首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
The total synthesis of bis(diacyloxypropyl)phosphinate is described. The required 1,2-dipalmitoyloxypropyl phosphonic acid dimethyl ester was prepared by an Arbusov reaction (Arbusov, J. Russ. Phys. Chem. Soc., 38 (1906) 687–718) of 1,2-dipalmitoylglycerol bromohydrin and trimethyl phosphite; the final product was obtained by heating 1,2-dipalmitoyloxypropyl phosphonic acid dimethyl ester with 1,2-diacylglycerol bromohydrin to 175°C for 72 h. The resulting synthetic product was characterised by elemental analysis, phosphonophosphorus determinations and IR spectroscopy.  相似文献   

2.
3.
13C-NMR and permeability studies are described for sonicated vesicles of phosphatidylcholines bearing two 16-carbon saturated hydrocarbon chains with (a) one ether linkage at carbon 1 (3) or 2 of glycerol and one ester linkage at carbon 2 or 1 (3) of glycerol; (b) two ether linkages and (c) two ester linkages at carbons 1 (3) and 2 of glycerol. The results of 13C-NMR relaxation enhancement measurements using cholesterol enriched with 13C at the 4 position indicate that no significant relocation of the cholesterol molecules takes place in the bilayer when a methylene group is substituted for a carbonyl group in phosphatidylcholine. The 4-13C atom of cholesterol undergoes similar fast anisotropic motions in diester- and diether-phosphatidylcholine bilayers, as judged by spin-lattice relaxation time measurements in the liquid-crystalline phase; although the fast motions are unaltered, linewidth and spin-spin relaxation time measurements suggested some restriction of the slow motions of cholesterol molecules in bilayers from phosphatidylcholines containing an O-alkyl linkage at the sn-2 position instead of an acyl linkage. At temperatures above the gel to liquid-crystal phase transition, the kinetics of ionophore A23187-mediated 45Ca2+ efflux from vesicles prepared from each type of phosphatidylcholine molecule were the same; the kinetics of spontaneous carboxyfluorescein diffusion from diester- and diether-phosphatidylcholine vesicles were the same, whereas mixed ether/ester phosphatidylcholine molecules gave bilayers which are less permeable. The rate constants were reduced on cholesterol incorporation into the bilayers of each type of phosphatidylcholine molecule. The reductions were not statistically significant for 45Ca2+ release. The rate constants for carboxyfluorescein release were also reduced by cholesterol to the same extent in vesicles from diester-, diether-, and 1-ether-2-ester-phosphatidylcholines; however, a smaller reduction was noted in bilayers from the 1-ester-2-ether analog. These results provide further evidence that there are no highly specific requirements for ester or ether linkages in phosphatidylcholine for cholesterol to reduce bilayer permeability. This is a reflection of the fact that in both diester- and diether-phosphatidylcholine bilayers, the 4-13C atom of cholesterol is located in the region of the acyl carboxyl group or the glyceryl ether oxygen atom.  相似文献   

4.
The molecular species of 1,2-diacylglycerol in control and agonist-stimulated rat hepatocytes were analyzed by high performance liquid chromatography. Twelve species were identified which were increased nonuniformly by 100 nM vasopressin. Most species were increased 2-3-fold, but some (C16:0/C20:4 and C18:0/C20:4) were increased 3-6-fold. Selectively greater increases in the latter two species were also induced by ATP, angiotensin II, and A23187 ionophore, however, phorbol ester caused uniform increases. Calcium depletion of the cells with chelator resulted in a uniform 2-fold effect of vasopressin on 1,2-diacylglycerol species, with greater increases in C16:0/C20:4 and C18:0/C20:4 being restored by Ca2+ readdition. Comparison of the increases in 1,2-diacylglycerol species caused by the Ca2+-mediated agents with the molecular species present in rat hepatocyte phospholipids supports the concept that phosphatidylcholine is a major source of the 1,2-diacylglycerol that accumulates. In hepatocytes incubated for 5 min to 2 h with 1-O-[3H]alkyl-2-lyso-sn-glycero-3-phosphocholine, the label was incorporated mainly into phosphatidylcholine, and subsequent incubation with vasopressin, angiotensin II, ATP, epinephrine, A23187, and phorbol ester caused formation of [3H]alkyl-acylglycerol, but not [3H]alkyl-phosphatidic acid. The time course and concentration dependence of the vasopressin effect were similar to those reported previously for total 1,2-diacylglycerol (Bocckino, S. B., Blackmore, P. F., and Exton, J. H. (1985) J. Biol. Chem. 260, 14201-14207). Calcium depletion induced by chelator inhibited the effect of vasopressin, and readdition of Ca2+ largely restored the effect. In cells incubated with [14C]lyso-phosphatidylcholine, [3H]phosphatidylcholine, or [14C]phosphatidylethanolamine for 5 or 30 min to label hepatocyte phosphatidylcholine, vasopressin also induced the formation of labeled 1,2-diacylglycerol, but not phosphatidic acid. In contrast, in hepatocytes prepared from rats injected intraportally with [3H]alkyl-lyso-glycerophosphocholine 20 h previously, the hormone induced the rapid formation of both labeled 1,2-diacylglycerol and phosphatidic acid. In summary, these isotopic data indicate that a rapidly labeled pool of phosphatidylcholine is hydrolyzed to 1,2-diacylglycerol and a slowly labeled pool is broken down to both 1,2-diacylglycerol and phosphatidic acid in hepatocytes stimulated by Ca2+-mobilizing agents. It is concluded from both the analyses of molecular species of 1,2-diacylglycerol and the labeling experiments that phosphatidylcholine is a major source of the 1,2-diacylglycerol that accumulates in hepatocytes stimulated with Ca2+-mobilizing agonists and that the mechanisms responsible may involve both Ca2+ and protein kinase C.  相似文献   

5.
A system was designed for chemiluminescent measurement of lipid hydroperoxides by their site-specific reaction in sodium dodecylsulfate micelles. Ferrous ion-induced decomposition of lipid hydroperoxides in the sodium dodecylsulfate micelles resulted in strong chemiluminescence of the Cypridina luciferin analog, 2-methyl-6-phenyl-3,7-dihydroimidazo[1,2-alpha]pyrazin-3-one (CLA). After addition of ferrous sulfate to the micelles containing lipid hydroperoxide and luciferin, the chemiluminescence intensity reached a maximum rapidly and then decreased. The sequence of this reaction was elucidated by theoretical analysis, which demonstrated that the maximum chemiluminescence intensity is proportional to the initial concentration of hydroperoxide. Good linear relationships were observed between the maximum counts of chemiluminescence and the amounts of hydroperoxides of linoleic acid, phosphatidylcholine, choresterol (5 alpha), cumene and tert-butyl and hydrogen peroxide. This chemiluminescence method was simple and sensitive enough to detect picomole levels of linoleic acid and phosphatidylcholine hydroperoxides.  相似文献   

6.
The acid-catalyzed isomerization of the diglyceride analog (1,2,3/0)-1,2-dipalmitoylcyclopentane-1,2,3-triol has been used to generate syn-syn-1,3-diacyl-cyclopentane-1,2,3-triol, a required intermediate in the synthesis of a symmetrical all-cis-1,2,3/0-2P cyclopentanoid phosphatidic acid analog. The all-cis cyclo-phosphatidic acid analog has therefore been obtained in the free acid form and as the diphenyl ester, dimethyl ester, and dipotassium salt derivatives. The compounds have been characterized by microanalysis and spectroscopic methods. The 1,2,3/0-2P analog is now available for comparative studies with the corresponding all-trans cyclophosphatidic acid (1,3/2-2P).  相似文献   

7.
Previous vibrational spectroscopic studies of solid acyl-alkyl and diacyl phosphatidylcholines suggested that the sn1- and sn2-carbonyl stretching modes of 1,2-diacylglycerolipids have different absorption maxima. To address the assignment of sn1- and sn2-carbonyl stretching modes of hydrated 1,2-diacylglycerolipids, aqueous dispersions of 1-palmitoyl-2-hexadecyl phosphatidylcholine (PHPC), 1-hexadecyl-2-palmitoyl phosphatidylcholine (HPPC), 1,2-dipalmitoylphosphatidylcholine (DPPC), as well as hydrated samples of unlabeled, sn1-13C=O-labeled, sn2-13C=O-labeled, and doubly 13C=O-labeled dimyristoylphosphatidylcholine (DMPC) were examined by Fourier transform infrared spectroscopy. The ester carbonyl stretching (nu C=O) bands of HPPC and PHPC each exhibit maxima near 1726 cm-1 and appear to be a summation of three subcomponents with maxima near 1740 cm-1, 1725 and 1705-1711 cm-1. In contrast, the nu C=O band of DPPC exhibits its maximum near 1733 cm-1 and appears to be a summation of two components centered near 1742 and 1727 cm-1. Thus the ester carbonyl group of the acyl-alkyl PCs appears to reside in a more polar environment than the ester carbonyl groups of their diacyl analogue. This observation implies that the polar/apolar interfaces of hydrated bilayers formed by PHPC and by HPPC are significantly different from that of DPPC and raises the question of whether the acyl-alkyl PCs are suitable models of their diacyl analogue. The absorption maximum of the nu C=O band of the doubly 13C=O-labeled DMPC occurs near 1691 cm-1 and those of its subcomponents occur near 1699 and 1685 cm-1.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
Intermediates in the formation of the chlorophyll isocyclic ring   总被引:8,自引:1,他引:7       下载免费PDF全文
Cell-free, organelle-free synthesis of Mg-2,4-divinylpheoporphyrin a5 (MgDVP) from Mg-protoporphyrin IX monomethyl ester (Mg-Proto Me) has been described (Wong and Castelfranco 1984 Plant Physiol 75: 658-661). This system consists of plastid membrane and stromal fractions and requires O2, NAD(P)H and S-adenosylmethionine (SAM). The synthetic 6-methyl-β-ketopropionate analog of Mg-Proto Me was converted to MgDVP by the same catalytic system in the presence of O2 and NADPH. SAM was not required. A compound (X) displaying the kinetic behavior of an intermediate was isolated from reaction mixtures with Mg-Proto Me as the substrate, but not with the 6-methyl-β-ketopropionate analog as the substrate. X was identified as the 6-methyl-β-hydroxypropionate analog of Mg-Proto Me by conversion to the dimethyl ester with CH2N2 and comparison with authentic 6-β-hydroxydimethyl ester. X was converted to MgDVP by the same catalytic system in the presence of O2 and NADPH. We conclude that the conversion of Mg-Proto Me to MgDVP proceeds through the 6-β-hydroxy and the 6-β-ketopropionate esters in agreement with earlier suggestions.  相似文献   

9.
Previous studies showed that phorbol esters and thyrotropin-releasing hormone (TRH) stimulated phosphatidylcholine synthesis via protein kinase C in GH3 pituitary cells [Kolesnick (1987) J. Biol. Chem. 262, 14525-14530]. In contrast, 1,2-diacylglycerol-stimulated phosphatidylcholine synthesis appeared independent of protein kinase C. The present studies compare phosphatidylcholine synthesis stimulated by these agents with inhibition via the cyclic AMP system. The potent phorbol ester phorbol 12-myristate 13-acetate (PMA, 10 nM) increased [32P]Pi incorporation into phosphatidylcholine at 30 min to 159 +/- 6% of control. The adenylate cyclase activator cholera toxin (CT; 10 nM) and the cyclic AMP analogue dibutyryl cyclic AMP (1 mM) abolished this effect. CT similarly abolished TRH-induced phosphatidylcholine, but not phosphatidylinositol, synthesis. This is the first report of inhibiton of receptor-mediated phosphatidylcholine synthesis by the cyclic AMP system. The 1,2-diacylglycerol 1,2-dioctanoylglycerol (diC8) also stimulated concentration-dependent phosphatidylcholine synthesis. DiC8 (3 micrograms/ml) induced an effect quantitatively similar to that of maximal concentrations of PMA and TRH, whereas a maximal diC8 concentration (30 micrograms/ml) stimulated an effect 3-4-fold greater than these other agents. CT decreased the effect of diC8 (3 micrograms/ml) by 80%. Higher diC8 concentrations overcame the CT inhibition. Similar results were obtained with dibutyryl cyclic AMP. Additional differences were found between low and high concentrations of diC8. Low concentrations of diC8 failed to induce additive phosphatidylcholine synthesis with maximal concentrations of PMA, whereas high concentrations were additive. Hence, low concentrations of 1,2-diacylglycerols appear to be regulated similarly to phorbol esters, and higher concentrations appear to act via a pathway unavailable to phorbol esters.  相似文献   

10.
Post-translational modification of peptidyl tyrosine to peptidyl dopa is widely observed in different marine organisms. While peptidyl dopas are oxidatively converted to dehydrodopa derivatives, nothing is known about the further fate of dehydrodopyl compounds. To fill this void, we studied the oxidation chemistry of a peptidyl dehydrodopa mimic, 1,2-dehydro-N-acetyldopa methyl ester with mushroom tyrosinase. We employed both routine biochemical studies and reversed phase liquid chromatography mass spectrometry to investigate the course of the reaction. Tyrosinase catalyzed the oxidation of 1,2-dehydro-N-acetyldopa methyl ester readily generating its typical o-quinone as the transient two-electron oxidation product. This quinone was extremely unstable and rapidly reacted with the parent compound forming benzodioxan type oligomeric products. Reaction mixture containing chemically made o-benzoquinone and 1,2-dehydro-N-acetyldopa methyl ester generated a mixed adduct of benzoquinone and 1,2-dehydro-N-acetyldopa methyl ester. Based on this finding, we propose that peptidyl dehydrodopa also exhibits a similar transformation accounting partially for the adhesive and cementing properties of dopyl proteins in nature.  相似文献   

11.
Rat plasma lecithin:cholesterol acyltransferase, a 68 kDa glycoprotein, has been purified 14000-fold by a modification of a procedure used for the human enzyme. The activity of lecithin : cholesteryl acyltransferase in human and rat plasma are the same, although activation of both enzymes by human apolipoprotein A-I is greater than that produced by rat apolipoprotein A-I. Using reassembled high-density lipoproteins composed of human apolipoprotein A-I, phosphatidylcholine ethers and a series of different phosphatidylcholines, the separate effects of molecular species specificity and microenvironment on the rate of cholesteryl ester formation was determined. Substitution of a fluid lipid, 1-palmityl-2-oleyl-sn-glvcero-3-phosphonlcholine. for a solid lipid, 1,2-dipalmityl-sn-glycero-3-phosphorylcholine, produced an 8-fold increase in the activity of all molecular species of phosphatidylcholine. With either solid or fluid lipid environments, the activity decreased as a function of increasing chain length of saturated acyl groups. Addition of one or more double bonds greatly increased the activity of a given saturated homologue. One major difference between the molecular specificity of rat and human lecithin:cholesteryl acyltransferase was that the latter had a two-fold preference for phosphatidylcholines containing arachidonate at the sn-2-position.  相似文献   

12.
Daptomycin, a cyclic lipodepsipeptide antibiotic, has been used clinically since 2003 to treat serious infections caused by Gram-positive bacteria. Although 37?years have passed since daptomycin’s discovery, its mechanism of action is still debated. In this report, the effect of replacing the ester bond with an amide bond, and overall stereochemistry, on daptomycin’s biological activity was examined. Two peptides were prepared in which the threonine4 residue in the active daptomycin analog, Dap-K6-E12-W13, was replaced with (2S,3R)-diaminobutyric acid ((2S,3R)-DABA) or its epimer (2S,3S-DABA) converting the ring-closing ester bond to an amide bond. Both of these peptides were found to be considerably less active than Dap-K6-E12-W13. These results, along with our previous studies on other daptomycin analogs, enabled us to conclude that the ester bond is crucial to daptomycin’s activity. ent-Dap-K6-E12-W13 was found to be at least 133-fold less active than Dap-K6-E12-W13, indicating that a chiral interaction with a chiral target is essential to daptomycin’s activity. Studies examining the binding of Dap-K6-E12-W13 and ent-Dap-K6-E12-W13 to model liposomes consisting of phosphatidylglycerol (PG) and phosphatidylcholine suggest that the stereochemistry of PG plays a crucial role in daptomycin-membrane interactions.  相似文献   

13.
The conformation of the glycerophosphocholine (GPC) group of various 1,2-di-O-alkyl and 1,2-diacylglycerophosphocholines forming small micelles or single-bilayer vesicles in H2O has been studed by NMR in the absence and presence of lanthanide ions. In the absence of lanthanides the motionally averaged polar group conformation of 1,2-di-O-alkylglycerophosphocholine (dialkyl-GPC) is similar to that of the diacyl compound. The replacement of the ester linkages in diacyl phosphatidylcholine by ether bonds has therefore no significant effect on the conformation and segmental motion of the glycerophosphocholine group. This conformation is found to be independent of the state of aggregation, i.e., the main features are the same below and above the critical micellar concentration (CMC). The determining factor must therefore be the intramolecular energetics. Within the experimental accuracy the conformation of dialkyl-GPC in the presence of lanthanide ions is also the same as that of the corresponding diacyl compound. Furthermore, in the presence of lanthanides the polar group conformation of dialkyl-GPC is the same within experimental accuracy in small micelles and single bilayer vesicles. The conformational change induced by lanthanides leads to a reorientation of the OPN dipole. In the presence of lanthanides the OPN dipole increases its angle of tilt with respect to the bilayer plane from about 0° (coplanar orientation) to an average inclinication of about 45°. This gives rise to a more extended disposition of the polar group with respect to the bilayer normal.  相似文献   

14.
The biosynthesis of phosphatidylcholine (PC) in platelets was followed by measuring the incorporation of 32Pi. Incorporation into PC was stimulated by treatment with Clostridium perfringens phospholipase C or with the synthetic diacylglycerol sn-1,2-dioctanoylglycerol. However, neither the phorbol ester tumour promoter 12-O-tetradecanoylphorbol-13-acetate or thrombin stimulated 32Pi incorporation into PC. We conclude that phorbol ester does not stimulate the hydrolysis of PC to diacylglycerol in platelets.  相似文献   

15.
The effect of phospholipase C treatment on cardiolipin biosynthesis was investigated in intact H9c2 cardiac myoblasts. Treatment of cells with phosphatidylcholine-specific Clostridium welchii phospholipase C reduced the pool size of phosphatidylcholine compared with controls whereas the pool size of cardiolipin and phosphatidylglycerol were unaffected. Pulse labeling experiments with [1,3-3H]glycerol and pulse-chase labeling experiments with [1,3-3H]glycerol were performed in cells incubated or pre-incubated in the absence or presence of phospholipase C. In all experiments, radioactivity incorporated into cardiolipin and phosphatidylglycerol were reduced in phospholipase C-treated cells with time compared with controls indicating attenuated de novo biosynthesis of these phospholipids. Addition of 1,2-dioctanoyl-sn-glycerol, a cell permeable 1,2-diacyl-sn-glycerol analog, to cells mimicked the inhibitory effect of phospholipase C on cardiolipin and phosphatidylglycerol biosynthesis from [1,3-3H]glycerol indicating the involvement of 1,2-diacyl-sn-glycerol. The mechanism for the reduction in cardiolipin and phosphatidylglycerol biosynthesis in phospholipase C-treated cells appeared to be a decrease in the activities of phosphatidic acid:cytidine-5triphosphate cytidylyltransferase and phosphatidylglycerolphosphate synthase, mediated by elevated 1,2-diacyl-sn-glycerol levels. Upon removal of phospholipase C from the incubation medium, phosphatidylcholine biosynthesis from [methyl-3H]choline was markedly stimulated. These data suggest that de novo phosphatidylglycerol and cardiolipin biosynthesis may be regulated by 1,2-diacyl-sn-glycerol and support the notion that phosphatidylglycerol and cardiolipin biosynthesis may be coordinated with phosphatidylcholine biosynthesis in H9c2 cardiac myoblast cells.  相似文献   

16.
13C-NMR and permeability studies are described for sonicated vesicles of phosphatidylcholines bearing two 16-carbon saturated hydrocarbon chains with (a) one ether linkage at carbon 1 (3) or 2 of glycerol and one ester linkage at carbon 2 or 1 (3) of glycerol; (b) two ether linkages and (c) two ester linkages at carbons 1 (3) and 2 of glycerol. The results of 13C-NMR relaxation enhancement measurements using cholesterol enriched with 13C at the 4 position indicate that no significant relocation of the cholesterol molecules takes place in the bilayer when a methylene group is substituted for a carbonyl group in phosphatidylcholine. The 4-13C atom of cholesterol undergoes similar fast anisotropic motions in diester- and diether -phosphatidylcholine bilayers, as judged by spin-lattice relaxation time measurements in the liquid-crystalline phase; although the fast motions are unaltered, linewidth and spin-spin relaxation time measurements suggested some restriction of the slow motions of cholesterol molecules in bilayers from phosphatidylcholines containing an O-alkyl linkage at the sn-2 position instead of an acyl linkage. At temperatures above the gel to liquid-crystal phase transition, the kinetics of ionophore A23187-mediated 45Ca2+ efflux from vesicles prepared from each type of phosphatidylcholine molecule were the same; the kinetics of spontaneous carboxyfluorescein diffusion from diester- and diether -phosphatidylcholine vesicles were the same, whereas mixed ether/ester phosphatidylcholine molecules gave bilayers which are less permeable. The rate constants were reduced on cholesterol incorporation into the bilayers of each type of phosphatidylcholine molecule. The reductions were not statistically significant for 45Ca2+ release. The rate constants for carboxyfluorescein release were also reduced by cholesterol to the same extent in vesicles from diester-, diether -, and 1-ether, and 1-ether-2-ester-phosphatidylcholines; however, a smaller reduction was noted in bilayers from the 1-ester-2-ether analog. The results provide further evidence that there are no highly specific requirements for ester or ether linkages in phosphatidylcholine for cholesterol to reduce bilayer permeability. This is a reflection of the fact that in both diester- and diether -phosphatidylcholine bilayers, the 4-13C atom of cholesterol is located in the region of the acyl carboxyl group or the glyceryl ether oxygen atom.  相似文献   

17.
Imidazo[1,2a]pyridines have gained much interest in the field of medicinal chemistry research. In the aim of accessing new privileged structure, we decided to design and synthesize 8-aminated-imidazo[1,2a]pyridines substituted on positions 2 and 6. This scaffold, rarely found in the literature, was obtained via palladium-catalyzed coupling reactions (Suzuki reaction or N-hydroxysuccinimidyl activated ester method) and tested on adenosine receptor A2A. We demonstrated how incorporation of an exocyclic amine enhanced affinity towards this receptor while maintaining low cytotoxicity.  相似文献   

18.
The effects of lipids on membrane proteins are likely to be complex and unique for each membrane protein. Here we studied different detergent/phosphatidylcholine reconstitution media and tested their effects on plasma membrane Ca2+ pump (PMCA). We found that Ca2+-ATPase activity shows a biphasic behavior with respect to the detergent/phosphatidylcholine ratio. Moreover, the maximal Ca2+-ATPase activity largely depends on the length and the unsaturation degree of the hydrocarbon chain. Using static light scattering and fluorescence correlation spectroscopy, we monitored the changes in hydrodynamic radius of detergent/phosphatidylcholine particles during the micelle-vesicle transition. We found that, when PMCA is reconstituted in mixed micelles, neutral phospholipids increase the enzyme turnover. The biophysical changes associated with the transition from mixed micelles to bicelles increase the time of residence of the phosphorylated intermediate (EP), decreasing the enzyme turnover. Molecular dynamics simulations analysis of the interactions between PMCA and the phospholipid bilayer in which it is embedded show that in the 1,2-dioleoyl-sn-glycero-3-phosphocholine bilayer, charged residues of the protein are trapped in the hydrophobic core. Conversely, in the 1,2-dimyristoyl-sn-glycero-3-phosphocholine bilayer, the overall hydrophobic-hydrophilic requirements of the protein surface are fulfilled the best, reducing the thermodynamic cost of exposing charged residues to the hydrophobic core. The apparent mismatch produced by a 1,2-dioleoyl-sn-glycero-3-phosphocholine thicker bilayer could be a structural foundation to explain its functional effect on PMCA.  相似文献   

19.
The synthesis of a new fluorescent cholesterol analog is described. The analog contains a cholesterol nucleus attached via a hydrophilic spacer to N-4-nitrobenzo-2-oxa-1,3-diazole. Since the cholesterol moiety is not perturbed this molecule probably interacts with lipid bilayers in much the same way as cholesterol itself does. The compound can be readily incorporated into small unilamellar vesicles by sonicating a mixture of it with egg yolk phosphatidylcholine in a buffer. Furthermore, the analog can be incorporated into preformed membranes either by exchange from vesicles containing the analog or by uptake from sonicated micelles of the analog. Thus this analog shows potential as a useful tool for studying the interactions of cholesterol with cell membranes.  相似文献   

20.
In the presence of CMP, cholinephosphotransferase of mouse lung microsomes catalyzes the conversion of endogenous phosphatidylcholines into 1,2-diacyl-sn-glycerols and CDPcholine. 2. In this conversion cholinephosphotransferase shows a distinct preference for those molecular species of phosphatidylcholine which contain an unsaturated fatty acid. The enzyme hardly utilizes endogenous depalmitoylglycerophosphocholine as a substrate. 3. Membrane-bound 1,2-diacyl-sn-glycerols were also prepared by treatment of mouse lung microsomes with a pure phospholipase C from Bacillus cereus. These 1,2-diacyl-sn-glycerols were subsequently utilized as substrate by cholinephosphotransferase in the formation of phosphatidylcholine. In the latter reaction, cholinephosphotransferase exhibited a pronounced preference for unsaturated 1,2-diacyl-sn-glycerols and hardly utilized the endogenous 1,2-depalmitoyl-sn-glycerol. 4. The low affinity of cholinephosphotransferase for either dipalmitoylglycerophosphocholine or 1,2-dip  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号