首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Carbohydrate research》1985,144(1):87-92
As alkaline degradation products of pectic acid, 6 hydroxymonocarboxylic, 16 dicarboxylic, and 2 tricarboxylic acids were identified by g.l.c.-m.s. as their trimethylsilyl derivatives. In the absence of oxygen, the most abundant degradation products are 3-deoxy-2-C-(hydroxymethyl)pentaric, 2,3-dideoxypentaric, 2-deoxy-3-C-methyltetraric, malic, and 21,4-anhydro-3-deoxy-2-C-(hydroxymethyl)pentaric acids, whereas, in the presence of oxygen, glycolic, oxalic, malic, 3-deoxypentaric, and 2-C-carboxy-3-deoxypentaric acids preponderate. The routes of formation of these acids show many similarities with those encountered in the alkaline degradation of cellulose.  相似文献   

2.
Cotton that had been subjected to alkali cooking at 170° was hydrolysed to determine the car?ylic acid end-groups. Large proportions of 3-deoxy-ribo-hexonic, 3-deoxy-arabino-hexonic, and 2-C-methylglyceric acids, together with a minor proportion of 2-C-methylribonic acid, were isolated and identified. Reduction of the cellulose end-groups and subsequent analysis of the hydrolysate revealed 3-deoxy-ribo-hexitol, 3-deoxy-arabino-hexitol, 2-C-methylglycerol, and a small proportion of 2-C-methylribitol. It is concluded from these results that, in addition to 3-deoxyhexonic acid end-groups, significant quantities of terminal 2-C-methylglyceric and minor amounts of 2-C-methylribonic acid groups are formed during the alkali cooking. No alditol end-groups were detected in the unreduced cellulose.  相似文献   

3.
The chemical modifications induced in polycrystalline cycloamylose hydrates during γ-irradiation have been investigated by using g.l.c-m.s. to analyse the monosaccharide mixtures formed on hydrolysis. Unchanged substrate and material retaining the original cyclic structure were removed by precipitation prior to hydrolysis, and the products therefore reflect the effect of the radical-induced opening of the cycloamylose ring structure. The following products were identified: glucose and glucono-1, 5-lactone (1), 4-deoxy-xylo-hexose (2), arabinose (3), ribose (4), 2-deoxy-erythro-pentose (5), 3-deoxy-erythro-hexos-4-ulose (6), xylo-hexos-5-ulose (7), 6-deoxy-xylo-hexos-5-ulose (8), 5-deoxy-xylo-hexodialdose (9), 2,6-dideoxyhexos-5-ulose (10), xylose (11), 5-deoxypentose (12), 3-deoxypentulose (13), erythrose (14), and threose (15). Products 1-9 appear to be terminals of the “anhydroglucose” chain. Established free-radical reactions, typical for carbohydrates. are invoked to account for these products.  相似文献   

4.
Pyruvic acid, lactic acid and several tricarboxylic acid cycle acids were extracted from Ditylenchus triformis and Turbatrix aceti and identified. Fumaric acid was predominant in both nematodes. Small amounts o f malic and α-ketoglutaric acids and intermediate quantities o f lactic, citric, succinic, and pyruvic acids occurred in D. triformis. In T. aceti citric, lactic, and α-ketoglutaric acids were less abundant than succinic, malic and pyruvic acids. Only traces of aconitic and oxalacetic acids occurred in both nematodes. All the organic acids detected accounted for only about one per cent of the dry weight of nematodes o f the two species.  相似文献   

5.
Glycosaminoglycans in mammalian extracellular matrices are degraded to their constituents, unsaturated uronic (glucuronic/iduronic) acids and amino sugars, through successive reactions of bacterial polysaccharide lyase and unsaturated glucuronyl hydrolase. Genes coding for glycosaminoglycan-acting lyase, unsaturated glucuronyl hydrolase, and the phosphotransferase system are assembled into a cluster in the genome of pathogenic bacteria, such as streptococci and clostridia. Here, we studied the streptococcal metabolic pathway of unsaturated uronic acids and the structure/function relationship of its relevant isomerase and dehydrogenase. Two proteins (gbs1892 and gbs1891) of Streptococcus agalactiae strain NEM316 were overexpressed in Escherichia coli, purified, and characterized. 4-Deoxy-l-threo-5-hexosulose-uronate (Dhu) nonenzymatically generated from unsaturated uronic acids was converted to 2-keto-3-deoxy-d-gluconate via 3-deoxy-d-glycero-2,5-hexodiulosonate through successive reactions of gbs1892 isomerase (DhuI) and gbs1891 NADH-dependent reductase/dehydrogenase (DhuD). DhuI and DhuD enzymatically corresponded to 4-deoxy-l-threo-5-hexosulose-uronate ketol-isomerase (KduI) and 2-keto-3-deoxy-d-gluconate dehydrogenase (KduD), respectively, involved in pectin metabolism, although no or low sequence identity was observed between DhuI and KduI or between DhuD and KduD, respectively. Genes for DhuI and DhuD were found to be included in the streptococcal genetic cluster, whereas KduI and KduD are encoded in clostridia. Tertiary and quaternary structures of DhuI and DhuD were determined by x-ray crystallography. Distinct from KduI β-barrels, DhuI adopts an α/β/α-barrel structure as a basic scaffold similar to that of ribose 5-phosphate isomerase. The structure of DhuD is unable to accommodate the substrate/cofactor, suggesting that conformational changes are essential to trigger enzyme catalysis. This is the first report on the bacterial metabolism of glycosaminoglycan-derived unsaturated uronic acids by isomerase and dehydrogenase.  相似文献   

6.
With Chlorella ellipsoidea cells, the effect of oxygen was investigated on the products of enhanced dark 14CO2 fixation immediately following preillumination in the absence of CO2. When the reaction mixture was made aerobic by bubbling air (CO2-free) throughout preillumination and the following dark 14CO2 fixation periods, the initial fixation product was mainly 3-phosphoglyceric acid. When nitrogen gas had been used instead of air, only about one-half of the total radioactivity in the initial fixation products was in 3-phosphoglyceric acid and the rest in aspartic, phosphoenolpyruvic, and malic acids. The percentage distribution of radioactivity incorporated in these initial products rapidly decreased during the rest of the dark period. Concurrent with the decrease in the initial 14CO2 fixation products, some increase was observed in the radioactivities of the sugar phosphates. The maximal radioactivity incorporated in sugar mono- and diphosphates accounted for only 10% of total 14C, under either the aerobic or anaerobic conditions. Under anaerobic conditions most of the 14C incorporated was eventually transferred to alanine, whereas the main end products under aerobic conditions were aspartate and glutamate. The pattern of 14CO2 fixation products was unaffected by the atmospheric condition during the period of preillumination. The preferential flow of the fixed carbon atom to alanine or aspartate depended on the presence or absence of oxygen during the period of dark CO2 fixation.  相似文献   

7.
The genes frdAB and sdhAB, which encode components of fumarate reductase and succinate dehydrogenase, have been deleted in a recombinant E. coli strain with the inactivated pathways of mixed-acid fermentation and a modified system of glucose transport and phosphorylation upon the heterological expression of the pyruvate carboxylase gene. Under anaerobic conditions, the parental strain efficiently converted glucose to succinic acid without synthesizing notable amounts of fumaric or malic acid. Upon individual deletion of the frdAB genes, the mutant strain fermented glucose to succinic acid less efficiently secreting notable amounts of malic and fumaric acids. Individual deletion of the sdhAB genes in the parental strain did not significantly affect the formation of the main fermentation end-product. The combined inactivation of fumarate reductase and succinate dehydrogenase in the constructed strain enhanced the anaerobic conversion of glucose to fumaric and malic acids with the activation of the glyoxylate bypass and decrease in the contribution of the reductive branch of the TCA cycle to the formation of the target products.  相似文献   

8.
The chemical composition of cell walls (thecae) of three taxa of scaly green flagellates (Prasinophyceae) was investigated. The theca of Tetraselmis striata, Tetraselmis tetrathele, and Scherffelia dubia consists mainly of carbohydrate (80% of dry weight), with proteins (5%), calcium (4%), and sulfate (6%) as minor components. The principal sugars (60% of dry weight) are the 2-keto-sugar acids 3-deoxy-manno-2-octulosonic acid (KDO), 3-deoxy-manno-5-O-methyl-2-octulosonic acid (5OMeKDO), and 3-deoxy-lyxo-2-heptulosaric acid (DHA). Arabinose, gulose, galactose, galacturonic acid, and in S. dubia, xylose and rhamnose were also found. Examination of scale preparations from Mantoniella squamata, Mesostigma viride, Pyramimonas amylifera, and Nephroselmis olivacea revealed that the 2-keto-sugar acids were always associated with the presence of typical prasinophycean scales on the cell surface. In contrast, 2-keto-sugar acids were not detected in the cell wall of Chlamydomonas reinhardtii nor in polymer preparations from the culture medium of Chlamydomonas reinhardtii, Dunaliella bioculata, Dunaliella primolecta, Asteromonas gracilis, Hafniomonas reticulate, Pedinomonas tuberculata, Monomastix sp., and Micromonas pusilla. We conclude that 2-keto-sugar acids are chemical markers for prasinophycean scales.  相似文献   

9.
Effects of low-molecular-weight organic acids (LMWOAs) on the uptake of lanthanum by wheat (Triticum aestivum L.) roots were studied under hydroponic conditions. Acetic and malic acids were chosen as the representatives of LMWOAs. Uptake kinetics of lanthanum indicated that when lanthanum concentrations in the uptake solutions were high or uptake time was long lanthanum uptake by roots was enhanced by LMWAOs. After wheat was cultured in the uptake solution of lanthanum containing acetic or malic acids for 48 h the uptake of lanthanum by roots increased by 57 and 44%, respectively, compared with that in the absence of acetic and malic acids. The increase in uptake of lanthanum was determined by the ratio of the concentrations of organic acids to lanthanum in the uptake solutions. The highest uptake of lanthanum was obtained at the ratio of 5:1.  相似文献   

10.
Occurrence of α-alkyl-substituted malic acids, and β-hydroxy-β-alkyl-substituted dicarboxylic and tricarboxylic acid derivatives in normal urineUrine contains a number of α-hydroxy acids so far unknown to occur in biological liquids. Besides the already as urine constituent known methylmalic acid, also the ethyl, isopropyl and butyl derivatives of malic acid were found. Further metabolites in urine are a β-propyl-substituted β-hydroxyglutaric acid, a β-hydroxy-β-[methyl-carbomethoxy]-adipinic acid and two isomeric α-methylcitric acids.  相似文献   

11.
Leaves and leaf slices from Aloe arborescens Mill. were used to study the interrelations between Crassulacean acid metabolism, photosynthesis, and respiration. Oxygen exchange of leaf slices was measured polarographically. It was found that the photosynthetic utilization of stored malic acid resulted in a net evolution of oxygen. This oxygen production, and the decrease in acid content of the leaf tissue, were completely inhibited by amytal, although the rate of respiratory oxygen uptake was hardly affected by the presence of this inhibitor of mitochondrial electron transport. Other poisons of respiration (cyanide) and of the tricarboxylic acid cycle (trifluoroacetate, 2-diethyl malonate) also were effective in preventing acid-dependent oxygen evolution. It is concluded that the mobilization of stored acids during light-dependent deacidification of the leaves depends on the operation of the tricarboxylic acid cycle and of the electron transport of the mitochondria.  相似文献   

12.
Bundle sheath cells were enzymatically isolated from representatives of three groups of C4 plants: Zea mays (NADP malic enzyme type), Panicum miliaceum (NAD malic enzyme type), and Panicum maximum (phosphoenolpyruvate (PEP) carboxykinase type). Cellular organelles from bundle sheath homogenates were partially resolved by differential centrifugation and on isopycnic sucrose density gradients in order to study compartmentation of photosynthetic enzymes. A 48-h-dark pretreatment of the leaves allowed the isolation of relatively intact chloroplasts. Enzymes that decarboxylate C4 acids and furnish CO2 to the Calvin cycle are localized as follows: NADP malic enzyme, chloroplastic in Z. mays; NAD malic enzyme, mitochondrial in all three species; PEP carboxykinase, chloroplastic in P. maximum. The activity of NAD malic enzyme in the three species was in the order of P. miliaceum > P. maximum > Z. mays. There were high levels of aspartate and alanine aminotransferases in bundle sheath extracts of P. miliaceum and P. maximum and substantial activity in Z. mays. In all three species, aspartate aminotransferase was mitochondrial whereas alanine aminotransferase was cytoplasmic. Based on the activity and localization of certain enzymes, the concept for aspartate and malate as transport metabolites from mesophyll to bundle sheath cells in C4 species of the three C4 groups is discussed.  相似文献   

13.
Benzilic acid rearrangement of D-arabino-hexosulose (1) and O-β-D-glucopyranosyl-(1→4)-D-arabino-hexosulose (2) favours formation of mannonic acid and mannonic acid moieties, respectively. The results show that formation of aldonic acid end-groups via terminal aldosulose moieties is of little importance during oxygen-hydrogencarbonate treatment of (1→4)-linked polysaccharides. The major reaction of 1 in the absence of oxygen involves loss of C-1 as formic acid. The enediol intermediate gives rise to pentoses and pentuloses (degraded completely at high alkalinity), and 3-deoxypentonic acids. The yield of 3-deoxypentonic acids is decreased in the presence of oxygen, whereas that of arabinonic, erythronic, and glycolic acids is increased. The main reaction of 2 giving rise to aliphatic hydroxy acids is β-elimination of the glucose moiety, yielding a tricarbonyl intermediate (3) which, in sodium hydrogencarbonate, is decomposed mainly to 3,4-dihydroxybutanoic and glycolic acids. In sodium hydroxide, 3-deoxypentonic acids are among the major reaction products. In addition, a complex mixture of u.v.-absorbing solutes is formed, some of which are held irreversibly by anion exchangers.  相似文献   

14.
Arthrobacter sp. strain PBA metabolized phenylboronic acid to phenol. The oxygen atom in phenol was shown to be derived from the atmosphere using 18O2. 1-Naphthalene-, 2-naphthalene-, 3-cyanophenyl-, 2,5-fluorophenyl-, and 3-thiophene-boronic acids were also transformed to monooxygenated products. The oxygen atom in the product was bonded to the ring carbon atom originally bearing the boronic acid substituent with all the substrates tested.  相似文献   

15.
Applied acetaldehyde is known to lead to sugar accumulation in fruit including tomatoes (Lycopersicon esculentum) (O Paz, HW Janes, BA Prevost, C Frenkel [1982] J Food Sci 47: 270-274) presumably due to stimulation of gluconeogenesis. This conjecture was examined using tomato fruit pericarp discs as a test system and applied i-[U-14C]malic acid as the source for gluconeogenic carbon mobilization. The label from malate was recovered in respiratory CO2, in other organic acids, in ethanol insoluble material, and an appreciable amount in the ethanol soluble sugar fraction. In Rutgers tomatoes, the label recovery in the sugar fraction and an attendant label reduction in the organic acids fraction intensified with fruit ripening. In both Rutgers and in the nonripening tomato rin, these processes were markedly stimulated by 4000 ppm acetaldehyde. The onset of label apportioning from malic acids to sugars coincided with decreased levels of fructose-2,6-biphosphate, the gluconeogenesis inhibitor. In acetaldehyde-treated tissues, with enhanced label mobilization, this decline reached one-half to one third of the initial fructose-2,6-biphosphate levels. Application of 30 micromolar fructose-2,6-biphosphate or 2,5-anhydro-d-mannitol in turn led to a precipitous reduction in the label flow to sugars presumably due to inhibition of fructose-1,6-biphosphatase by the compounds. We conclude that malic and perhaps other organic acids are carbon sources for gluconeogenesis occurring normally in ripening tomatoes. The process is stimulated by acetaldehyde apparently by attenuating the fructose-2,6-biphosphate levels. The mode of the acetaldehyde regulation of fructose-2,6-biphosphate metabolism awaits clarification.  相似文献   

16.
  1. Malic enzyme was induced by malic acid and malo-lactic enzyme was induced by malic acid and glucose in cells of three strains ofLactobacillus casei that were able to grow on malate as carbon source. Two strains ofStreptococcus faecalis formed malic enzyme only, whereas only malo-lactic enzyme was formed by a glucose requiring strain ofStreptococcus lactis.
  2. Given sequential induction, cells ofLactobacillus casei M40 were found to contain malic enzyme and malo-lactic enzyme simultaneously.
  3. Malic enzyme and malo-lactic enzyme have been separated by chromatography on Sephadex G-200. These two enzymes have a different pH optimum, different affinities for substrates, form different end products from malate, and have molecular weights of 120000 and 150000 daltons respectively.
  相似文献   

17.
Propionibacterium acnes, Propionibacterium avidum and Propionibacterium granulosum were grown in continuous culture at 0–100% air saturation using a semi-synthetic medium. All 3 species utilised oxygen and showed increased growth at 10% air saturation. Oxygen depressed the levels of the fermentation end products propionic and acetic acids. The 3 species differed in the production of ‘oxygen-detoxifying’ enzymes. P. acnes produced catalase, P. avidum produced superoxide dismutase and P. granulosum produced catalase anaerobically and cytochrome c reductase aerobically. The results suggest that under aerobic conditions these bacteria may obtain energy without increased substrate-level phosphorylation and that they may employ different strategies to overcome the toxic effects of oxygen.  相似文献   

18.
Neutral sugar, free amino acid, and anthocyanin levels and vacuole/extravacuole distribution were determined for Hippeastrum and Tulipa petal and Tulipa leaf protoplasts. Glucose and fructose, the predominant neutral monosaccharides observed, were primarily vacuolar in location. Glutamine, the predominant free amino acid found, was primarily extravacuolar. γ-Methyleneglutamate was identified as a major constituent of Tulipa protoplasts. Qualitative characterization of Hippeastrum petal and vacuole organic acids indicated the presence of oxalic, malic, citric, and isocitric acids. Data are presented which indicate that vacuoles obtained by gentle osmotic shock of protoplasts in dibasic phosphate have good purity and retain their contents.  相似文献   

19.

Aims

Typha latifolia L. is an aquatic plant that has been widely exploited for the aims of phytoremediation. The main reason why we have chosen this plant species for the current study is its capacity to accumulate and detoxify heavy metals. The main topic of the investigation focused on the root uptake of copper (II) nitrate and copper (II) sulfate and the impact of different chemical copper species on the excreted organic acids.

Methods

Oxalic, malic, acetic and lactic acids were determined using capillary electrophoresis; a comparison between the concentration and the time course during 7 days of treatment was performed.

Results

There is a correlation between the total copper (II) sulfate concentration in the roots and the total amount of the excreted organic acids. In addition to that organic acids are involved in the detoxification mechanisms of Typha latifolia for copper (II) nitrate and copper (II) sulfate.

Conclusions

Different from so far investigated plant species the highest amounts of organic acids are excreted from T. latifolia roots not in the first hours after treatment, but up to 7 days later.  相似文献   

20.
Changes of casein and lysozyme during roasting at various times and temperatures 100 ~ 300°C), especially those in amino acid composition and formation of some nonvolatile degradation products, were investigated.

Tryptophan, methionine, basic amino acids and β-hydroxy amino acids were easily decomposed as compared with acidic amino acids and other neutral amino acids in casein and Iysozyme. In hot water extract of roasted casein were detected some free amino acids, peptides, organic acids such as α-ketoglutaric, tartaric and malic acids, and indole. It is considered that free amino acids are produced mainly through ionic cleavage of peptide bond with the water bound within casein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号