首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 20 毫秒
1.
Cultures of Corynebacterium insidiosum produce an extra-cellular phytotoxic glycopeptide that possesses the ability to wilt plant cuttings. Wilt induced by this glycopeptide is directly dependent upon time and upon concentration with measureable wilt occurring in 40 nm solutions in 1 hour. The organism produces 1.3 grams toxin/liter of culture medium. The toxin was purified, and the physical, chemical, and biological properties were measured. The glycopeptide has an empirical formula of C108H226O132N based on 1 atom of nitrogen. The molecular weight as estimated by light scattering and column gel chromatography indicated values approximating 5 × 106. The toxin does not dissociate into small molecular weight subunits when treated with 8 m urea or 30% pyridine.  相似文献   

2.
3.
Two pure peroxidase isoenzymes B1 and D4 were isolated from the upper parts of 10-day-old wheat seedlings by means of gel and ion-exchange chromatography. Their MWs were 85000 and 24000 respectively. B1 was unstable and under various conditions it was converted to another isoenzyme, electrophoretically identical with D4. B1 contains about 40% of neutral sugars: 17.2% arabinose, 15.3% galactose, 5% glucose and traces of mannose. D4 is free of neutral sugars. None of the isoenzymes contained amino sugars. B1 oxidizes ferulic and p-coumaric acids. This oxidation has two pH optima of 4.4 and 5.4–5.6 and is inhibited by high concentrations of substrates, cyanide and azide. B1 oxidizes IAA in the presence of phenolic cofactor and Mn2+ ions. IAA oxidation has two pH optima of 4.5 and 5.6 and is inhibited by high substrate concentration, cyanide and azide, and by a number of indole derivatives. The main products of IAA oxidation are 3-methyleneoxindole and indole-3-methanol. o- and p- diphenols induce a lag period prior to IAA oxidation. Ferulic acid is oxidized during this lag period, probably to a dimer. B1 is able to produce H2O2 from oxygen. Mn2+ ions, a phenolic cofactor and an electron donor (IAA or NADH) are needed. B1 oxidizes α-keto-γ- methylmercaptobutyric acid to ethylene. D4 has a low peroxidatic activity and is inactive as an IAA oxidase. Thus B1 is probably an active cell wall-bound peroxidase isoenzyme, whereas D4 is its decomposition product.  相似文献   

4.
The nonenzymatic reduction of nitrosobenzene by NADPH and NADH in aqueous buffer solution at 25°C is described. Both reactants quantitatively convert nitrosobenzene to phenylhydroxylamine. Rate constants for reduction (kr) were determined spectrophotometrically and found to be identical at pH 5.7 and 7.4 and independent of buffer concentration. The values of kNADH (124–149 M?1 sec?1) and kNADPH (131–170 M?1 sec?1) are essentially identical. The reaction is not subject to general catalysis or specific salt effects. The oxidation of phenylhydroxylamine by NAD(P) to nitrosobenzene is only stimulated by a factor of 1.2 over oxidation in its absence (when the ratio of NADP: phenylhydroxylamine was 8:1).  相似文献   

5.
A sialoglycopeptide was isolated from the urinary constituents, soluble in 50% ethanol, of pregnant woman urine. It was purified by diethylaminoethylcellulose and diethylaminoethyl-Sephadex A-25 chromatography and by Sephadex gel-filtration. It was homogeneous on paper electrophoresis at pH 2.4, 6.4, and 8.5, and it was detected by ninhydrin and by the Schiff reagent after periodate oxidation. It consists of 35% hexoses (ratio Gal/Man 2:1), 28.1% N-acetylglucosamine, and 23.2% N-acetylneuraminic acid; aspartic acid and threonine are the main amino acids, then serine, glutamic acid, and glycine. The amino-terminal residue was aspartic acid. On the basis of one aspartic acid residue per molecule, the molecular weight of the glycopeptide was estimated to be 4,500. This sialoglycopeptide had potent R. pseudo acacia phytoagglutinin-inhibitory activity on erythrocytes, normal hepatocytes, and Zajdela tumor cells. The desialized glycopeptide showed the same activity. It appears that this phytoagglutinin could bind 3 to 4 glycopeptide molecules.  相似文献   

6.
A glycopeptide fraction containing glucuronic acid as a component sugar was extracted and purified from squid cartilage to give a single band migrating much slower than hyaluronic acid in cellulose acetate electrophoresis. The molecular weight of the glycopeptide was fairly large since its Kav value in Sephadex G-200 chromatography was 0.18; however, it was soluble in 66% ethanol. This glycopeptide contained glucuronic acid, glucosamine, galactosamine, galactose, and fucose. The total amino acid content was 1.87 μmol of amino acid per mg of the glycopeptide. Threonine, serine and proline represented 80% of the amino acids. Digestion with chondroitinase ABC or reaction with nitrous acid did not result in degradation of the glycopeptide; however, it was completely degraded by reaction with 0.5 M KOH at 37°C. Two hexasaccharides were separated from the alkaline degradation products, and they both contained glucuronic acid, fucose, galactosamine, and reducing terminal glucosamine in the molar ratio, 2:1:2:1. These results indicated that the glycopeptide contains glucuronic acid-containing sugar chains that are distinct from any known glycosaminoglycan.  相似文献   

7.
Methane Oxidation by Nitrosococcus oceanus and Nitrosomonas europaea   总被引:12,自引:6,他引:6       下载免费PDF全文
Chemolithotrophic ammonium-oxidizing and nitrite-oxidizing bacteria including Nitrosomonas europaea, Nitrosococcus oceanus, Nitrobacter sp., Nitiospina gracilis, and Nitrococcus mobilis were examined as to their ability to oxidize methane in the absence of ammonium or nitrite. All ammonium oxidizers tested had the ability to oxidize significant amounts of methane to CO2 and incorporate various amounts into cellular components. None of the nitrite-oxidizing bacteria were capable of methane oxidation. The methane-oxidizing capabilities of Nitrosococcus oceanus and Nitrosomonas europaea were examined with respect to ammonium and methane concentrations, nitrogen source, and pH. The addition of ammonium stimulated both CO2 production and cellular incorporation of methane-carbon by both organisms. Less than 0.1 mM CH4 in solution inhibited the oxidation of ammonium by Nitrosococcus oceanus by 87%. Methane concentrations up to 1.0 mM had no inhibitory effects on ammonium oxidation by Nitrosomonas europaea. In the absence of NH4-N, Nitrosococcus oceanus achieved a maximum methane oxidation rate of 2.20 × 10−2 μmol of CH4 h−1 mg (dry weight) of cells−1, which remained constant as the methane concentration was increased. In the presence of NH4-N (10 ppm [10 μg/ml]), its maximum rate was 26.4 × 10−2 μmol of CH4 h−1 mg (dry weight) of cells−1 at a methane concentration of 1.19 × 10−2 mM. Increasing the methane concentration above this level decreased CO2 production, whereas cellular incorporation of methane-carbon continued to increase. Nitrosomonas europaea showed a linear response throughout the test range, with an activity of 196.0 × 10−2 μmol of CH4 h−1 mg (dry weight) of cells −1 at a methane concentration of 1.38 × 10−1 mM. Both nitrite and nitrate stimulated the oxidation of methane. The pH range was similar to that for ammonium oxidation, but the points of maximum activity were at lower values for the oxidation of methane.  相似文献   

8.
A real-time quantitative polymerase chain reaction (QPCR) was used to evaluate biokinetic coefficients of Nitrosomonas nitrosa and N. cryotolerans clusters growing simultaneously in a batch mode of ammonia oxidation. The mathematical models based on Monod equation were employed to describe the competitive relationship between these clusters and were fitted to experimental data to obtain biokinetic values. The maximum growth rates (μ m), half-saturation coefficients (K S), microbial yields (Y) and decay coefficients (k d) of N. nitrosa and N. cryotolerans were 1.77 and 1.21 day?1, 23.25 and 23.06 mg N·L?1, 16 × 108 and 1 × 108 copies·mg N?1, 0.26 and 0.20 day?1, respectively. The estimated coefficients were applied for modeling continuous operations at various hydraulic retention times (HRTs) with an influent ammonia concentration of 300 mg N·L?1. Modeling results revealed that ammonia oxidation efficiencies were achieved 55–98 % at 0.8–10 days HRTs and that the system was predicted to be washed out at HRT of 0.7 days. Overall, use of QPCR for estimating biokinetic coefficients of the two AOB cluster growing simultaneously by use of ammonia were successful. This idea may open a new direction towards biokinetics of ammonia oxidation in which respirometry tests are usually employed.  相似文献   

9.
Water-soluble and non-dialyzable glycopeptide, nephritogenoside, was isolated from the glomerular basement membrane of normal rats. The yield of the purified nephritogenic glycopeptide from the glomerular basement membrane of 1200 rats was only 17.2 mg. Hexose amounted to 24.3% by weight, and consisted only of glucose. Paper chromatographic studies on the number and length of the carbohydrate chain deduced from strong alkaline cleavage in the presence of sodium borohydride strongly suggested that the carbohydrate chain of the nephritogenic glycopeptide is composed of three glucose residues. This conclusion was supported by the 13C-NMR spectroscopic results. In the paper chromatographic studies on the monosaccharides produced from 3H-labeled oligosaccharide by alkaline degradation and then acid hydrolysis and studies on the 13C-NMR spectrum, it was demonstrated that the saccharide at the reducing terminus is glucose. Thus, the glucose residue at the reducing terminus of the nephritogenoside may be linked directly (probably N-glycosidically) to amino acid, without the intervention of N-acetylglucosamine. The proposed structure of the carbohydrate portion of the nephritogenic glycopeptide, nephritogenoside, is as follows:
  相似文献   

10.
Three Gram-negative, strictly aerobic, chemolithoheterotrophic bacterial strains, designated UCM-30, UCM-33, and UCM-39T, were isolated in South Korea. Based on their 16S rRNA gene sequences, the three isolated strains were found to be similar to Limnobacter thiooxidans CS-K2T (97.41–97.68%), Limnobacter litoralis KP1-19T (95.55–95.76%), and various genera belonging to the class Betaproteobacteria (90.34–93.34%). DNA-DNA hybridization showed 79.3–83.9% similarity between the genomic DNA of UCM-39T, UCM-30, and UCM-33, while the sequence similarity between UCM-39T and L. thiooxidans KACC 13837T or L. litoralis LMG 24869T was 23.7% and 18.6%, respectively. The DNA G+C content of UCM 39T was 59.7 mol%, the major ubiquinone was Q-8, and the optimal oxidation rate was observed at 10 mM thiosulfate. The major fatty acids (≥ 10%) were summed features 3 (C16:1 ω7c and/or C16:1 ω6c) and 8 (C18:1 ω7c and/or C18:1 ω6c), and C16:0. The major polar lipids (diphosphatidylglycerol, phosphatidylethanolamine, and phosphatidylglycerol) were found in all members of genus Limnobacter. Based on phenotypic, physiological, and phylogenetic analyses, the UCM-39T strain was found to be significantly distinct to represent a novel species affiliated to the genus Limnobacter. We propose to name it Limnobacter humi sp. nov. with the type strain UCM-39T (=KACC 18574T =NBRC 111650T).  相似文献   

11.
Rapid Methane Oxidation in a Landfill Cover Soil   总被引:28,自引:5,他引:28       下载免费PDF全文
Methane oxidation rates observed in a topsoil covering a retired landfill are the highest reported (45 g m−2 day−1) for any environment. This microbial community had the capacity to rapidly oxidize CH4 at concentrations ranging from <1 ppm (microliters per liter) (first-order rate constant [k] = −0.54 h−1) to >104 ppm (k = −2.37 h−1). The physiological characteristics of a methanotroph isolated from the soil (characteristics determined in aqueous medium) and the natural population, however, were similar to those of other natural populations and cultures: the Q10 and optimum temperature were 1.9 and 31°C, respectively, the apparent half-saturation constant was 2.5 to 9.3 μM, and 19 to 69% of oxidized CH4 was assimilated into biomass. The CH4 oxidation rate of this soil under waterlogged (41% [wt/vol] H2O) conditions, 6.1 mg liter−1 day−1, was near rates reported for lake sediment and much lower than the rate of 116 mg liter−1 day−1 in the same soil under moist (11% H2O) conditions. Since there are no large physiological differences between this microbial community and other CH4 oxidizers, we attribute the high CH4 oxidation rate in moist soil to enhanced CH4 transport to the microorganisms; gas-phase molecular diffusion is 104-fold faster than aqueous diffusion. These high CH4 oxidation rates in moist soil have implications that are important in global climate change. Soil CH4 oxidation could become a negative feedback to atmospheric CH4 increases (and warming) in areas that are presently waterlogged but are projected to undergo a reduction in summer soil moisture.  相似文献   

12.
Rate equations and kinetic parameters were obtained for various reactions involved in the bacterial oxidation of pyrite. The rate constants were 3.5 μM Fe2+ per min per FeS2 percent pulp density for the spontaneous pyrite dissolution, 10 μM Fe2+ per min per mM Fe3+ for the indirect leaching with Fe3+, 90 μM O2 per min per mg of wet cells per ml for the Thiobacillus ferrooxidans oxidation of washed pyrite, and 250 μM O2 per min per mg of wet cells per ml for the T. ferrooxidans oxidation of unwashed pyrite. The Km values for pyrite concentration were similar and were 1.9, 2.5, and 2.75% pulp density for indirect leaching, washed pyrite oxidation by T. ferrooxidans, and unwashed pyrite oxidation by T. ferrooxidans, respectively. The last reaction was competitively inhibited by increasing concentrations of cells, with a Ki value of 0.13 mg of wet cells per ml. T. ferrooxidans cells also increased the rate of Fe2+ production from Fe3+ plus pyrite.  相似文献   

13.
Although quinones represent a class of organic compounds that may exert toxic effects both in vitro and in vivo, the molecular mechanisms involved in quinone species toxicity are still largely unknown, especially in the presence of transition metals, which may both induce the transformation of the various quinone species and result in generation of harmful reactive oxygen species. In this study, the oxidation of 1,4-naphthohydroquinone (NH2Q) in the absence and presence of nanomolar concentrations of Cu(II) in 10 mM NaCl solution over a pH range of 6.5–7.5 has been investigated, with detailed kinetic models developed to describe the predominant mechanisms operative in these systems. In the absence of copper, the apparent oxidation rate of NH2Q increased with increasing pH and initial NH2Q concentration, with concomitant oxygen consumption and peroxide generation. The doubly dissociated species, NQ2−, has been shown to be the reactive species with regard to the one-electron oxidation by O2 and comproportionation with the quinone species, both generating the semiquinone radical (NSQ). The oxidation of NSQ by O2 is shown to be the most important pathway for superoxide (O2) generation with a high intrinsic rate constant of 1.0×108 M−1 s−1. Both NSQ and O2 served as chain-propagating species in the autoxidation of NH2Q. Cu(II) is capable of catalyzing the oxidation of NH2Q in the presence of O2 with the oxidation also accelerated by increasing the pH. Both the uncharged (NH2Q0) and the mono-anionic (NHQ) species were found to be the kinetically active forms, reducing Cu(II) with an intrinsic rate constant of 4.0×104 and 1.2×107 M−1 s−1, respectively. The presence of O2 facilitated the catalytic role of Cu(II) by rapidly regenerating Cu(II) via continuous oxidation of Cu(I) and also by efficient removal of NSQ resulting in the generation of O2. The half-cell reduction potentials of various redox couples at neutral pH indicated good agreement between thermodynamic and kinetic considerations for various key reactions involved, further validating the proposed mechanisms involved in both the autoxidation and the copper-catalyzed oxidation of NH2Q in circumneutral pH solutions.  相似文献   

14.
Keggin type undecatungstophospho(aqua)ruthenate(II) was synthesized by the reaction of [PM12O40]3− (aq) and RuCl3 (aq) under mild conditions and characterized by various physicochemical techniques. The catalytic activity of the synthesized complex was evaluated for non-solvent liquid phase oxidation of styrene, cyclohexene and cis-cyclooctene using molecular oxygen. The synthesized complex acts as an efficient catalyst, especially for oxidation of cyclohexene. It shows very high activity for oxidation of cyclohexene in terms of conversion as well as selectivity. It gives 69% conversion with 100% selectivity for cyclohexane oxide.  相似文献   

15.
In Photosystem II (PSII) from Thermosynechococcus elongatus, high-light intensity growth conditions induce the preferential expression of the psbA3 gene over the psbA1 gene. These genes encode for the D1 protein variants labeled D1:3 and D1:1, respectively. We have compared steady state absorption and photo-induced difference spectra at < 10 K of PSII containing either D1:1 or D1:3. The following differences were observed. (i) The pheophytin Qx band was red-shifted in D1:3 (547.3 nm) compared to D1:1 (544.3 nm). (ii) The electrochromism on the PheoD1 Qx band induced by QA (the C550 shift) was more asymmetric in D1:3. (iii) The two variants differed in their responses to excitation with far red (704 nm) light. When green light was used there was little difference between the two variants. With far red light the stable (t1/2 > 50 ms) QA yield was ∼ 95% in D1:3, and ∼ 60% in D1:1, relative to green light excitation. (iv) For the D1:1 variant, the quantum efficiency of photo-induced oxidation of side-pathway donors was lower. These effects can be correlated with amino acid changes between the two D1 variants. The effects on the pheophytin Qx band can be attributed to the hydrogen bond from Glu130 in D1:3 to the 131-keto of PheoD1, which is absent for Gln130 in D1:1. The reduced yield with red light in the D1:1 variant could be associated with either the Glu130Gln change, and/or the four changes near the binding site of PD1, in particular Ser153Ala. Photo-induced QA formation with far red light is assigned to the direct optical excitation of a weakly absorbing charge transfer state of the reaction centre. We suggest that this state is blue-shifted in the D1:1 variant. A reduced efficiency for the oxidation of side-pathway donors in the D1:1 variant could be explained by a variation in the location and/or redox potential of P+.  相似文献   

16.
l-Arabinitol 4-dehydrogenase (LAD) from Hypocrea jecorina (HjLAD) was cloned and overexpressed in Escherichia coli BL21 (DE3). The kinetics of l-arabinitol oxidation by NAD+, catalyzed by HjLAD, was studied within the pH range of 7.0–9.5 at 25 °C. The turnover number (kcat) and the catalytic efficiency (kcat/Km) were 4200 min−1 and 290 mM−1 min−1, respectively. HjLAD showed the highest turnover number and catalytic efficiency among all previously characterized LADs. In further application of HjLAD, rare l-sugar l-xylulose was produced by the enzymatic oxidation of arabinitol to give a yield of approximately 86%.  相似文献   

17.
Cultures of soybean cells incorporate [5,6-3H]-l-fucose into various cellular components including lipids and proteins. The membrane glyco-proteins were digested with pronase to produce glycopeptides, and the glycopeptides were isolated on columns of Biogel P-4. The major fucoselabeled glycopeptide sized as a Hexose15-17-N-acetylglucosamine2 (GlcNAc2) on columns of Biogel P-4. Fucose incorporation was also examined in the presence of the processing inhibitor swainsonine, and the glycosylation inhibitor tunicamycin. In the presence of swainsonine, the incorporation of fucose was not reduced but the glycopeptides were smaller in size and migrated like Hexose12-13-GlcNAc2 structures. On the other hand, tunicamycin inhibited the incorporation of fucose into the glycopeptides by 70 to 80%, indicating that the l-fucose was present in N-linked oligosaccharides.  相似文献   

18.
Photosynthetic 14CO2 fixation, [14C]glycolate formation, and the decarboxylation of [1-14C]glycolate and [1-14C]glycine by leaf mesophyll protoplasts isolated from isogenic diploid and tetraploid cultivars of ryegrass (Lolium perenne L.) were examined. The per cent O2 inhibition of photosynthesis in protoplasts from the tetraploid cultivar was less than that of the diploid line at both 21 and 49% O2. Kinetic studies revealed that the Km (CO2) for photosynthesis by the diploid protoplasts was about twice that of the tetraploid line. In contrast, the Ki (O2) for protoplast photosynthesis was similar in both cultivars, as was the potential for oxidizing glycolate and glycine to CO2 via the photorespiratory carbon oxidation cycle. Although the maximal rates of glycolate accumulation by the isolated protoplasts in the presence of 21% O2 and a glycolate oxidase inhibitor were similar in the two cultivars, the percentage of total fixed 14C entering the [14C]glycolate pool and the ratio of the rate of [14C]glycolate formation to 14CO2 fixation at 21% O2 and low pCO2 were about two times greater in protoplasts and intact chloroplasts isolated from the diploid line compared to the tetraploid. These results fully support the recent observation that a doubling of ploidy in various ryegrass cultivars reduced the Km (CO2) of purified ribulose bisphosphate carboxylase-oxygenase by about one-half without affecting the Ki (O2) (Garrett 1978 Nature 274: 913-915).  相似文献   

19.
The effect of various proline analogs on proline oxidation in mitochondria isolated from etiolated barley (Hordeum vulgare) shoots was investigated. Of the analogs tested, only l-thiazolidine-4-carboxylic acid (T4C) was an effective inhibitor. T4C (1 millimolar) inhibited proline (10 millimolar) -dependent 02 uptake an average of 67%. T4C was also oxidized to some degree (12.9 nanoatoms oxygen per minute per milligram protein for 10 millimolar). The effect of T4C on the oxidation of other mitochondrial substrates was also tested. T4C inhibited 1-pyrrolidine-5-carboxylic acid-dependent oxygen uptake slightly (13%), the oxidation of malate plus pyruvate even less (6%), and stimulated the oxidation of succinate (+11%), exogenous NADH (+19%), and citrate (+20%). Thus, inhibition by T4C in mitochondria is relatively specific to proline oxidation. T4C was found to inhibit proline dehydrogenase and not the transport of proline into the matrix.  相似文献   

20.
A galactofuranosyl-containing glycopeptide has been isolated from mycelium ofAscobolus furfuraceus by extraction with water. The glycoconjugate was purified by DEAE-cellulose chromatography followed by gel filtration. A molecular weight of about 20 000 was determined by the latter method using standard dextrans. Neutral sugars accounted for 94.5% of the glycopeptide and were characterized as mannose, galactose, and glucose. Glucosamine was estimated colorimetrically (1.8%). The molar ratio of Man:Gal:Glc:GlcNH2 was 68:32:16:2. A trace amount of total phosphorus (0.2%) was found. The predominant amino acids were threonine and serine. The peptide moiety was labeled with [14C]formaldehyde and the elution of radioactivity was coincident with sugar on gel filtration in the presence of sodium dodecyl sulfate. The peak of radioactivity was retarded on release of galactose by mild acid hydrolysis. These results confirm the sugar-peptide linkage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号