首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1. The effect of serotonin on chloride secretion in hen colon was studied under short circuit conditions. 2. Serotonin added to the serosal side induced a short-lived peak increase in Cl(-)-secretion (6.2 +/- 1.0 mumole.cm-2.h-1), in short circuit current (5.4 +/- 0.7 mumole.cm-2.h-1) and in cord conductance (8.1 +/- 0.7 mS.cm-2) with an apparent EC50 around 8 microM, and a more prolonged rise in chloride secretion of around 3.0 mumole.cm-2.h-1. 3. The short circuit current is a reasonable measure of net chloride secretion at the peak. 4. Several specific and non-specific serotonin receptor antagonists were studied for their influence on the serotonin induced peak response in short circuit current and cord conductance. 5. These antagonists covered the whole range of currently defined serotonin receptor types and subtypes: 5-HT1A, 5-HT1B, 5-HT1C, 5-HT1D, 5-HT2, and 5-HT3. 6. Adrenergic, cholinergic and histaminergic receptor antagonists were also tested for an interaction at the serotonin receptor involved in Ca(-)-secretion. 7. None of the antagonists had any influence on the serotonin response in short circuit current or cord conductance.  相似文献   

2.
The anterior stomach of larval Aedes aegypti was isolated and perfused via two pipettes. For transepithelial voltage (V(te)) measurement, the inflow pipette and the bath were connected via agar bridges to calomel electrodes. For voltage-clamping, the lumen of the tissue contained an Ag/AgCl wire held by the outflow pipette, and the preparation was placed in a bath within a spiral of Ag/AgCl wire. After equilibrating the tissue in mosquito saline on both sides, a V(te) of -8+/-1 mV was measured (+/-S.E.M., N=32). Current-voltage curves (+/-100 mV) demonstrated ohmic behaviour of the epithelium. Short-circuiting resulted in a current (I(sc)) of 103+/-16 microA cm(-2) and a mean transepithelial conductance (G(te)) of 11.8+/-1.3 mS cm(-2) (+/-S.E.M., N=32). A Yonath-Civan plot of G(te) of individual preparations over the corresponding I(sc) resulted in a straight line (r(2)=0.8422), indicating that the difference in I(sc) of individual preparations is mainly based on different transcellular conductances (G(c)). This analysis allowed to estimate the mean leak conductance (G(l) approximately 3.9 mS cm(-2)) and the mean transcellular electromotive force (E(c) approximately 13 mV). After administering 0.2 micromol L(-1) serotonin, I(sc) and G(te) significantly increased, to 457+/-49 microA cm(-2) and to 21.3+/-2.3 mS cm(-2) (+/-S.E.M., N=31, P<0.05), respectively. The Yonath-Civan plot after serotonin resulted again in a straight line (r(2)=0.8219), indicating a mean G(l) of about 1 mS cm(-2) and a mean E(c) of about 22 mV. Dinitrophenol (2.5 mmol L(-1)) almost abolished I(sc) and significantly reduced G(te) (N=6). Concanamycin A (100 micromol L(-1)) reduced I(sc) by more than 90% without significantly affecting G(te).  相似文献   

3.
Vasoactive intestinal peptide (VIP) stimulates active Cl- secretion by the intestinal epithelium, a process that depends upon the maintenance of a favorable electrical driving force established by a basolateral membrane K+ conductance. To demonstrate the role of this K- conductance, we measured short-circuit current (I(SC)) across monolayers of the human colonic secretory cell line, T84. The serosal application of VIP (50 nM) increased I(SC) from 3 +/- 0.4 microA/cm2 to 75 +/- 11 microA/cm2 (n = 4), which was reduced to a near zero value by serosal applications of Ba2+ (5 mM). The chromanol, 293B (100 microM), reduced I(SC) by 74%, but charybdotoxin (CTX, 50 nM) had no effect. We used the whole-cell voltage-clamp technique to determine whether the K+ conductance is regulated by cAMP-dependent phosphorylation in isolated cells. VIP (300 nM) activated K+ current (131 +/- 26 pA, n = 15) when membrane potential was held at the Cl- equilibrium potential (E(Cl-) = -2 mV), and activated inward current (179 +/- 28 pA, n = 15) when membrane potential was held at the K+ equilibrium potential (E(K+) = -80 mV); however, when the cAMP-dependent kinase (PKA) inhibitor, PKI (100 nM), was added to patch pipettes, VIP failed to stimulate these currents. Barium (Ba2+ , 5 mM), but not 293B, blocked this K+ conductance in single cells. We used the cell-attached membrane patch under conditions that favor K + current flow to demonstrate the channels that underlie this K+ conductance. VIP activated inwardly rectifying channel currents in this configuration. Additionally, we used fura-2AM to show that VIP does not alter the intracellular Ca2+ concentration, [Ca2 +]i. Caffeine (5 mM), a phosphodiesterase inhibitor, also stimulated K+ current (185 +/- 56 pA, n = 8) without altering [Ca2+]i. These results demonstrate that VIP activates a basolateral membrane K+ conductance in T84 cells that is regulated by cAMP-dependent phosphorylation.  相似文献   

4.
Transepithelial potential (V(T)), conductance (G(T)), and water flow (J(V)) were measured simultaneously with good time resolution (min) in isolated toad (Bufo bufo) skin epithelium with Ringer on both sides. Inside application of 5 microM isoproterenol resulted in the fast increase in G(T) from 1.2+/-0.3 to 2.4+/-0.4 mS x cm(-2) and slower increases in equivalent short circuit current, I(SC)(Eqv) = -G(T) x V(T), from 12.7+/-3.2 to 33.1+/-6.8 microA cm(-2), and J(V) from 0.72+/-0.17 to 3.01+/-0.49 nL cm(-2) s(-1). Amiloride in the outside solution abolished I(SC)(Eqv) (-1.6+/-0.1 microA cm(-2)) while J(V) decreased to 0.50+/-0.15 nL cm(-2) x s(-1), which is significantly different from zero. Isoproterenol decreased the osmotic concentration of the transported fluid, C(osm) approximately 2 x I(SC)(Eqv)/J(V), from 351+/-72 to 227+/-28 mOsm (Ringer's solution: 252.8 mOsm). J(V) depicted a saturating function of [Na+]out in agreement with Na+ self-inhibition of ENaC. Ouabain on the inside decreased I(SC)(Eqv) from 60+/-10 to 6.1+/-1.7 microA cm(-2), and J(V) from 3.34+/-0.47 to 1.40+/-0.24 nL cm(-2) x s(-1). Short-circuited preparations exhibited a linear relationship between short-circuit current and J(V) with a [Na+] of the transported fluid of 130+/-24 mM ([Na+]Ringer's solution = 117.4 mM). Addition of bumetanide to the inside solution reduced J(V). Water was transported uphill and J(V) reversed at an excess outside osmotic concentration, deltaC(S,rev) = 28.9+/-3.9 mOsm, amiloride decreased deltaC(S,rev) to 7.5+/-1.5 mOsm. It is concluded that water uptake is accomplished by osmotic coupling in the lateral intercellular space (lis), and hypothesized that a small fraction of the Na+ flux pumped into lis is recirculated via basolateral NKCC transporters.  相似文献   

5.
The effects of aldosterone and arginine vasotocin (AVT) on transepithelial Na+ transport of cultured A6 cells were investigated. All experiments were performed with cells grown on Millicell TM culture-plate inserts for a period of 2-4 weeks in defined, serum-free medium. Omitting fetal bovine serum 2 days after seeding the cells on filters did not influence potential difference (PD) development or the hormonal responses tested. The cell layers were placed in an Ussing chamber for short-circuit current (ISC) and transepithelial conductance (G) measurements. Base-line values were (n = 93): PD, 51.0 +/- 0.2 mV (apical side negative); ISC, 14.55 +/- 0.06 microA/cm2; G, 0.306 +/- 0.001 mS/cm2. ISC and G were higher in cells pretreated with 10(-7) M aldosterone for 24 h in the incubator, when compared to controls (ISC, 28 +/- 2 vs. 16 +/- 2 microA/cm2, G, 0.41 +/- 0.04 vs. 0.26 +/- 0.01 mS/cm2, n = 5) and both remained stable for at least 6 h. In cells not treated with aldosterone, 10(-7) M AVT increased ISC within 1 min after addition, producing a maximum ISC within 15 min which then declined to baseline levels over the next 5 h. Addition of AVT to aldosterone-pretreated cells resulted in a significantly greater peak increase in ISC than in non-pretreated cells (change in ISC compared to controls: 8.1 +/- 0.4 vs. 4.9 +/- 0.4 microA/cm2, n = 5, P less than 0.001), indicating a synergistic effect. A dose-response curve for amiloride obtained in the presence of AVT showed that amiloride completely inhibits ISC. Pretreatment of the A6 cells with aldosterone for 24 h shifted the amiloride dose-response curve to the right, as expressed in a doubling of the apparent Ki value (from 0.17 +/- 0.02 to 0.33 +/- 0.04 microM). In conclusion, A6 cells grown in defined, serum-free medium express a greater than additive synergism between aldosterone and AVT in stimulating transepithelial Na+ transport.  相似文献   

6.
Electrolyte transport across rabbit late proximal colon in vitro   总被引:1,自引:0,他引:1  
The second part of rabbit proximal colon was investigated in vitro under short circuit conditions. Unidirectional sodium and chloride fluxes were measured during the soft faeces period and during the hard faeces period. Rabbit late proximal colon has a potential difference (psi mS) of 4 mV, a tissue conductance (GT) of 10-11 mS/cm2 and a short circuit current (Isc) of 1.5 mueq/cm2 X hr. Under control conditions sodium (2.65 mueq/cm2 X hr) and chloride (0.67 mueq/cm2 X hr) are absorbed. Ouabain abolished psi ms,Isc and the net sodium flux totally, whereas 0.1 mM amiloride only slightly decreased the net sodium flux. No differences in electrical properties and Na,Cl-fluxes were found between the faeces periods. Removal of sodium abolished psi ms and Isc totally, and a high potassium solution depolarized the preparation (psi ms = 0). A linear current-voltage relation characterizes the tissue as an ohmic resistor between -40 and +50 mV, and reveals a slope conductance of 14 mS/cm2 under KCl conditions. We conclude that the transport functions under in vitro conditions differ markedly from the in vivo situation, and that the diurnal differences of electrolyte transport in vivo occur mainly by the involvement of ionic gradients.  相似文献   

7.
Net Cl- absorption in the mouse medullary thick ascending limb of Henle (mTALH) involves a furosemide-sensitive Na+:K+:2 Cl- apical membrane symport mechanism for salt entry into cells, which occurs in parallel with a Ba++-sensitive apical K+ conductance. The present studies, using the in vitro microperfused mouse mTALH, assessed the concentration dependence of blockade of this apical membrane K+-conductive pathway by Ba++ to provide estimates of the magnitudes of the transcellular (Gc) and paracellular (Gs) electrical conductances (millisiemens per square centimeter). These studies also evaluated the effects of luminal hypertonicity produced by urea on the paracellular electrical conductance, the electrical Na+/Cl- permselectivity ratio, and the morphology of in vitro mTALH segments exposed to peritubular antidiuretic hormone (ADH). Increasing luminal Ba++ concentrations, in the absence of luminal K+, produced a progressive reduction in the transcellular conductance that was maximal at 20 mM Ba++. The Ba++-sensitive transcellular conductance in the presence of ADH was 61.8 +/- 1.7 mS/cm2, or approximately 65% of the total transepithelial conductance. In phenomenological terms, the luminal Ba++-dependent blockade of the transcellular conductance exhibited negative cooperativity. The transepithelial osmotic gradient produced by luminal urea produced blebs on apical surfaces, a striking increase in shunt conductance, and a decrease in the shunt Na+/Cl- permselectivity (PNa/PCl), which approached that of free solution. The transepithelial conductance obtained with luminal 800 mM urea, 20 mM Ba++, and 0 K+ was 950 +/- 150 mS/cm2 and provided an estimate of the maximal diffusion resistance of intercellular spaces, exclusive of junctional complexes. The calculated range for junctional dilution voltages owing to interspace salt accumulation during ADH-dependent net NaCl absorption was 0.7-1.1 mV. Since the Ve accompanying ADH-dependent net NaCl absorption is 10 mV, lumen positive, virtually all of the spontaneous transepithelial voltage in the mouse mTALH is due to transcellular transport processes. Finally, we developed a series of expressions in which the ratio of net Cl- absorption to paracellular Na+ absorption could be expressed in terms of a series of electrical variables. Specifically, an analysis of paired measurement of PNa/PCl and Gs was in agreement with an electroneutral Na+:K+:2 Cl- apical entry step. Thus, for net NaCl absorption, approximately 50% of Na+ was absorbed via a paracellular route.  相似文献   

8.
Addition of 10(-5) M amphotericin B to the tear solution of an in vitro preparation of the frog cornea increased the transepithelial conductance, gt, and decreased the apical membrane fractional resistance, f(R0), in the presence or absence of tear Na+ and Cl-. In the presence of tear Na+ and Cl-, amphotericin B increased the short-circuit current, Isc, from 3.9 to 8.8 microA.cm-2 and changed the intracellular potential, V0, from -48.5 to -17.9 mV probably due to a higher increase in the Na+ than in the K+ conductance. In the absence of tear Na+ and Cl-, amphotericin B decreased Isc from 5.5 to about 0 microA.cm-2 due to K+ (and possibly Na+) flux from cell to tear and changed V0 from -35.4 to -63.6 mV due to the increase in conductance of both ions. Increase in the tear K+ from 4 to 79 mM (in exchange for choline), in the presence of amphotericin B and absence of tear Na+ and Cl-, decreased f(R0) from 0.09 to 0.06, increased gt from 0.23 to 0.31 mS, increased Isc from 0.63 to 7.3 microA.cm-2, and changed V0 from -65.5 to -17.3 mV due to the change in EK in the presence of a high conductance in the tear membrane. Similar effects were observed with an increase of tear Na+. Results support the concept that the Na+ conductance opened by amphotericin B in the apical membrane is greater than the K+ conductance. Previously observed transepithelial effects of the ionophore may be explained mostly on the basis of its effect on the apical membrane.  相似文献   

9.
We examined the effects of reactive oxygen-nitrogen intermediates on chloride (Cl-) currents across murine tracheal epithelial (MTE) cells isolated from CD-1 mice. MTE cells were cultured on permeable supports until they formed water-tight monolayers with transepithelial resistances (Rt)>500 Omega/cm2 and then were mounted in Ussing chambers. Baseline short-circuit current (ISC) values, prior to and following the addition of 10 microM amiloride (an inhibitor of sodium-transport pathways) into the apical side, were 65 +/- 1.9 microA/cm2 and 7.6 +/- 0.51 microA/cm2, respectively (X +/- 1 SE, n=32). The addition of 3-morpholinosydnominine (SIN-1, 1 mM), which generates both superoxide and nitric oxide anions, to amiloride-treated monolayers resulted in a transient increase of ISC to a peak value of 35 +/- 1.3 microA/cm2 (X +/- SE, n=14) within the next 30-60 min. After this, the ISC decreased gradually and returned to its pre-SIN-1 value. These changes were blocked by glibenclamide (200 microM), an inhibitor of cystic fibrosis transmembrane regulator, or reduced by glutathione (GSH, 5 mM), a scavenger of peroxynitrite. Forskolin (10 microM) augmented the SIN-1 effect when added at the peak of the SIN-1 response but not when ISC had returned to its baseline value. Perfusion of MTE cells with SIN-1 also increased whole cell Cl- currents 4-fold and the open probability of CFTR-type single-channel currents from 0.041 to 0.92 in a transient fashion. Decomposed SIN-1, but not pure SIN-1c (the stable decomposition product of SIN-1), also increased ISC with an EC50 of 5 microM. Electrospray mass spectroscopy revealed several unique and uncharacterized compounds formed during the decomposition of SIN-1 as well as the reaction of SIN-1c with peroxynitrite. Formation of these compounds was inhibited by GSH. We conclude that compounds formed by the reaction of peroxynitrite with by-products of SIN-1, rather than reactive oxygen-nitrogen species per se, were responsible for the modulation of Cl- secretion across primary cultures of MTE cells.  相似文献   

10.
Previous impedance analysis studies of intact epithelia have been complicated by the presence of connective tissue or smooth muscle. We now report the first application of this method to cultured epithelial monolayers. Impedance analysis was used as a nondestructive method for deducing quantitative morphometric parameters for epithelia grown from the renal cell line A6, and its subclonal cell line 2F3. The subclonal 2F3 cell line was chosen for comparison to A6 because of its inherently higher Na+ transport rate. In agreement with previous results, 2F3 epithelia showed significantly higher amiloride-sensitive short-circuit currents (Isc) than A6 epithelia (44 +/- 2 and 27 +/- 2 microA/cm2, respectively). However, transepithelial conductances (GT) were similar for the two epithelia (0.62 +/- 0.04 mS/cm2 for 2F3 and 0.57 +/- 0.04 mS/cm2 for A6) because of reciprocal differences in cellular (Gc) and paracellular (Gj) conductances. Significantly lower Gj and higher Gc values were observed for 2F3 epithelia than A6 (Gj = 0.23 +/- 0.02 and 0.33 +/- 0.04 mS/cm2 and Gc = 0.39 +/- 0.16 and 0.26 +/- 0.10 mS/cm2, respectively). Nonetheless, the cellular driving force for Na+ transport (Ec) and the amount of transcellular Na+ current under open-circuit conditions (Ic) were similar for the two epithelia. Three different morphologically-based equivalent circuit models were derived to assess epithelial impedance properties: a distributed model which takes into account the resistance of the lateral intercellular space and two models (the "dual-layer" and "access resistance" models), which corrected for impedance of small fluid-filled projections of the basal membrane into the underlying filter support. Although the data could be fitted by the distributed model, the estimated value for the ratio of apical to basolateral membrane resistances was unreasonably large. In contrast, the other models provided statistically superior fits and reasonable estimates of the membrane resistance ratio. The dual-layer model and access resistance models also provided similar estimates of apical and basolateral membrane conductances and capacitances. In addition, both models provided new information concerning the conductance and area of the basolateral protrusions. Estimates of the apical membrane conductance were significantly higher for 2F3 (0.79 +/- 0.23 mS/cm2) than A6 epithelia (0.37 +/- 0.07 mS/cm2), but no significant difference could be detected for apical membrane capacitances (1.4 +/- 0.04 and 1.2 +/- 0.1 microF/cm2 for 2F3 and A6, respectively) or basolateral membrane conductances (3.48 +/- 1.67 and 2.95 +/- 0.40 mS/cm2). The similar basolateral membrane properties for the two epithelia may be explained by their comparable transcellular Na+ currents under open-circuit conditions.  相似文献   

11.
A chamber design is described which permits isolation of villus or intervillus epithelium from proximal segments of Amphiuma intestine and measurement of the transpithelial potential difference (psi ms) and short-circuit current (Isc) produced by each. In media containing Cl- and 10 mequiv./l HCO3- the villus generated a basal psi ms of 0.8 mV (serosa negative) and Isc of 12 microA/cm2 while the intervillus psi ms and Isc were not different from zero. Acetazolamide altered the villus psi ms by 1.2 mV; the intervillus psi ms by only 0.3 mV. Transepithelial gradients of HCO3- appeared to generate diffusion potentials across the intervillus but not the villus epithelium. The actively transported sugar galactose elevated psi ms by 0.6 +/- 0.1 mV in the intervillus epithelium and by 1.5 +/- 0.2 mV in the villus epithelium for a response ratio (0.6/1.5) = 0.4. The response ratio for valine was 0.3. In contrast, the response ratios for theophylline (0.7) and cyclic AMP (0.7) were significantly higher. These observations indicate that the entire epithelium is responsive to theophylline and cyclic AMP while Na+-dependent solute transport and the basal electrogenic ion transport processes are primarily functions of the cells lining the intestinal villus.  相似文献   

12.
Ion transport and the electric profile of distal airways of sheep lungs were studied in a miniature polypropylene chamber with a 1-mm aperture. Small airways with an inner diameter < 1 mm were isolated, opened longitudinally, and then mounted as a flat sheet onto the 1-mm aperture where it was glued and secured with an O-ring. Both sides of the tissue were bathed with identical physiological solutions at 37 degrees C and oxygenated. Pooled data from 27 distal airways showed an inner airway diameter of 854 +/- 22 (SE) microm and a transepithelial potential difference (PD) of 1.86 +/- 0.29 mV, lumen negative. Short-circuit current (I(sc)) was 25 +/- 3.5 microA/cm(2), tissue resistance was 96 +/- 14 Omega, and conductance was 15.2 +/- 1.7 mS/cm(2). At baseline, amiloride-sensitive Na transport accounted for 51% of I(sc) (change in I(sc) = 9.7 +/- 2.6 microA/cm(2); n = 8 airways), corresponding to 0.36 microeq. cm(-2). h(-1). Treatment with 0.1 mM bumetanide did not reduce the I(sc) (n = 5 airways). Exposure to 1 microM Ca ionophore A-23187 raised the I(sc) by 9 microA/cm(2) (47%; P < 0.03; n = 6 airways). The latter effect was blunted by bumetanide. Carbachol at 1 microM provoked a biphasic response, an initial rapid rise in I(sc) followed by a decline (n = 3 airways). There was no significant increase in PD or I(sc) in response to isoproterenol or dibutyryl cAMP. The data suggest that Na absorption constitutes at least 50% of baseline transport activity. Cl or other anion secretion such as HCO(3) appears to be present and could be stimulated by raising intracellular Ca.  相似文献   

13.
Effects of cyclooxygenase (COX) inhibitors on transport parameters of the frog corneal epithelium were studied. Epithelial cells of the intact cornea were impaled with microelectrodes. Under short-circuit current (I(sc)) conditions, 10(-4) M ibuprofen (IBU) (non-specific COX inhibitor) or 5 x 10(-5) M rofecoxib (COX-2 inhibitor) were added to the tear solution. With ibuprofen, I(sc) decreased by 1.0 from 3.1 microA/cm2; intracellular potential, V(o), depolarized by 14.2 from -56.9 mV; IBU did not affect the transepithelial conductance, g(t), or the apical membrane fractional resistance, fR(o). With rofecoxib, I(sc) decreased by 0.9 from 4.3 microA/cm2; V(o) depolarized by 18 from -62.4 mV; g(t) significantly increased by 0.03 from 0.37 ms/cm2; and fR(o) decreased by 12 from 50. Basolateral membrane K+ and apical membrane Cl- partial conductances were studied by the ion substitution method. Depolarization of V(o) by an increase in stromal K+ from 4 to 79 mM was smaller with IBU (17.5 mV) or rofecoxib (19.2 mV) than without the inhibitors (29.1 and 29.3 mV, respectively). Depolarization of V(o), by a decrease in tear Cl- from 81 to 8.1 mM, was abolished by the COX inhibitors. Decrease in I(sc) and V(o) can be explained by a decrease in the K+ and Cl-? conductances. Experiments with amphotericin B ruled out a major effect of the inhibitors on the Na+/K+ ATPase pump.  相似文献   

14.
Segments of fetal and maternal trachea, maternal bronchi from near-term sheep, and trachea and bronchi from nonpregnant adult sheep were excised and mounted as sheets in Ussing chambers. The conductance (G) for each group of tissues was similar (approximately 4 mS/cm-2); the short circuit current (Isc) ranged from 45-90 microA/cm-2. Under short-circuit or open-circuit conditions trachea and bronchi from pregnant and nonpregnant adult animals absorbed Na+, whereas fetal trachea secreted Cl-. Short-circuited maternal bronchi secreted K+, whereas maternal and fetal trachea did not. Isoproterenol induced an increase in Isc, G, and Cl- secretion of fetal trachea. Maternal trachea and bronchi were not affected. Amiloride reduced Na+ absorption and Isc of maternal trachea and bronchi, but had little effect on fetal trachea. The permeability of fetal trachea to 14C-mannitol was 17 X 10(-7) cm/s and was not affected by isoproterenol. The permeation of dextran (10 K) and horseradish peroxidase across fetal trachea and of all three probes across maternal airways did not reach steady state, but the relative rates were compatible with an equivalent pore radius greater than 4 nm. We conclude that ion transport in fetal large airways contributes to the Cl- and liquid secretion by the entire fetal pulmonary epithelium, whereas resting ion transport of large airways from adult sheep, like that of mature airways of many species, is dominated by Na+ absorption. All of these airway epithelia are characterized by large paracellular aqueous paths.  相似文献   

15.
Ion transport in control and streptozotocin-diabetic rat colon and ileum was studied using the Ussing chamber technique. No differences were observed between control and diabetic colonic mucosal short-circuit current under either basal or carbachol (100 nmol/L-1 micromol/L)-stimulated or prostaglandin E2 (100 nmol/L-1 micromol/L)-stimulated conditions. Similarly to colonic tissues, no differences in the short circuit current in either carbachol-stimulated or prostaglandin E2-stimulated tissues were observed between control and diabetic ileal mucosa. The basal diabetic ileal short circuit current (99.58 +/- 22.67 microA) was significantly greater than that of control ileal tissues (29.67 +/- 4.45 microA). This difference was abolished by the sodium-glucose-cotransporter inhibitor, phloridzin (50 micromol/L) (118.00 +/- 28.09 microA vs. 25.60 +/- 4.59 microA) and was also prevented by the replacement of glucose with mannitol in the buffer bathing the apical side of the tissue (control: 17.05 +/- 5.85 microA vs. 17.90 +/- 3.10 microA). Acetazolamide (450 micromol/L; a carbonic anhydrase inhibitor), amiloride, and bumetanide (100 micromol/L each; Na+-channel blockers), piroxicam (50 micromol/L; a COX1 cyclooxygenase inhibitor), and ouabain (1 mmol/L; a K+ transport inhibitor) had no effect on the basal short circuit current of either control or diabetic ileal tissues. This indicated that the alteration in the basal short circuit current of diabetic ileal tissues was due to a change in cellular glucose transport, whereas the evoked changes in short circuit current were unaffected by the diabetic state.  相似文献   

16.
Transport in the colon of the domestic fowl switches from sodium-linked hexose and amino acid cotransport on high-salt intake to amiloride-sensitive sodium channel expression on low-salt (LS) diets. The present experiments were designed to investigate the role of aldosterone in suppression of the colonic sodium-glucose luminal cotransporter (SGLT). LS-adapted hens were resalinated with or without simultaneous aldosterone treatment. Changes in the electrophysiological responses and SGLT protein expression levels were examined at 1, 3, and 7 days of treatment. Serum aldosterone levels fell from approximately 400 pmol/l in LS-adapted hens to values below the detection limit (<44 pmol/l) after 1 day of resalination. At the same time, glucose-stimulated short circuit current (I(SC)) increased from 20.9 +/- 8.7 to 56.3 +/- 15.5 microA/cm(2), whereas amiloride-sensitive I(SC) decreased from -68.9 +/- 12.7 microA/cm(2) on LS to +0.6 +/- 12.0 microA/cm(2). Glucose-stimulated I(SC) increased further at 3 and 7 days of resalination, whereas amiloride-sensitive I(SC) remained suppressed. When resalinated birds were simultaneously treated with aldosterone, the LS pattern of high amiloride-sensitive I(SC) and low glucose-stimulated I(SC) was maintained. Immunoblotting results from the same tissues demonstrated that SGLT-like protein expression increased following resalination. Aldosterone treatment completely blocked this effect. These results demonstrate that aldosterone suppresses both activity and protein expression of hen colonic SGLT. Resalination either through decreased aldosterone or other factors may be able to activate SGLT activity independently of increases in protein expression.  相似文献   

17.
1. The effect of theophylline on ion transport was examined using an in vitro short-circuited preparation of lizard colon. 2. Theophylline increased short circuit current (Isc) and transmural potential difference (PD). This increase caused by theophylline was accompanied by a small increase in transmural conductance (Gt). 3. Theophylline did not inhibit the absorption of Na+ but reversed Cl- absorption to secretion. This latter effect was due to an increase of the serosal-to-mucosal flux of Cl-. 4. Ion substitution experiments revealed that the effect of theophylline was Na+- and HCO3(-)-dependent and that these ions were required in the bathing solution. 5. These results with lizard colon are compared with those reported for mammalian colon and the mechanism of theophylline-induced Cl- secretion in these epithelia is discussed.  相似文献   

18.
Paths of ion transport across canine fetal tracheal epithelium   总被引:1,自引:0,他引:1  
Fluid secretion by the fetal sheep lung is thought to be driven by secretion of Cl- by the pulmonary epithelium. We previously demonstrated Cl- secretion by tracheal epithelium excised from fetal dogs and sheep. In this study we characterized the ion transport pathways across fetal canine tracheal epithelium. The transport of Na+ and Cl- across trachea excised from fetal dogs was evaluated from transepithelial electrical properties and isotope fluxes. Under basal conditions the tissues were characterized by a lumen-negative potential difference (PD) of 11 mV and conductance of 5.2 mS/cm2. The short-circuit current (Isc) was 43 microA/cm2 (1.6 mueq.cm-2.h-1). Basal Na+ flows were symmetrical, but net Na+ absorption (1.1 mueq.cm-2.h-1) could be induced by exposure of the luminal surface to amphotericin B (10(-6) M). Bilateral replacement of Na+ reduced Isc by 85%. Replacement of submucosal Na+ or exposure to submucosal furosemide (10(-4) M) reduced net Cl- secretion by 60-70%. Luminal exposure to indomethacin (10(-6) M) induced a 50% decrease in Isc, whereas isoproterenol (10(-6) M) increased Isc by 120%. The properties of the Cl- secretory pathway across fetal dog trachea are consistent with the model proposed for Cl- secretion across adult dog trachea and other Cl- -secreting tissues (e.g., bullfrog cornea and shark rectal gland). The absence of basal Na+ absorption by fetal dog trachea probably reflects limited apical membrane Na+ permeability.  相似文献   

19.
A simple, selective and sensitive method for the detection of NADH and ethanol is presented. Self-assembled monolayers (SAMs) of mercaptopyrimidine (MPM) and their derivatives, thiocytosine (TC) and 4,6-diamino-2-mercaptopyrimidine (DMP) on gold (Au) electrode are used for the voltammetric detection of NADH and ethanol in neutral aqueous solution. A decrease of 200-300 mV in the overpotential associated with an observable increase in the peak current was obtained for the oxidation of NADH on MPM and TC monolayer-modified electrodes without any redox mediator. The facilitated electron transfer for the oxidation of NADH at the TC monolayer is ascribed to the existence of stable cationic p-quinonoid form of TC. The electrode modified with DMP monolayer could not exhibit stable response for NADH owing to the fouling of electrode surface. The MPM and TC monolayer-modified electrodes show high selectivity and excellent sensitivity (MPM: 0.633+/-0.005 microA cm(-2) microM(-1); TC: 0.658+/-0.008 microA cm(-2) microM(-1)) towards NADH with detection limit (3sigma) of 2.5 and 0.5 microM, respectively. Presence of large excess of ascorbate (AA) does not interfere the detection of NADH and the monolayer-modified electrode shows individual voltammetric peaks for AA and NADH. Voltammetric sensing of ethanol using alcohol dehydrogenase on MPM and TC monolayer-modified electrode is successfully demonstrated and these electrode can detect as low as 0.5 mM ethanol in neutral pH. The sensitivity of the MPM and TC monolayer-modified electrodes toward ethanol was found to be 3.24+/-0.03 and 3.435+/-0.04 microA cm(-2) mM(-1), respectively.  相似文献   

20.
Generation of the action potentials (AP) necessary to activate skeletal muscle fibers requires that inward membrane currents exceed outward currents and thereby depolarize the fibers to the voltage threshold for AP generation. Excitability therefore depends on both excitatory Na+ currents and inhibitory K+ and Cl- currents. During intensive exercise, active muscle loses K+ and extracellular K+ ([K+]o) increases. Since high [K+]o leads to depolarization and ensuing inactivation of voltage-gated Na+ channels and loss of excitability in isolated muscles, exercise-induced loss of K+ is likely to reduce muscle excitability and thereby contribute to muscle fatigue in vivo. Intensive exercise, however, also leads to muscle acidification, which recently was shown to recover excitability in isolated K(+)-depressed muscles of the rat. Here we show that in rat soleus muscles at 11 mM K+, the almost complete recovery of compound action potentials and force with muscle acidification (CO2 changed from 5 to 24%) was associated with reduced chloride conductance (1731 +/- 151 to 938 +/- 64 microS/cm2, P < 0.01) but not with changes in potassium conductance (405 +/- 20 to 455 +/- 30 microS/cm2, P < 0.16). Furthermore, acidification reduced the rheobase current by 26% at 4 mM K+ and increased the number of excitable fibers at elevated [K+]o. At 11 mM K+ and normal pH, a recovery of excitability and force similar to the observations with muscle acidification could be induced by reducing extracellular Cl- or by blocking the major muscle Cl- channel, ClC-1, with 30 microM 9-AC. It is concluded that recovery of excitability in K(+)-depressed muscles induced by muscle acidification is related to reduction in the inhibitory Cl- currents, possibly through inhibition of ClC-1 channels, and acidosis thereby reduces the Na+ current needed to generate and propagate an AP. Thus short term regulation of Cl- channels is important for maintenance of excitability in working muscle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号