首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Thiodisaccharides having β-d-Galf or α-l-Araf units as non-reducing end have been synthesized by the SnCl4- or MoO2Cl2-promoted thioglycosylation of per-O-benzoyl-d-galactofuranose (1), its 1-O-acetyl analogue 4, or per-O-acetyl-α-l-arabinofuranose (16) with 6-thioglucose or 6-thiogalactose derivatives. After convenient removal of the protecting groups, the free thiodisaccharides having the basic structure β-d-Galf(1→6)-6-thio-α-d-Glcp-OMe (5) or β-d-Galf(1→6)-6-thio-α-d-Galp-OMe (15) were obtained. The respective α-l-Araf analogues 18 and 20 were prepared similarly from 16. Alternatively, β-d-Galf(1→4)-4-thio-3-deoxy-α-l-Xylp-OiPr was synthesized by Michael addition to a sugar enone of 1-thio-β-d-Galf derivative, generated in situ from the glycosyl isothiourea derivative of 1. The free S-linked disaccharides were evaluated as inhibitors of the β-galactofuranosidase from Penicillium fellutanum, being 15 and 20 the more active inhibitors against this enzyme.  相似文献   

2.
The plant gum isolated from sap of the lac tree, Rhus vernicifera (China), was separated into two fractions having mol. wt. 84,000 and 27,700 by aqueous-phase gel-permeation chromatography. The fractions contain d-galactose (65 mol%), 4-O-methyl-d-glucuronic acid (24 mol%), d-glucuronic acid (3 mol%), l-arabinose (4 mol%), and l-rhamnose (3 mol%). Smith degradation of the carboxyl-reduced polysaccharides gives products of halved molecular weight, and these consist of a β-(1→3)-linked galactopyranan main chain and side chains made up of galactopyranose residues. Peripheral groups, such as α-d-Galp-, α-d-Galp-(1→6)-β-d-Galp-, 4-O-methyl-β-d-GlcpA-, and 4-O-methyl-β-d-GlcpA-(1→6)-β-d-Galp-, are attached to this interior core through β-(1→3)- or β-(1→6)-linkages.  相似文献   

3.
《Carbohydrate research》1986,150(1):241-263
The asparagine-linked sugar chains of human milk galactosyltansferase were quantitatively released as oligosaccharides from the polypeptide backbone by hydrazinolysis. They were converted into radioactive oligosaccharides by sodium borotritiate reduction after N-acetylation, and fractionated by paper electrophoresis and by Bio-Gel P-4 column chromatography after sialidase treatment. Structural studies of each oligosaccharides by sequential exoglycosidase digestion and methylation analysis indicated that the galactosyltransferase contains bi, tri-, and probably tetra-antennary, complex-type oligosaccharides having α-d-Manp-(1→3)-[α-d-Manp-(1→6)]-β-d-Manp-(1→4)-β-d-GlcpNAc-(1→4)-α-d-[Fucp-(1→6)]-d- GlcNAc as their common core. Variation is produced by the different locations and numbers of the five different outer chains: β-d-Galp-(1→4)-d-GlcNAc, α-l-Fucp-(1→3)-[β-d-Galp-(1→4)]-d-GlcNAc, α-NeuAc-(2→6)-β-d-Galp-(1→4)-d-GlcNAc, α-l-Fucp-(1→3)-[β-d-Galp-(1→4)]-β-d-GlcpNAc-(1→3)-β-d-Galp-(1→4)-[α-l-Fucp-(1→3)]-d- GlcNAc, and α-NeuAc-(2→6)-β-d-Galp-(1→4)-β-d-GlcpNAc-(1→3)-β-d-Galp-(1→4)-[α-l-Fucp-(1→3)-β-d-GlcNAc.  相似文献   

4.
The trisaccharides β-d-Galf-(1→2)-β-d-Galf-(1→4)-d-GlcNAc (5) and β-d-Galp-(1→2)-β-d-Galf-(1→4)-d-GlcNAc (6) constitute novel structures isolated as alditols when released by reductive β-elimination from mucins of Trypanosoma cruzi (Tulahuen strain). Trisaccharides 5 and 6 were synthesized employing the aldonolactone approach. Thus, a convenient d-galactono-1,4-lactone derivative was used for the introduction of the internal galactofuranose and the trichloroacetimidate method was employed for glycosylation reactions. Due to the lack of anchimeric assistance on O-2 of the galactofuranosyl precursor, glycosylation studies were performed under different conditions. The nature of the solvent strongly determined the stereochemical course of the glycosylation reactions when the galactofuranosyl donor was substituted either by 2-O-Galp or 2-O-Galf.  相似文献   

5.
Galactomannans were isolated fromCladonia signata,C. furcata,C. imperialis, andC. clathratavia successive alkaline extraction and precipitation with Fehling solution and Cetavlon. They were investigated using13C-NMR spectroscopy, methylation analysis, and Smith degradation, and their specific rotations and monosaccharide compositions determined. As with galactomannans of otherCladoniaspecies, they contained (1→6)-linked main chains of α-mannopyranose, which were non-substituted (structure4in Fig. 2), mono-substituted at O-2 with α-mannopyranose (structure6) or α-galactopyranose (structure1), O-4 with β-galactopyranose (structure2), and disubstituted at O-2 and O-4 with α-mannopyranosyl and β-galactopyranosyl units, respectively (structure5). Disubstitution was present to a greater extent in the galactomannans ofC. clathrataandC. imperialisthan in those ofC. signataandC. furcata. In the case of the galactomannans ofC. furcata,C. clathrata, andC. imperialis, substitution also occurred at O-2 withO-β-galactofuranosyl-(1→6)-O-α-mannopyranosyl units (structure7). As observed in previous investigations, the C-1 portion of the13C-NMR of mannose-containing polysaccharides is typical of the lichen species. However, those of galactomannans ofC. imperialisandC. clathrataare almost identical and, although other chemical data showed many structures in common, some differences were evident.  相似文献   

6.
Periodate oxidation of LPG-1 established that N-acetylneuraminic acid residues are linked preponderantly α-(2→3) to D-galactose residues. The resistance of 2-acetamido-2-deoxyD-galactose residues to periodate oxidation suggests that they are linked at either O-3 or O-4 to D-galactose residues. After treatment of LPG-I with alkaline sulfite, ≈80% of 2-acetamido-2-deoxygalactose was recovered as the sulfonic acid derivative. The Gal→GalNAc disaccharide released from sialic-acid-free LPG-I by digestion with endo-2-acetamido-2-deoxy-α-D-galactosidase (which suggests an α-D-GalNAc→-L-Ser or -L-Thr linkage) gave a high color-yield in the Morgan—Elson reaction, indicating that 2-acetamido-2-deoxy-D-galactose residues are linked at C-3 to D-galactose residues. The migration of the released Gal-GalNAc disaccharide was the same as that of a standard sample of O-β-D-galactosyl-(1→3)-2-acetamido-2-deoxy-D-galactose. Treatment of sialic acid-free LPG-I with Streptococcus pneumoniae β-D-galactosidase, which hydrolyzes only galactosides linked β-D-(1→4) gave no free D-galactose, whereas treatment of LPG-I with bovine testes β-D-galactosidase released > 90% of D-galactose. These results provide evidence for β-D-Galp-(1→3)-α-D-GalNAcp-(1→3)-L-Ser or -L-Thr and α-NeuAc-(2→3)-β-D-Galp-(1→3)-α-D- GalNAcp-(1→3)-L-Ser or -L-Thr structures. The sensitivity of the methods used and the recovery of constituents following treatment of LPG-I do not rule out the occurrence of small amounts of other tri- or tetra-saccharide chains.  相似文献   

7.
The major structural component of the mycobacterial cell wall, the mycolyl–arabinogalactan–peptidoglycan complex, possesses a galactan core composed of approximately 30 galactofuranosyl (Galf) resides attached via alternating β-(1→6) and β-(1→5) linkages. Recent studies have shown that the entire galactan is synthesized by two bifunctional galactofuranosyltransferases, GlfT1 and GlfT2. We report here saturation transfer difference (STD) NMR studies GlfT2 using two trisaccharide acceptor substrates, β-d-Galf-(1→6)-β-d-Galf-(1→5)-β-d-Galf-O(CH2)7CH3 (2) and β-d-Galf-(1→5)-β-d-Galf-(1→6)-β-d-Galf-O(CH2)7CH3 (3), as well as the donor substrate for the enzyme, UDP-Galf. Epitope mapping demonstrated a greater enhancement toward the ‘reducing’ ends of both trisaccharides, and that UDP-galactofuranose (UDP-Galf) made more intimate contacts through its nucleotide moiety. This observation is consistent with the greater flexibility required within the active site of the reaction between the growing polymer acceptor and the UDP-Galf donor. The addition of UDP-Galf to either 2 or 3 in the presence of GlfT2 generated a tetrasaccharide product, indicating that the enzyme was catalytically active.  相似文献   

8.
《Carbohydrate research》1987,166(2):263-269
An arabinoxylan isolated from the bark of Cinnamomum zeylanicum was composed of l-arabinose and d-xylose in the molar ratio 1.6:1.0. Partial hydrolysis furnished oligosaccharides which were characterised as α-d-Xylp-(1→3)-d-Ara, β-dXylp-(1→4)-d-Xyl, β-d-Xylp-(1→4)-β-d-Xylp-(1→4)-d-Xyl, β-d-Xylp-(1→4)-β-d-Xylp-(1→4)-β-d-Xylp-Xylp-(1→4)-d-Xyl, xylopentaose, and xylohexaose. Mild acid hydrolysis of the arabinoxylan gave a degraded polysaccharide consisting of l-arabinose (8%) and d-xyolse (92%). Methylation analysis indicated the degraded polysaccharide to be a linear (1→4)-linked d-xlan in which some xylopyranosyl residues were substituted at O-2 or O-3 with l-arabinofuranosyl groups. These data together with the results of methylation analysis and periodate oxidation of the arabinoxylan suggested that it contained a (1→4)-linked β-d-xylan backbone in which each xylopyranosyl residue was substituted both at O-2 and O-3 with l-arabinofuranosyl, 3-O-α-d-xylopyranosyl-l-arabinofuranosyl, and 3-O-l-arabinofuranosyl-l-arabinofuranosyl groups.  相似文献   

9.
The major immunostimulatory principle in the hot aqueous extract of Chlorella pyrenoidosa has been isolated by a sequence of ethanol precipitation, precipitation with a cationic surfactant (CTAB), size exclusion chromatography, and anion exchange chromatography. A series of phosphorylated polysaccharides were obtained having different molecular masses but with similar structures. The higher molecular mass fractions showed considerable activity in the stimulation of mouse peritoneal macrophages to synthesize nitric oxide. The structure of the major polysaccharide was established by sugar analysis, configurational analysis, and 1D and 2D NMR experiments at 500 and 800 MHz on the parent polysaccharide, the de-O-acetylated polysaccharide, and on the components obtained after hydrolysis of the phosphate diesters. It had a β-d-Galp-(1→3)-β-d-Galp-(1→3)-backbone with half of the Galp units substituted at O-6 by terminal β-d-Glcp units. The remaining Galp units were substituted on O-6 by about equal amounts of α-d-Manp-1-phosphate and 3-O-Me-α-Manp-1-phosphate diesters. The substituents were not located in a regularly alternating fashion on the backbone. The O-acetyl groups were largely located on O-2 and O-4 of Galp and 35% of the Galp residues were O-acetylated. This is the second observation of a phosphorylated polysaccharide in an alga and the first where it is present to a significant extent.  相似文献   

10.
Building-block derivatives of the component monosaccharides were used to construct the tetrasaccharide glycoside 15, in which an α- d-Galp-(1→4)- d-Gal linkage replaces the α-(1→3) linkage of the human blood-group B, type 2, determinant structure. The initial coupling of 2-O-benzoyl-3,6-di-O-benzyl-4-O-(tetrahydropyran-2-yl)-α- d-galactopyranosyl chloride to allyl 2-acetamido-3,6-di-O-benzyl-2-deoxy-β- d-glucopyranoside was followed by selective deprotection of the disaccharide product, either at O-4′ (to give 8) or O-2′ (to give 3). The conversion of 8 into 15 involved successive coupling with tetra-O-benzyl-α- d-galactopyranosyl bromide ( 811), O-debenzoylation at O-2′ ( 1112), coupling with tri-O-benzyl-α- l-fucopyranosyl bromide ( 1214), and O-debenzylation by hydrogenolysis ( 1415). Alternatively, 3 was α- l-fucosylated to give 6, and 6 was selectively deprotected at O-4′ to give 7. However, attempts to α- d-galactosylate 7 were unsuccessful. The unsubstituted forms of the intermediate disaccharide ( 8) and trisaccharide ( 12) glycosides were obtained by appropriate deblocking procedures.  相似文献   

11.
Fucogalactans from edible Agaricus bisporus (RFP-Ab) and wild Lactarius rufus (RFP-Lr) mushrooms were obtained on aqueous extraction followed by purification. RFP-Ab had Mw 43.8 × 104 g mol−1 and RFP-Lr Mw 1.4 × 104 g mol−1. RFP-Lr had a (1 → 6)-linked α-d-Galp main-chain partially substituted at O-2 by nonreducing end-units of α-l-Fucp (29%). While RFP-Ab had a similar main chain, it was partially substituted at O-2 by nonreducing end-units of α-l-Fucp (2.8%) and β-d-Galp (14.5%), and partially methylated at HO-3. Both RFP-Lr and RFP-Ab were tested in mice against polymicrobial sepsis. Lethality rate, myeloperoxidase (MPO) activity and cytokine levels were determined. It was observed a reduction in late mortality rate by 62.5% and 50%, respectively, prevention of neutrophil accumulation in ileum and decreasing in TNF-α and IL-1β serum levels.  相似文献   

12.
《Carbohydrate research》1986,150(1):173-185
Several 2-O-benzoyl-4,6-di-O-benzyl-3-O-R-α-d-galactopyranosyl chlorides, designed as general precursors of β-linked, interior d-galactopyranosyl residues in oligosaccharides, were tested in a sequential synthesis of the galactotriose β-d-Galp-(1→3)-β-d-Galp-(1→3)-d-Gal (19). The chlorides having R = tetrahydro-2-pyranyl and tert-butyldimethylsilyl gave excellent results whereas those having = 3-benzoylpropionyl and chloroacetyl were unsatisfactory. An activated disaccharide block (17), having R = 2,3-di-O-benzoyl-4,6-di-O-benzyl-β-d-galactopyranosyl, was also prepared and tested as a glycosyl donor. The coupling of 17 to 1-propenyl 2-O-benzoyl-4,6-di-O-benzyl-α-d-galactopyranoside (14), in the molar ratio 1.13:1, gave 64% of a trisaccharide derivative (18) that could be converted into 19. This latter synthesis of 19 is efficient because all three galactose units are derived from 14 or its immediate precursor.  相似文献   

13.
Cell walls of each of five bacterial strains belonging to the genus Kribbella (family Nocardioidaceae, order Actinomycetales) contain a neutral polysaccharide (mannan) and teichulosonic acid of novel structure in different proportions. The novel teichulosonic acid found in strains VKM Ac-2500, VKM Ас-2568, VKM Ас-2572, and VKM Ас-2575 is a heteropolymer with an irregular structure where fragments I (predominant) alternate with fragments II (minor):The teichulosonic acid from Kribbella sp. VKM Ac-2527 has in general a structure similar to that above with the exception that the Pse residue is randomly glycosylated at O-4 with β-l-Rhap (along with α-d-Galp3OMe or α-d-Galp2,3OMe). The strain VKM Ac-2572 contained additionally teichuronic acid with the disaccharide repeating unit consisted of aminomannuronic acid and 2,3-diacetamido-2,3-dideoxy-α-glucopyranose. The mannan, a polysaccharide common to all of the strains, is built of (1→6)-linked α-d-mannopyranose substituted with α-d-mannopyranose at O-2. The structures of all the glycopolymers were established by a combination of chemical and NMR spectroscopic methods.  相似文献   

14.
《Carbohydrate research》1987,168(2):245-274
Rhamnogalacturonan I is a pectic polysaccharide that is solubilized from the walls of suspension-cultured sycamore cells (Acer pseudoplatanus) by the action of a highly purified endo-1,4-α-polygalacturonanase. Rhamnogalacturonan I has a linear backbone consisting of the diglycosyl repeating unit, →4)-α-d-GalpA-(1→2)-α-l-Rhap-(1→. Approximately half of the α-l-rhamnosyl residues of the backbone are branched at O-4. Selective cleavage at the galactosyluronic acid residues of the backbone by treatment of rhamnogalacturonan I wit lithium in ethylenediamine resulted in the release of the neutral glycosyl-residue sidechains that had been attached to the backbone. Various analytical techniques, including combined liquid chromatography-mass spectrometry, combined gas-liquid chromatography-mass spectrometry, and 1H-nuclear magnetic resonance spectroscopy, were used to determine the structure of the side chains. The majority of the sidechains were isolated as oligoglycosylalditols, with rhamnitol at the “reducing” end. Terminal 2-, 4-, or 6-linked galactosyl residues were found attached to O-4 of the rhamnitol residues The 2-, 4-, and 6-linked galactosyl residues had terminal or 2-linked arabinosyl, or additional galactosyl, residues attached to them. Based on the results of fast-atom-bombardment mass spectrometry, the side chains were found to range in size from one to fourteen glycosyl residues. The side-chain structures suggest that there are four or more distinct families of side chains attached to the backbone of rhamnogalacturonan I.  相似文献   

15.
A new (1→6)-linked thiodisaccharide formed by two galactofuranosyl units has been synthesized. Methyl (methyl α,β-d-galactofuranosid)uronate was employed as the starting compound, which was per-O-silylated with TBSCl and reduced with LiAlH4 to afford methyl 2,3,5-tri-O-tert-butyldimethylsilyl-β-d-galactofuranoside (2β) as a key precursor for the preparation of methyl per-O-tert-butyldimethylsilyl-6-thio-β-d-galactofuranoside (12). The free thiol group of 12 was glycosylated and the product O-deprotected to afford the target β-d-Galf-S-(1→6)-β-d-Galf-OMe (14). The conformations of this thiodisaccharide were preliminarily studied using combined theoretical calculations and NMR data. Furthermore, the glycomimetic 14 showed to be a competitive inhibitor of the β-galactofuranosidase from Penicillum fellutanum (Ki = 3.62 mM).  相似文献   

16.
Two polysaccharides were isolated from submergedly cultured mycelium of the basidiomycete Ganoderma lucidum by extraction with alkali followed by fractionation with Fehling reagent. The polysaccharides were shown to be a linear (1→3)-α-D-glucan and a highly branched xylomannan containing a backbone built up of (1→3)-linked α-D-mannopyranose residues, the majority of which are substituted at O-4 by single β-D-xylopyranose residues or by disaccharide fragments β-D-Manp-(1→3)-β-D-Xylp-(1→. Polysaccharide structures were elucidated by NMR spectroscopy in combination with methylation analysis and periodate oxidation. An interesting feature of the xylomannan is the simultaneous presence of α-D-mannopyranose and β-D-mannopyranose residues, the first forming the backbone, and the second being the non-reducing terminal units of disaccharide side chains.  相似文献   

17.
Lipopolysaccharide (LPS) of Haemophilus influenzae comprises a conserved tri-l-glycero-d-manno-heptosyl inner-core moiety (l-α-d-Hepp-(1→2)-[PEtn→6]-l-α-d-Hepp-(1→3)-[β-d-GlcIp-(1→4)]-l-α-d-Hepp-(1→5)-α-Kdop) to which addition of β-d-Glcp to O-4 of GlcI in serotype b strains is controlled by the gene lex2B. In non-typeable H. influenzae strains 1124 and 2019, however, a β-d-Galp is linked to O-4 of GlcI. In order to test the hypothesis that the lex2 locus is involved in the expression of β-d-Galp-(1→4-β-d-Glcp-(1→ from HepI, lex2B was inactivated in strains 1124 and 2019, and LPS glycoform populations from the resulting mutant strains were investigated. Detailed structural analyses using NMR techniques and electrospray-ionisation mass spectrometry (ESIMS) on O-deacylated LPS and core oligosaccharide material (OS), as well as ESIMSn on permethylated dephosphorylated OS, indicated both lex2B mutant strains to express only β-d-Glcp extensions from HepI. This provides strong evidence that Lex2B functions as a galactosyltransferase adding a β-d-Galp to O-4 of GlcI in these strains, indicating that allelic polymorphisms in the lex2B sequence direct alternative functions of the gene product.  相似文献   

18.
《Carbohydrate research》1986,149(2):347-361
Glycosylation of 1,2:3,4-di-O-isopropylidene-α-d-galactopyranose (6), as well as its 6-trimethylsilyl ether 7 with 2,3,4,6-tetra-O-acetyl-β-d-glucopyranosyl fluoride (5) was achieved stereospecifically in a mild and fast manner in the presence of Lewis acids like, e.g., titanium tetrafluoride, to give the β-(1→6)-linked disaccharide derivative 1. By use of 2,3,4,6-tetra-O-benzyl-β-d-glucopyranosyl fluoride (8) or its α anomer 10 and titanium tetrafluoride in acetonitrile with 6 or 7, a fast reaction proceeds preponderantly to yield 1,2:3,4-di-O-isopropylidene 6-O-(2,3,4,6-tetra-O-benzyl-β-d-glucopyranosyl)-α-d-galactopyranose (2). In ether, however, mainly the α-(1→6) anomer was formed. These model systems were used to elucidate the limiting conditions for this procedure, and mechanistic conceptions are discussed. By glycosylation at O-4 of 1,6:2,3-dianhydro-β-d-mannopyranose (11) with the perbenzylated α-fluoride 10 both the α- and the β-d-(1→4) disaccharide derivatives 12 and 14 were obtained, but 5 gave exclusively the β-d-(1→4) compound 16. Opening of the anhydro rings of 12 led to the synthesis of N-acetyl-maltosamine (22). 1,6-Anhydro-2-azido-4-O-benzyl-2-deoxy-β-d-glucopyranose was glycosylated with methyl (2,3,4-tri-O-acetyl-β-d-galactopyranosyl fluoride)uronate under titanium tetrafluoride catalysis to give the β-d-(1→3)-linked disaccharide 16, subsequently transformed into 29.  相似文献   

19.
Lipopolysaccharide was isolated from strain LMG 6999 of Burkholderia vietnamiensis. Degradative and NMR spectroscopic studies established the presence of two polymeric fractions based on the following trisaccharide repeating units: I: →3)-α-d-Galp-(1→3)-β-d-Galp-(1→3)-β-d-GalpNAc-(1→; II: →3)-α-d-GalpNAc-(1→3)-β-d-GalpNAc-(1→4)-α-l-Rhap-(1→.The same polymers have previously been found together in lipopolysaccharide from the reference strain for Burkholderia cepacia serogroup O4 and, individually, in those from B. cepacia serogroups C (I) and A (II).  相似文献   

20.
An Wang 《Carbohydrate research》2010,345(9):1216-7185
We describe here the synthesis of two oligosaccharide fragments of the tumor associated carbohydrate antigen LeaLex. While the linear lacto-N-triose I: β-d-Galp-(1→4)-β-d-GlcNAcp-(1→3)-β-d-Galp-OMe is a known compound, this is the first reported preparation of the branched tetrasaccharide β-d-GlcNAcp-(1→3)-β-d-Galp-(1→4)-[α-l-Fucp-(1→3)]-β-d-GlcNAcp-OMe. Our synthetic schemes involved using an N-trichloroacetylated trichloroacetimidate glucosaminyl donor activated with excess TMSOTf at 0 °C for glycosylation at O-3 of galactosyl residues and that of trichloroacetimidate galactosyl donors activated with excess BF3·OEt2 to glycosylate either O-3 or O-4 of glucosamine residues. The fucosylation at O-3 of the glucosamine acceptor was accomplished using a thiofucoside donor activated with copper(II) bromide and tetrabutylammonium bromide. Thus, syntheses of the protected tri- and tetrasaccharides were achieved easily and efficiently using known building blocks. Of particular interest, we also report that these protected oligosaccharides were submitted to dissolving metal conditions (Na-NH3) to provide in one single step the corresponding deprotected compounds. Under these conditions all protecting groups (O-acyl, benzylidene, benzyl, and N-trichloroacetyl) were efficiently cleaved. The work-up procedure for such reactions usually involves quenching with excess methanol and then neutralization with acetic acid. In our work the neutralization was carried out using acetic anhydride rather than acetic acid to ensure N-acetylation of the glucosamine residue. Both fully deprotected compounds were then simply purified and desalted by gel permeation chromatography on a Biogel P2 column eluted with water.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号