首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A series of 2-sulfonamidopyridine C-region derivatives of 2-(3-fluoro-4-methylsulfonamidophenyl)propanamide were investigated as hTRPV1 ligands. Systematic modification on the 2-sulfonamido group provided highly potent TRPV1 antagonists. The N-benzyl phenylsulfonamide derivatives 12 and 23 in particular showed higher affinities than that of lead compound 1. Compound 12 exhibited strong analgesic activity in the formalin pain model. Docking analysis of its chiral S-form 12S in our hTRPV1 homology model indicated that its high affinity might arise from additional hydrophobic interactions not present in lead compound 1S.  相似文献   

2.
A series of 2-(3,5-substituted 4-aminophenyl)acetamide and propanamide derivatives were investigated as human TRPV1 antagonists. The analysis of the structure-activity relationship indicated that 2-(3,5-dihalo 4-aminophenyl)acetamide analogues displayed excellent antagonism of hTRPV1 activation by capsaicin and showed improved potency compared to the corresponding propanamides. The most potent antagonist (36) exhibited potent and selective antagonism for hTRPV1 not only to capsaicin but also to NADA and elevated temperature; however, it only displayed weak antagonism to low pH. Further studies indicated that oral administration of antagonist 36 blocked the hypothermic effect of capsaicin in vivo but demonstrated hyperthermia at that dose. A docking study of 36 was performed in our established hTRPV1 homology model to understand its binding interactions with the receptor and to compare with that of previous antagonist 1.  相似文献   

3.
TRPV1 (transient receptor potential vanilloid-1)是配体门控的非选择性阳离子通道,属于瞬时受体电位通道家族,能够被多种物理和化学刺激激活。TRPV1是药物研发的重要靶点之一,其异常刺激和表达与多种疾病的发病机制有关。一直以来,TRPV1因其调节剂优异的镇痛效果而备受关注。2021年诺贝尔生理学奖对温度和触觉感受器研究工作的认可,使TRPV1再一次成为关注的焦点。TRPV1已有20多年的研究基础,但是其门控机制和药物研发仍然是研究的难点。本文从TRPV1的生理功能、门控机制和药物发现的角度出发,综述了TRPV1的表达分布、功能特点和结构特征,重点阐述了3种门控机制及TRPV1调节剂在药物发现上的进展,并对未来的TRPV1药物进行展望。  相似文献   

4.
5.
    
The transient receptor potential (TRP) channels are thermo‐sensors, and transient receptor potential vanilloid (TRPV)1 and V4 are widely expressed in primary afferent neurons and nonneuronal cells. Although heat acclimation is considered as changes of thermoregulatory responses by thermo‐effectors to heat, functional changes of TRP channels in heat acclimation has not been fully elucidated. Here, we investigated whether heat acclimation induces capsaicin tolerance. NIH3T3 cells were incubated at 39.5°C. We determined the expression level of TRPV1 and TRPV4 messenger RNA (mRNA), performed cellular staining of TRPV1 and TRPV4, and investigated actin assembly and activation of the extracellular signal‐regulated kinase (ERK). Exposure to moderate heat decreased the levels of TRPV1 but not TRPV4 mRNA. It also induced stress fiber formation and the intensity of TRPV1 seemed to be decreased by chronic heat stimuli. In addition, heat acclimation attenuated the capsaicin‐induced activation of ERK. Heat acclimation may induce capsaicin tolerance via the downregulation of TRPV1.  相似文献   

6.
The transmission of pain signalling involves the cytoskeleton, but mechanistically this is poorly understood. We recently demonstrated that the capsaicin receptor TRPV1, a non-selective cation channel expressed by nociceptors that is capable of detecting multiple pain-producing stimuli, directly interacts with the tubulin cytoskeleton. We hypothesized that the tubulin cytoskeleton is a downstream effector of TRPV1 activation. Here we show that activation of TRPV1 results in the rapid disassembly of microtubules, but not of the actin or neurofilament cytoskeletons. TRPV1 activation mainly affects dynamic microtubules that contain tyrosinated tubulins, whereas stable microtubules are apparently unaffected. The C-terminal fragment of TRPV1 exerts a stabilizing effect on microtubules when over-expressed in F11 cells. These findings suggest that TRPV1 activation may contribute to cytoskeleton remodelling and so influence nociception.  相似文献   

7.
孤啡肽(nociceptin或orphanin FQ)发现于1995年底, 它是阿片受体样受体(ORL1或LC 132) 的内源性配体,在痛觉调节、心血管系统、离子通道、依赖和耐受、学习和记忆等方面具有广泛的生物学活性. 最近几年, 对孤啡肽受体与相关配体构效关系的研究成为一个新的热点.对在研究构效关系过程中所发现的孤啡肽受体相关配体(片段、拮抗剂、激动剂、部分激动剂和阻断剂)的研究情况进行了介绍.  相似文献   

8.
The administration of such a transient receptor potential vanilloid 1 (TRPV1) agonist as capsaicin, which is a pungent ingredient of red pepper, promotes energy metabolism and suppresses visceral fat accumulation. We have recently identified monoacylglycerols (MGs) having an unsaturated long-chain fatty acid as the novel TRPV1 agonist in foods. We investigated in this present study the effects of dietary MGs on uncoupling protein 1 (UCP1) expression in interscapular brown adipose tissue (IBAT) and on fat accumulation in mice fed with a high-fat, high-sucrose diet. The MG30 diet that substituted 30% of all lipids for MGs (a mixture of 1-oleoylglycerol, 1-linoleoylglycerol and 1-linolenoylglycerol) significantly increased the UCP1 content of IBAT and decreased the weight of epididymal white adipose tissue, and the serum glucose, total cholesterol and free fatty acid levels. The diet containing only 1-oleoylglycerol as MG also increased UCP1 expression in IBAT. MGs that activated TRPV1 also therefore induced the expression of UCP 1 and prevented visceral fat accumulation as well as capsaicin.  相似文献   

9.
TRPV1 ion channels mediate the response to painful heat, extracellular acidosis, and capsaicin, the pungent extract from plants in the Capsicum family (hot chili peppers) (Szallasi, A., and P.M. Blumberg. 1999. Pharmacol. Rev. 51:159-212; Caterina, M.J., and D. Julius. 2001. Annu. Rev. Neurosci. 24:487-517). The convergence of these stimuli on TRPV1 channels expressed in peripheral sensory nerves underlies the common perceptual experience of pain due to hot temperatures, tissue damage and exposure to capsaicin. TRPV1 channels are nonselective cation channels (Caterina, M.J., M.A. Schumacher, M. Tominaga, T.A. Rosen, J.D. Levine, and D. Julius. 1997. Nature. 389:816-824). When activated, they produce depolarization through the influx of Na+, but their high Ca2+ permeability is also important for mediating the response to pain. In particular, Ca2+ influx is thought to be required for the desensitization to painful sensations over time (Cholewinski, A., G.M. Burgess, and S. Bevan. 1993. Neuroscience. 55:1015-1023; Koplas, P.A., R.L. Rosenberg, and G.S. Oxford. 1997. J. Neurosci. 17:3525-3537). Here we show that in inside-out excised patches from TRPV1 expressed in Xenopus oocytes and HEK 293 cells, Ca2+/calmodulin decreased the capsaicin-activated current. This inhibition was not mimicked by Mg2+, reflected a decrease in open probability, and was slowly reversible. Furthermore, increasing the calmodulin concentration in our patches by coexpression of wild-type calmodulin with TRPV1 produced inhibition by Ca2+ alone. In contrast, patches excised from cells coexpressing TRPV1 with a mutant calmodulin did not respond to Ca2+. Using an in vitro calmodulin-binding assay, we found that TRPV1 in oocyte lysates bound calmodulin, although in a Ca2+-independent manner. Experiments with GST-fusion proteins corresponding to regions of the channel NH2-terminal domain demonstrated that a stretch of approximately 30 amino acids adjacent to the first ankyrin repeat bound calmodulin in a Ca2+-dependent manner. The physiological response to pain involves an influx of Ca2+ through TRPV1. Our results indicate that this Ca2+ influx may feed back on the channels, inhibiting their gating. This type of feedback inhibition could play a role in the desensitization produced by capsaicin.  相似文献   

10.
    
As the brain‐resident innate immune cells, reactive microglia are a major pathological feature of Alzheimer''s disease (AD). However, the exact role of microglia is still unclear in AD pathogenesis. Here, using metabolic profiling, we show that microglia energy metabolism is significantly suppressed during chronic Aβ‐tolerant processes including oxidative phosphorylation and aerobic glycolysis via the mTOR‐AKT‐HIF‐1α pathway. Pharmacological activation of TRPV1 rescues Aβ‐tolerant microglial dysfunction, the AKT/mTOR pathway activity, and metabolic impairments and restores the immune responses including phagocytic activity and autophagy function. Amyloid pathology and memory impairment are accelerated in microglia‐specific TRPV1‐knockout APP/PS1 mice. Finally, we showed that metabolic boosting with TRPV1 agonist decreases amyloid pathology and reverses memory deficits in AD mice model. These results indicate that TRPV1 is an important target regulating metabolic reprogramming for microglial functions in AD treatment.  相似文献   

11.
5-HT(五羟色胺)能神经元是起源最早的神经元之一,在传统的神经元形成前,成长中的轴突就可释放5-HT,并且通过5-HT的各种亚型受体来实现不同的功能。近年来,随着5-HT、5-HTRs(五羟色胺受体)的基因克隆及5-HT受体选择性激动剂和拮抗剂的研究发展,5-HT系统在学习记忆中的作用越发明确,许多研究结果表明:5-HT系统在记忆的巩固、短时程记忆(STM)及长时程记忆(LTM)中起重要作用,5-HT1A受体更是在非脊椎动物及哺乳动物的脑中都高度表达,并通过相似的信号转导途径参与学习与记忆的形成和巩固。本文将介绍5-HT1A受体、5-HT1A受体激动剂、5-HT1A受体拮抗剂及其与学习记忆的联系,重点综述5-HT1A受体参与学习记忆的信号转导途径研究进展,讨论5-HT1A受体参与学习记忆的可能性分子神经生物学机制。  相似文献   

12.
13.
    
Farnesoid X receptor (FXR) modulates the expression of genes involved in lipid and carbohydrate homeostasis and inflammatory processes. This nuclear receptor is likely a tumor suppressor in several cancers, but its molecular mechanism of suppression is still under study. Several studies reported that FXR agonism increases the survival of colorectal, biliary tract, and liver cancer patients. In addition, FXR expression was shown to be down-regulated in many diseases such as obesity, irritable bowel syndrome, glomerular inflammation, diabetes, proteinuria, and ulcerative colitis. Therefore, development of novel FXR agonists may have significant potential in the prevention and treatment of these diseases. In this scenario, computer-aided drug design procedures can be resourcefully applied for the rapid identification of promising drug candidates. In the present study, we applied the molecular docking method in conjunction with molecular dynamics (MD) simulations to find out potential agonists for FXR based on structural similarity with the drug that is currently used as FXR agonist, obeticholic acid. Our results showed that alvimopan and montelukast could be used as potent FXR activators and outperform the binding affinity of obeticholic acid by forming stable conformation with the protein in silico. However, further investigational studies and validations of the selected drugs are essential to figure out their suitability for preclinical and clinical trials.  相似文献   

14.
A series of 2-thio pyridine C-region analogues of 2-(3-fluoro-4-methylsulfonylaminophenyl)propanamides were investigated as hTRPV1 antagonists. Among them, compound 24S showed stereospecific and excellent TRPV1 antagonism of capsaicin-induced activation. Further, it demonstrated strong anti-allodynic in a rat neuropathic pain model. Consistent with its action in vitro being through TRPV1, compound 24S blocked capsaicin-induced hypothermia in mice. Docking analysis of 24S with our hTRPV1 homology model was performed to identify its binding mode.  相似文献   

15.
    
Models of the protein structure of agonist-, competitive antagonist-, and snake neurotoxin-binding sites were designed using the sequence of the first 54 residues of the acetylcholine receptor (AChR) subunit from Torpedo californica. These models are based on the premise that the N-terminal portions of the subunits form the outermost extracellular surface of the AChR and that agonists bind to this portion. The models were developed by predicting the secondary strucutre of the-subunit N-terminal segment from its sequence, then using these predictions to fold the segment into tertiary structures that should bind snake neurotoxins, agonists, and antagonists. Possible gating mechanisms and quaternary structures are suggested by the proposed tertiary structures of the subunits. Experiments are suggested to test aspects of the models.Supported by Armed Forces Radiobiology Research Institute, Defense Nuclear Agency, under Research Work Unit MJ 00032. The views presented in this paper are those of the author. No endorsement by the Defense Nuclear Agency has been given or should be inferred.  相似文献   

16.
17.
The optimization and truncation of our lead peptide-derived ligand TY005 possessing eight amino-acid residues was performed. Among the synthesized derivatives, NP30 (Tyr1-DAla2-Gly3-Phe4-Gly5-Trp6-O-[3′,5′-Bzl(CF3)2]) showed balanced and potent opioid agonist as well as substance P antagonist activities in isolated tissue-based assays, together with significant antinociceptive and antiallodynic activities in vivo.  相似文献   

18.
The conformations of acetylcholine receptor fromTorpedo californica in the absence and presence of agonists, antagonists, and local anesthetics were studied by circular dichroism (CD). Without ligands, the receptor had about 40% helix, 20% -sheets, and 10% -turns as analyzed from its far-UV CD spectrum. Its near-UV CD spectrum resembled that of acetylcholinesterase from the same source. None of the ligands studied altered the far-UV spectrum of the receptor. However, in the near-UV region, carbamylcholine and acetylcholine shifted the Phe and Tyr bands of AChR to less negative, whereas hexamethonium changed the Tyr bands to more negative, indicating that the site of binding of agonists and antagonists and their effect on the conformation of the receptor may be different. Decamethonium, procaine, and lidocaine had no effect on both the far- and near-UV CD spectra of acetylcholine receptor.  相似文献   

19.
The main steps are presented that led to our current understanding of the interaction between benzodiazepine receptor ligands and the GABAA receptor. The benzodiazepine receptor is a modulatory site located on the GABAA receptor-chloride channel complex that has the unique property of being able to mediate positive as well as negative modulation of the chloride channel gating by the GABAA receptor. Some critical issues concerning the structure of the receptor-channel complex remain to be clarified. Research on the benzodiazepine-GABA interaction has led to novel concepts of drug action and receptor function and provides the basis for a whole spectrum of potential drugs with therapeutic utility.Special issue dedicated to Dr. Erminio Costa  相似文献   

20.
Novel chroman and tetrahydroquinoline ureas were synthesized and evaluated for their activity as TRPV1 antagonists. It was found that aryl substituents on the 7- or 8-position of both bicyclic scaffolds imparted the best in vitro potency at TRPV1. The most potent chroman ureas were assessed in chronic and acute pain models, and compounds with the ability to cross the blood-brain barrier were shown to be highly efficacious. The tetrahydroquinoline ureas were found to be potent CYP3A4 inhibitors, but replacement of bulky substituents at the nitrogen atom of the tetrahydroisoquinoline moiety with small groups such as methyl can minimize the inhibition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号