuated calcium flux, induction of interleukin-6 and 8 gene expression, and IL-6 secretion by cells treated with capsaicin or resiniferatoxin. Most TRPV1 antagonists also attenuated cell death, but the relative potency and extent of protection did not directly correlate with inhibition of total calcium flux. Treatment solutions with reduced calcium content or chelators had no effect on cytotoxicity. Inhibitors of arachidonic acid metabolism and cyclo-oxygenases also prevented cell death indicating that TRPV1 agonists disrupted basal arachidonic acid metabolism and altered cyclo-oxygenase function via a TRPV1-dependent mechanism in order to produce toxicity. These data confirm previous results demonstrating calcium flux through TRPV1 acts as a trigger for cytokine production by vanilloids, and provides new mechanistic insights on mechanisms of cell death produced by TRPV1 agonists in respiratory epithelial cells.  相似文献   

6.
Time-lapse photomicroscopy of human H460 lung cancer cells demonstrated of the transient receptor potential V1 (TRPV1) channel agonists, (E)-capsaicin and resiniferatoxin, and the TRPV1 antagonists, capsazepine, and SB366791, were able to bring about morphological changes characteristic of apoptosis and/or necrosis. Immunoblot analysis identified immunoreactivity for the transient receptor potential V1 (TRPV1) channel in rat brain samples, but not in rat heart mitochondria or in H460 cells. In isolated rat heart mitochondria, all four ligands caused concentration-dependent decreases in oxygen consumption and mitochondrial membrane potential. (E)-Capsaicin and capsazepine evoked concentration-dependent increases and decreases, respectively, in mitochondrial hydrogen peroxide production, whilst resiniferatoxin and SB366791 were without significant effect. These data support the hypothesis that (E)-capsaicin, resiniferatoxin, capsazepine, and SB366791 are all mitochondrial inhibitors, able to activate apoptosis and/or necrosis via non-receptor mediated mechanisms, and also support the use of TRPV1 ligands as anti-cancer agents.  相似文献   

7.
The transient receptor potential channel of melastatin type 8 (TRPM8), which is gated by low (<25 degrees C) temperature and chemical compounds, is regulated by protein kinase C-mediated phosphorylation in a way opposite to that observed with the transient receptor potential channel of vanilloid type 1 (TRPV1), i.e. by being desensitized and not sensitized. As TRPV1 is sensitized also by protein kinase A (PKA)-mediated phosphorylation, we investigated the effect of two activators of the PKA pathway, 8-Br-cAMP and forskolin, on the activity of menthol and icilin at TRPM8 in HEK-293 cells stably overexpressing the channel (TRPM8-HEK-293 cells). We also studied the effect on TRPM8 of: (1) a series of compounds previously shown to activate or antagonize TRPV1, and (2) co-stimulation of transiently co-expressed cannabinoid CB(1) receptors. Both 8-Br-cAMP (100 microM) and forskolin (10 microM) right-shifted the dose-response curves for the TRPM8-mediated effect of icilin and menthol on intracellular Ca(2+). The inhibitory effects of 8-Br-cAMP and forskolin were attenuated by the selective PKA inhibitor Rp-cAMP-S. Stimulation of human CB(1) receptors transiently co-expressed in TRPM8-HEK-293 cells also inhibited TRPM8 response to icilin. Finally, some TRPV1 agonists and antagonists, but not iodinated antagonists, antagonized icilin- and much less so menthol-, induced TRPM8 activation. Importantly, the endovanilloids/endocannabinoids, anandamide and NADA, also antagonized TRPM8 at submicromolar concentrations. Although these findings need to be confirmed by experiments directly measuring TRPM8 activity in natively TRPM8-expressing cells, they support the notion that the same regulatory events have opposing actions on TRPM8 and TRPV1 receptors and identify anandamide and NADA as the first potential endogenous functional antagonists of TRPM8 channels.  相似文献   

8.
Reported herein is the design, synthesis, and pharmacologic characterization of a class of TRPV1 antagonists constructed on a phenylquinoline platform that evolved from Cinchophen lead. This design composes three sections: a phenylquinoline headgroup attached to an aliphatic carboxamides, which is tethered at a phenyl tail group. Optimization of this design led to the identification of 37, comprising a pyrrolidine linker and a trifluoromethyl–phenyl tail. In the TRPV1 functional assay, using cells expressed hTRPV1, 37 antagonized capsaicin-induced Ca2+ influx, with an IC50 value of 10.2?nM. In the complete mice analgesic model, 37 exhibited better antinociceptive activity than the positive control BCTC in diverse pain models. All of these results suggested that 37 could be considered as a lead candidate for the further development of antinociceptive drugs.  相似文献   

9.
TRPV1 expression-dependent initiation and regulation of filopodia   总被引:2,自引:0,他引:2  
Transient receptor potential vanilloid subtype 1 (TRPV1), a non-selective cation channel, is present endogenously in dorsal root ganglia (DRG) neurons. It is involved in the recognition of various pain producing physical and chemical stimuli. In this work, we demonstrate that expression of TRPV1 induces neurite-like structures and filopodia and that the expressed protein is localized at the filopodial tips. Exogenous expression of TRPV1 induces filopodia both in DRG neuron-derived F11 cells and in non-neuronal cells, such as HeLa and human embryonic kidney (HEK) cells. We find that some of the TRPV1 expression-induced filopodia contain microtubules and microtubule-associated components, and establish cell-to-cell extensions. Using live cell microscopy, we demonstrate that the filopodia are responsive to TRPV1-specific ligands. But both, initiation and subsequent cell-to-cell extension formation, is independent of TRPV1 channel activity. The N-terminal intracellular domain of TRPV1 is sufficient for filopodial structure initiation while the C-terminal cytoplasmic domain is involved in the stabilization of microtubules within these structures. In addition, exogenous expression of TRPV1 results in altered cellular distribution and in enhanced endogenous expression of non-conventional myosin motors, namely myosin IIA and myosin IIIA. These data indicate a novel role of TRPV1 in the regulation of cellular morphology and cellular contact formation.  相似文献   

10.
It has been known that co-administration of morphine with either cholecystokinin (CCK) receptor or melanocortin (MC) receptor antagonists enhance morphine’s analgesic efficacy by reducing serious side effects such as tolerance and addiction.1, 2, 3, 4 Considering these synergistic effects, we have designed trivalent ligands in which all three different pharmacophores for opioid, CCK, and MC receptors are combined in such a way as to conserve their own topographical pharmacophore structures. These ligands, excluding the cyclic compound, were synthesized by solid phase synthesis using Rink-amide resin under microwave assistance in very high yields. These trivalent ligands bind to their respective receptors well demonstrating that the topographical pharmacophore structures for the three receptors were retained for receptor binding. Ligand 10 was a lead compound to show the best biological activities at all three receptors.  相似文献   

11.
Transient receptor potential vanilloid 1 (TRPV1) ion channel serves as the detector for noxious temperature above 42 °C, pungent chemicals like capsaicin, and acidic extracellular pH. This channel has also been shown to function as an ionotropic cannabinoid receptor. Despite the solving of high-resolution three-dimensional structures of TRPV1, how endocannabinoids such as anandamide and N-arachidonoyl dopamine bind to and activate this channel remains largely unknown. Here we employed a combination of patch-clamp recording, site-directed mutagenesis, and molecular docking techniques to investigate how the endocannabinoids structurally bind to and open the TRPV1 ion channel. We found that these endocannabinoid ligands bind to the vanilloid-binding pocket of TRPV1 in the “tail-up, head-down” configuration, similar to capsaicin; however, there is a unique interaction with TRPV1 Y512 residue critical for endocannabinoid activation of TRPV1 channels. These data suggest that a differential structural mechanism is involved in TRPV1 activation by endocannabinoids compared with the classic agonist capsaicin.  相似文献   

12.
A series of 2-sulfonamidopyridine C-region derivatives of 2-(3-fluoro-4-methylsulfonamidophenyl)propanamide were investigated as hTRPV1 ligands. Systematic modification on the 2-sulfonamido group provided highly potent TRPV1 antagonists. The N-benzyl phenylsulfonamide derivatives 12 and 23 in particular showed higher affinities than that of lead compound 1. Compound 12 exhibited strong analgesic activity in the formalin pain model. Docking analysis of its chiral S-form 12S in our hTRPV1 homology model indicated that its high affinity might arise from additional hydrophobic interactions not present in lead compound 1S.  相似文献   

13.
Transient receptor potential channels of the ankyrin subtype-1 (TRPA1) and vanilloid subtype-1 (TRPV1) are structurally related, non-selective cation channels that show a high permeability to calcium. Previous studies indicate that TRP channels play a prominent role in the regulation of cardiovascular dynamics and homeostasis, but also contribute to the pathophysiology of many diseases and disorders within the cardiovascular system. However, no studies to date have identified the functional expression and/or intracellular localization of TRPA1 in primary adult mouse ventricular cardiomyocytes (CMs). Although TRPV1 has been implicated in the regulation of cardiac function, there is a paucity of information regarding functional expression and localization of TRPV1 in adult CMs. Our current studies demonstrate that TRPA1 and TRPV1 ion channels are co-expressed at the protein level in CMs and both channels are expressed throughout the endocardium, myocardium and epicardium. Moreover, immunocytochemical localization demonstrates that both channels predominantly colocalize at the Z-discs, costameres and intercalated discs. Furthermore, specific TRPA1 and TRPV1 agonists elicit dose-dependent, transient rises in intracellular free calcium concentration ([Ca2+]i) that are abolished in CMs obtained from TRPA1?/? and TRPV1?/? mice. Similarly, we observed a dose-dependent attenuation of the TRPA1 and TRPV1 agonist-induced increase in [Ca2+]i when WT CMs were pretreated with increasing concentrations of selective TRPA1 or TRPV1 channel antagonists. In summary, these findings demonstrate functional expression and the precise ultrastructural localization of TRPA1 and TRPV1 ion channels in freshly isolated mouse CMs. Crosstalk between TRPA1 and TRPV1 may be important in mediating cellular signaling events in cardiac muscle.  相似文献   

14.
We aimed to discover a novel type of transient receptor potential vanilloid 1 (TRPV1) antagonist because such antagonists are possible drug candidates for treating various disorders. We modified the structure of hit compound 7 (human TRPV1 IC50 = 411 nM) and converted its pyrrolidino group to a (hydroxyethyl)methylamino group, which substantially improved inhibitory activity (15d; human TRPV1 IC50 = 33 nM). In addition, 15d ameliorated bladder overactivity in rats in vivo.  相似文献   

15.
Human histamine H1 receptor (HHR1) is one of the G protein-coupled receptors (GPCRs) known for their constitutive activation in the absence of agonist binding. Inverse agonists are the compounds that inhibit this constitutive activity of GPCRs. HHR1 is involved in allergic reactions and is also known to be constitutively active. An updated quantitative pharmacophore model, Hypo1, has been developed using a diverse set of known HHR1 inverse agonists employing the HypoGen algorithm as implemented in Accelrys Discovery Studio 2.1. Hypo1 comprised four pharmacophore features (each one of hydrogen bond acceptor, hydrophobic, ring aromatic and positive ionisable group) along with a high correlation value of 0.944. This pharmacophore model was validated using an external test set containing 25 diverse inverse agonists and CatScramble method. Three chemical databases were screened for novel chemical scaffolds using Hypo1 as a query, to be utilised in drug design. The 3D structure of HHR1 has been constructed using human β2 adrenergic receptor. Molecular docking studies were performed with the database hit compounds using GOLD 4.1 program. The combination of all results led us to identify novel compounds to be deployed in designing new generation HHR1 inverse agonists.  相似文献   

16.
Recently, we described estrogen and agonists of the G-protein coupled estrogen receptor GPR30 to induce protein kinase C (PKC)ε-dependent pain sensitization. PKCε phosphorylates the ion channel transient receptor potential, vanilloid subclass I (TRPV1) close to a novel microtubule-TRPV1 binding site. We now modeled the binding of tubulin to the TRPV1 C-terminus. The model suggests PKCε phosphorylation of TRPV1-S800 to abolish the tubulin-TRPV1 interaction. Indeed, in vitro PKCε phosphorylation of TRPV1 hindered tubulin-binding to TRPV1. In vivo, treatment of sensory neurons and F-11 cells with estrogen and the GPR30 agonist, G-1, resulted in microtubule destabilization and retraction of microtubules from filopodial structures. We found estrogen and G-1 to regulate the stability of the microtubular network via PKC phosphorylation of the PKCε-phosphorylation site TRPV1-S800. Microtubule disassembly was not, however, dependent on TRPV1 ion conductivity. TRPV1 knock-down in rats inverted the effect of the microtubule-modulating drugs, Taxol and Nocodazole, on estrogen-induced and PKCε-dependent mechanical pain sensitization. Thus, we suggest the C-terminus of TRPV1 to be a signaling intermediate downstream of estrogen and PKCε, regulating microtubule-stability and microtubule-dependent pain sensitization.  相似文献   

17.
We previously demonstrated that capsazepine (CPZ), a synthetic transient receptor potential Vanilloid subtype 1 (TRPV1) antagonist, has significant anti-cancer effects in vivo. The purpose of this study was to develop more potent analogs based upon CPZ pharmacophore and structure–activity relationships (SAR) across analogs. We generated 30 novel compounds and screened for their anti-proliferative effects in cultured HeLa cervical cancer cells. Cell viability assays identified multiple compounds with IC50s?<?15?μM and one compound, 29 with an IC50?<?5?μM; six fold more potent than CPZ. We validated the anti-proliferative efficacy of two lead compounds, 17 and 29, in vivo using HeLa-derived xenografts in athymic nude mice. Both analogs significantly reduced tumor volumes by day 8 compared to control treated animals (p?<?0.001) with no observable adverse effects. Calcium imaging determined that compound 17 activates TRPV1 whereas 29 neither activates nor inhibits TRPV1; indicating a unique mechanism-of-action that does not involve TRPV1 signaling. Cell viability assays using a panel of additional tumor types including oral squamous cell carcinoma, non-small cell lung cancer (NSCLC), breast cancer, and prostate cancer cell lines (HSC-3, H460, MDA-231, and PC-3 respectively) demonstrated that both lead compounds were efficacious against every cancer type tested. Compounds 29 displayed IC50s of 1–2.5?μM in HSC-3and PC-3cells. Thus, we propose that these novel CPZ analogs may serve as efficacious therapeutic agents against multiple tumor types that warrant further development for clinical application.  相似文献   

18.
TRPV1 and TRPA1 are cation channels that play key roles in inflammatory signaling pathways. They are co-expressed on airway C-fibers, where they exert synergistic effects on causing inflammation and cough. Licorice, the root of Glycyrrhiza uralensis, has been widely used in China as an anti-inflammatory and anti-coughing herb. To learn if TRPV1 and TRPA1 might be key targets of the anti-inflammatory and antitussive effects of licorice, we examined liquiritin, the main flavonoid compound and active ingredient of licorice, on agonist-evoked TRPV1 and TRPA1 activation. Liquiritin inhibited capsaicin- and allyl isothiocyanate-evoked TRPV1 and TRPA1 whole-cell currents, respectively, with a similar potency and maximal inhibition. In a mouse acute lung injury (ALI) model induced by the bacterial endotoxin lipopolysaccharide, which involves both TRPV1 and TRPA1, an oral gavage of liquiritin prevented tissue damage and suppressed inflammation and the activation of NF-κB signaling pathway in the lung tissue. Liquiritin also suppressed LPS-induced increase in TRPV1 and TRPA1 protein expression in the lung tissue, as well as TRPV1 and TRPA1 mRNA levels in cells contained in mouse bronchoalveolar lavage fluid. In cultured THP-1 monocytes, liguiritin, or TRPV1 and TRPA1 antagonists capsazepine and HC030031, respectively, diminished not only cytokine-induced upregulation of NF-κB function but also TRPV1 and TRPA1 expression at both protein and mRNA levels. We conclude that the anti-inflammatory and antitussive effects of liquiritin are mediated by the dual inhibition of TRPV1 and TRPA1 channels, which are upregulated in nonneuronal cells through the NF-κB pathway during airway inflammation via a positive feedback mechanism.  相似文献   

19.
A series of indane-type acetamide and propanamide analogues were investigated as TRPV1 antagonists. The analysis of structure–activity relationship indicated that indane A-region analogues exhibited better antagonism than did the corresponding 2,3-dihydrobenzofuran and 1,3-benzodioxole surrogates. Among them, antagonist 36 exhibited potent and selective antagonism toward capsaicin for hTRPV1 and mTRPV1. Further, in vivo studies indicated that antagonist 36 showed excellent analgesic activity in both phases of the formalin mouse pain model and inhibited the pain behavior completely at a dose of 1 mg/kg in the 2nd phase.  相似文献   

20.
Thermosensitive transient receptor potential (TRP) channels, especially TRPV1 and TRPA1, are activated by the pungent compounds present in spices. TRPV1 activation by the intake of capsaicin, the irritant in hot pepper, induces adrenaline secretion and increases energy consumption. TRPV1 is mainly expressed in the sensory neurons and coexpressed with TRPA1 at a high frequency. However, the mechanism underlying adrenaline secretion by TRPA1 agonists such as allyl isothiocyanate (AITC) and cinnamaldehyde (CNA), the pungent ingredients in mustard and cinnamon, is not known. We examined whether AITC and CNA could induce adrenaline secretion in anesthetized rats. An intravenous injection of AITC or CNA (10 mg/kg) increased adrenaline secretion. These responses disappeared completely in capsaicin-treated rats with an impaired sensory nerve function. Moreover, pretreatment with cholinergic blockers (hexamethonium and atropine) attenuated the AITC- or CNA-induced adrenaline secretion. These results suggest that TRPA1 agonists activate the sensory nerves and induce adrenaline secretion via the central nervous system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号