首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
STUTZEL  H.; AUFAMMER  W. 《Annals of botany》1991,67(6):487-495
Models for root: shoot, vegetative: generative and stem: leafpartitioning are presented to quantify dry matter partitioningof two contrasting genotypes of Vicia faba, an indeterminateand a ‘topless’. A third plant type, a determinateof which two to three inflorescences had been removed, was alsoincluded but behaved similarly to the intact plant. The root:shoot partitioning model predicts linear relationships betweenroot proportion and the product of air vapour pressure deficitand relative growth rate. Data from field experiments were consistentwith model prediction and coefficients estimated were similarfor both genotypes. Partitioning into pods was modelled as proportionalto the number of actively growing pods younger than 1000°Cd. Coefficients estimated were similar in both genotypes butdifferent between densities and years. In the indeterminategenotype, stem: leaf ratio was allometric throughout, whereasleaf growth ceased but stem growth continued in the determinateafter formation of the terminal inflorescence. Relatively moredry matter was allocated to stems than to leaves in high thanin low densities. In conclusion, the main differences in drymatter partitioning between genotypes concern leaf: stem partitioningduring early pod filling and pod partitioning due to pod numberdifferences. Partitioning, root, shoot, leaf, stem, Vicia faba L.  相似文献   

2.
Factorial combinations of four photoperiods (10, 11·33,12·66 and 16 h d-1) and three mean diurnal temperatures(20·2, 24·1 and 28·1°C) were imposedon nodulated plants of three Nigerian bambara groundnut genotypes[Vigna subterranea (L.) Verdc., syn. Voandzeia subterranea (L.)Thouars] grown in glasshouses in The Netherlands. The photothermalresponse of the onset of flowering and the onset of poddingwere determined. The time from sowing to first flower (f) wasdetermined by noting the day on which the first open flowerappeared. The time from sowing to the onset of podding (p) wasestimated from linear regressions of pod dry weight againsttime from sowing. Developmental rates were derived from thereciprocals of f and p. In two genotypes, 'Ankpa 2' and 'Yola',flowering occurred irrespective of photoperiod and 1/f was controlledby temperature only, occurring sooner at 28·1 than at20·2°C. The third genotype, 'Ankpa 4', was sensitiveto temperature and photoperiod and f was increased by coolertemperatures and photoperiods > 12·66 h d-1 at 20·2°Cand > 11·33 h d-1 at 24·1 and 28·1°C.In contrast, p was affected by temperature and photoperiod inall three genotypes. In bambara groundnut photoperiod-sensitivitytherefore increases between the onset of flowering and the onsetof podding. The most photoperiod-sensitive genotype with respectto p was 'Ankpa 4', followed by 'Yola' and 'Ankpa 2'. Therewas also variation in temperature-sensitivity between the genotypesinvestigated. Evaluation of bambara groundnut genotypes foradaptation to different photothermal environments will thereforerequire screening for flowering and podding responses.Copyright1994, 1999 Academic Press Vigna subterranea (L.) Verdc., Voandzeia subterranea (L.) Thouars, bambara groundnut, phenology, photoperiod, daylength, temperature, flowering, podding  相似文献   

3.
油菜地上部干物质分配与产量形成模拟模型   总被引:7,自引:0,他引:7  
利用油菜器官生长与发育进程及环境因子之间的定量关系,构建了基于分配指数的油菜地上部器官干物质分配动态模拟模型.各器官干物质分配指数随着生理发育时间而变化,基因型、播期、氮素及水分水平影响各器官干物质在地上部分配的大小.其中,氮素营养水平对绿色叶片干物质分配影响最大,氮素营养水平越高,绿色叶片分配指数越大;播期影响角果分配指数,晚播的角果分配指数高于早播.模型引入氮素营养指数、水分及播期影响因子来定量油菜各器官在实际生产条件下的分配强度,同时考虑了品种遗传特性的影响.通过不同品种氮肥处理试验建立模型,利用不同品种播期试验资料对模型进行了初步检验,表明模型具有较好的预测性和适用性.  相似文献   

4.
Ten groundnut genotypes were grown under adequately irrigated conditions or subjected to drought during the pod filling phase (83–113 days after sowing) in a medium deep Alfisol at the ICRISAT Centre during the 1986–1987 post-rainy season. Crop growth was measured in both treatments, but transpiration (7) and water-use efficiency (W) were quantified only in the drought treatment. Leaf samples from both treatments were assayed for discrimination against 13CO2 fixed in leaves (Δ) to examine the relationships between Δ, crop growth, and W under field conditions. The shoot dry matter accumulated during the period of drought (Y) ranged from 72–150 g m-2 and was closely related to transpiration. This indicates scope for selection of traits and practices to increase T. Water-use efficiencies ranged from 1.38–2.50 g kg-1 and were inversely related to Δ in eight out of the 10 genotypes. For the other two genotypes, there was evidence that T was underestimated by field measurements. Water-use efficiency and transpiration were not correlated suggesting that these two traits might be combined through breeding. Variation between genotypes was greatest for the partitioning of total dry matter to pods (73%), followed by water-use efficiency (31%) and transpiration (29%). Crop growth rates were negatively related to Δ under irrigated conditions but not under drought.  相似文献   

5.
The partitioning of dry matter to stems, leaves and pods ofgroundnut was examined as a function of mean air temperatureand water stress. Different levels of stress were imposed bygrowing plants on stored moisture at five different mean temperaturesbetween 19 °C and 31 °C and at four levels of saturationvapour pressure deficit. Stands of plants were grown in controlledenvironment glasshouses. The ratio of pod to shoot weight (PWR) was greatest at 22 °Cand decreased from 0.28 to 0.04 as temperature increased to31 °C. PWR was closely related to the number of pods longerthan 5.0 mm but negatively correlated with stem weight ratio.In general, water stress had a minor influence on PWR althoughpeg and pod production were stimulated in five of the nine treatments.Mild water stress promoted peg and pod production because reproductivegrowth was less affected than the growth of leaves and stems,the major sinks early in the reproductive phase. In one treatment,mild water stress increased PWR by a factor of 2.2 indicatingthat when adequate water is supplied to relieve a mild stress,PWR can be greatly increased. Key words: Temperature, Water deficit, Partitioning, Groundnut  相似文献   

6.
Elevated temperature and water deficit are the major abiotic factors restricting plant growth. While in nature these two stresses often occur at the same time; little is known about their combined effect on plants. Therefore, the main objective of the current study was to observe the effect of these two stresses on phenology, dry matter and seed yield in soybean. Two soybean genotypes JS 97-52 and EC 538828 were grown under green-house conditions which were maintained at different day/night temperatures of 30/22, 34/24, 38/26 and 42/28 °C with an average temperature of 26, 29, 32 and 35 °C, respectively. At each temperature, pots were divided into three sets, one set was unstressed while second and third set were subjected to water stress at vegetative and reproductive stage, respectively. As compared to 30/22 °C increase in temperature to 34/24 °C caused a marginal decline in leaf area, seed weight, total biomass, pods/pl, seeds/pl, harvest index, seeds/pod and 100 seed weight. The decline was of higher magnitude at 38/26 and 42/28 °C. Water stress imposed at two growth stages also significantly affected dry matter and yield. The highest average seed yield (10.9 g/pl) was observed at 30/22 °C, which was significantly reduced by 19, 42 and 64% at 34/24, 38/24 and 42/28 °C, respectively. Similarly, compared to unstressed plants (11.3 g/pl) there was 28 and 74% reduction in yield in plants stressed at vegetative and reproductive stage. Thus, both temperature and water stress affected the growth and yield but the effect was more severe when water stress was imposed at higher temperatures. JS 97-52 was more affected by temperature and water stress as compared to EC 538828. Though drought is the only abiotic factor that is known to affect the water status of plants, but the severity of the effect is highly dependent on prevailing temperature.  相似文献   

7.
The flowering and fruit-set of a bambara groundnut selectionfrom Ankpa, Nigeria, were studied in greenhouses at constantexposure to photoperiods of 10, 12, 12·5, 13, 14 and16 h. The development of embryos was determined in ovaries fromplants under photoperiods of 11·5 h and 14 h. The beginningof flowering, recorded as the number of days from sowing tothe first open flower, was delayed by lengthening the photoperiod.It started 7 d later under 16 h than under 10 h. This differenceincreased during the production of the next nine open flowers.Lengthening the photoperiod also caused a delay in the beginningof fruit development. Under 13 h it was delayed by more than40 d compared with fruit development under 10 h. Some plantsunder 14 and 16 h even failed to produce pods. After the beginningof fruit development dry matter partitioning to pods was substantiallyless under 14 and 16 h photoperiods than under photoperiodsof 13 h or less; this was reflected in a strong reduction ofpod growth rates. Under an 11·5 h photoperiod two groups of ovaries couldbe distinguished. In both, embryo development was identicalup to 17 d after anthesis, but then the embryos in the firstgroup continued to develop until they were full-grown at about41 d after anthesis, whereas the growth of the embryos in thesecond group stopped. Embryo development under a photoperiodof 14 h was similar to that in the ovaries with discontinuedembryo growth under the 11·5 photoperiod. Healthy-lookingembryos were found in ovaries up to 32 d after anthesis undera photoperiod 14 h. From then onwards embryos started to shriveland degenerate. Finally, the ovaries aborted.Copyright 1993,1999 Academic Press Vigna subterranea, Voandzeia subterranea, bambara groundnut, phenology, photoperiod, day-length, embryo development, harvest index, dry matter partitioning  相似文献   

8.
《Aquatic Botany》1987,29(3):227-243
Experiments are described in which seedlings of Typha orientalis Presls were grown for up to 6 months under precise conditions of temperature and photoperiod; photosynthesis was by natural daylight and did not vary between treatments. Variable treatments were imposed either from the seedling stage or on large plants raised under constant conditions.In general, total dry matter production increased as photoperiod increased from 8 to 16 h and also as day or night temperature increased, maximum production occurring when there was a warm day (30 or 27°C) and a small temperature drop (to 22°C) at night. The distribution of dry matter was also markedly affected by the imposed variables, leaf growth being favoured by high temperatures (to 30°C) and long photoperiods, and production of roots and rhizomes by low temperatures (to 10°C) and short photoperiods. None of the treatments resulted in floral initiation. The results are considered in relation to growth in the natural habitat.  相似文献   

9.
Limitations in carbohydrate supplies have been implicated as a factor responsible for reproductive failure under heat stress. Heat stress affects two stages of reproductive development in cowpea [Vigna unguiculata (L.) Walp.], and genotypes are available with tolerance and sensitivity to heat during these different stages. The objectives of this study were to determine the responses of these cowpea lines to ambient and elevated [CO2], under heat stress and optimal temperature, and test whether differences in carbohydrate supplies due to genotypes, CO2 enrichment and heat stress are associated with differences in sensitivity to heat during reproductive development. Plants were grown in reach-in growth chambers and subjected to day/night temperatures of either 33/20 or 33/30°C, and [CO2] levels of either 350 or 700 μmol mol-1. Under intermediate night temperature (33/20°C), all lines set substantial numbers of pods. Under high night temperature (33/30°C) with either ambient or elevated [CO2], one heat-sensitive line produced no flowers and the other set no pods, whereas the heat-tolerant line abundantly set pods. High night temperature reduced the overall carbohydrate content of the plants, especially peduncle sugars, and caused decreases in photosynthetic rates. The high pod set of the heat-tolerant line, under high night temperature, was associated with higher levels of sugars in peduncles compared with the heat-sensitive lines. The heat-tolerant line accumulated substantial shoot biomass, exhibited less accumulation of starch in leaves, and possibly had less down-regulation of photosynthesis in response to CO2 enrichment and heat stress than the heat-sensitive lines. Elevated [CO2] resulted in higher overall carbohydrate levels in heat-sensitive lines (starch in leaves, stems and peduncles), but it did not increase their heat tolerance with respect to flower production or pod set. Heat-induced damage to floral buds and anthers in the sensitive lines was associated with low sugars levels in peduncles, indicating that heat had greater effects on assimilate demand than on leaf assimilate supply. The heat-tolerant line was the most responsive genotype to elevated [CO2] with respect to pod production under either high or intermediate temperatures.  相似文献   

10.
The effects of either organic (urea and glutamine) or inorganic nitrogen forms (nitrate and ammonium) on dry matter accumulation in shoots and roots and on nitrogen assimilatory enzyme activities were studied in two Catasetum fimbriatum genotypes. Both genotypes, which had inverse patterns of dry matter partitioning between shoots and roots, were aseptically incubated in gelled culture media containing 6 mol m−3 of nitrogen and incubated in growth chamber for 30 and 60 days. In vivo nitrate reductase, glutamine synthetase, glutamate dehydrogenase activities as well as free ammonium contents were determined in shoots and roots of plants grown in four different nitrogen sources. Nitrogen assimilatory enzyme activities showed the highest values in the genotype that accumulated dry matter predominantly in the shoots. The nitrogen sources supplied affected dry matter accumulation in shoots and roots of both C. fimbriatum genotypes; however, they were not enough to change the characteristic pattern of dry matter partitioning of each genotype. On the other hand, the differences in the root/shoot ratio found among nitrogen treatments were relatively higher in the genotype that directed dry matter mainly to roots than in the genotype that allocates biomass to shoots. Our results suggest that NADH-dependent glutamate dehydrogenase plays an important role in ammonium assimilation in C. fimbriatum plants, particularly in the root system. Nitrogen metabolism and the dry matter partitioning of the two genotypes are discussed.  相似文献   

11.
Vara Prasad  P.V.  Craufurd  P.Q.  Summerfield  R.J. 《Plant and Soil》2000,222(1-2):231-239
Groundnuts (Arachis hypogaea L.) grown in the semi-arid tropics are commonly exposed to air and soil temperatures above 35 °C during the reproductive period causing significant yield losses. The objectives of this study were to determine: (i) whether effects of high air and/or high soil temperature in two contrasting cultivars were similar; (ii) the effects of the timing of imposition of high air and soil temperature; (iii) the effects of high air, high soil and both stresses combined on yield and yield components; and (iv) whether the effects of high air and high soil temperature were additive or multiplicative. Plants were grown at optimum and ambient soil temperature from planting until start of podding at 45 d after planting (DAP) in Experiment 1, and until start of flowering at 28 DAP in Experiment 2. Thereafter, plants of each cultivar were exposed to a factorial combination of two air temperatures (optimum: 28°/22 °C and high: 38°/22 °C) and two soil temperatures (ambient: 26°/24 °C and high: 38°/30 °C) until final harvest at 90 DAP. The effects of high air and high soil temperatures imposed from start of flowering or podding were similar. Exposure to high air and/or high soil temperature significantly reduced total dry matter production, partitioning of dry matter to pods, and pod yields in both the cultivars. High air temperature had no significant effect on total flower production but significantly reduced the proportion of flowers setting pegs (fruit-set) and hence fruit numbers. In contrast, high soil temperature significantly reduced flower production, the proportion of pegs forming pods and 100 seed weight. The effects of high air and soil temperature were mostly additive and without interaction. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

12.
Activities of the sucrose-cleaving enzymes, acid and neutral invertase and sucrose synthase, were measured in pods and seeds of developing snap bean (Phaseolus vulgaris L.) fruits, and compared with 14C-import, elongation and dry weight accumulation. During the first 10 d post-anthesis, pods elongated rapidly with pod dry weight increase lagging behind by several days. The temporal patterns of acid invertase activity and import coincided closely during the first part of pod development, consonant with a central role for this enzyme in converting imported sucrose during pod elongation and early dry weight accumulation. Later, sucrose synthase became the predominant enzyme of dry weight accumulation and was possibly associated with the development of phloem in pod walls. Sucrose synthase activity in seeds showed two peaks, corresponding to two phases of rapid import and dry weight accumulation; hence, sucrose synthase was associated with seed sink growth. Acid invertase activities in seeds were low and did not show a noticeable relationship with import or growth. All neutral invertase activities, during pod and seed development, were too low for it to have a dominant role in sucrose cleavage. Changes in activities of certain sucrose-cleaving enzymes appear to be correlated with certain sink functions, including import, storage of reserves, and biosynthetic activities. The data supports the association of specific sucrose-cleaving enzymes with the specific processes that occur in the developing pods and seeds of snap bean fruits; for example, acid invertase with pod elongation and sucrose synthase with fruit dry matter accumulation.  相似文献   

13.
Heat tolerance of groundnut (Arachis hypogaea L.) genotypes was evaluated by solute leakage and chlorophyll fluorescence techniques in heat-hardened and non-hardened plants. To determine the appropriate hardening treatment, 1-month-old plants of two groundnut genotypes, ICGV 86707 and Chico were conditioned at five combinations of hardening (37°C) and non-hardening (30°C) air temperatures over a 5-day period. Heat injury, was assessed through measurements of electrolyte leakage after stressing leaf discs to 55°C for 15 min. The relative injury was significantly influenced by the conditioning temperatures and by the temperature during 24 h prior to measurement if those involved non-hardening conditions. Relative injury and chlorophyll fluorescence were measured after stressing leaves of six genotypes at a range of temperatures between 49°C and 55°C. Significant genotype × hardening treatment interactions were observed in relative injury and chlorophyll fluorescence. Chico was susceptible to heat stress, the relative injury test identified ICGV 86707 as tolerant, and the chlorophyll fluorescence test identified ICGV 86707 as tolerant under hardened conditions and ICGV 87358 as tolerant when non-hardened. When expressed as percentage of control values, the relative injury and chlorophyll fluorescence measurements over the 49–53°C stress temperature range were strongly correlated. Chlorophyll concentrations were increased by hardening in all genotypes except Chico. In Chico, chlb concentration was decreased and the chla/b ratio increased by hardening, and chlorophyll concentrations were correlated with chlorophyll fluorescence parameters. Chlorophyll concentration may therefore provide an alternative means of screening for heat tolerance.  相似文献   

14.
Air temperatures of greater than 35 °C are frequently encountered in groundnut‐growing regions, especially in the semi‐arid tropics. Such extreme temperatures are likely to increase in frequency under future predicted climates. High air temperatures result in failure of peg and pod set due to lower pollen viability. The response of pollen germination and pollen tube growth to temperature was quantified in order to identify differences in pollen tolerance to temperature among 21 groundnut genotypes. Plants were grown from sowing to harvest in a poly‐tunnel under an optimum temperature of 28/22 °C (day/night). Pollen was collected at anther dehiscence and was exposed to temperatures from 10° to 47·5 °C at 2·5 °C intervals. The results showed that a modified bilinear model most accurately described the response to temperature of percentage pollen germination and maximum pollen tube length. Genotypes were found to range from most tolerant to most susceptible based on both pollen characters and membrane thermostability. Mean cardinal temperatures (Tmin, Topt and Tmax) averaged over 21 genotypes were 14·1, 30·1 and 43·0 °C for percentage pollen germination and 14·6, 34·4 and 43·4 °C for maximum pollen tube length. The genotypes 55‐437, ICG 1236, TMV 2 and ICGS 11 can be grouped as tolerant to high temperature and genotypes Kadiri 3, ICGV 92116 and ICGV 92118 as susceptible genotypes, based on the cardinal temperatures. The principal component analysis identified maximum percentage pollen germination and pollen tube length of the genotypes, and Tmax for the two processes as the most important pollen parameters in describing a genotypic tolerance to high temperature. The Tmin and Topt for pollen germination and tube growth, rate of pollen tube growth were less predictive in discriminating genotypes for high temperature tolerance. Genotypic differences in heat tolerance‐based on pollen response were poorly related (R2 = 0·334, P = 0·006) to relative injury as determined by membrane thermostability.  相似文献   

15.
The effects of temperature and light integral on fruit growth and development of five cacao genotypes (Amelonado, AMAZ 15/15, SCA 6, SPEC 54/1 and UF 676) were studied in semi‐controlled environment glasshouses in which the thermal regimes of cacao‐growing regions of Brazil, Ghana and Malaysia were simulated. Fruit losses because of physiological wilt (cherelle wilt) were greater at higher temperatures and also differed significantly between genotypes, reflecting genetic differences in competition for assimilates between vegetative and reproductive components. Short‐term measurements of fruit growth indicated faster growth rates at higher temperatures. In addition, a significant negative linear relationship between temperature and development time was observed. There was an effect of genotype on this relationship, such that time to fruit maturation at a given temperature was greatest for the clone UF 676 and least for AMAZ 15/15. Analysis of base temperatures, derived from these relationships indicated genetic variability in sensitivity of cacao fruit growth to temperature (base temperatures ranged from 7.5°C for Amelonado and AMAZ 15/15 to 12.9 for SPEC 54/1). Final fruit size was a positive function of bean number for all genotypes and a positive function of light integral for Amelonado in the Malaysia simulated environment (where the temperature was almost constant). In simulated environments where temperature was the main variable (Brazil and Ghana) increases in temperature resulted in a significant decrease in final pod size for one genotype (Amelonado) in Brazil and for two genotypes (SPEC 54/1 and UF 676) in Ghana. It was hypothesised that pod growth duration (mediated by temperature), assimilation and bean number are all determinants of final pod size but that under specific conditions one of these factors may override the others. There was variability between genotypes in the response of bean size and bean lipid content to temperature. Negative relationships between temperature and bean size were found for Amelonado and UF 676. Lipid concentration was a curvilinear function of temperature for Amelonado and UF 676, with optimal temperatures of 23°C and 24°C, respectively. The variability observed here of different cacao genotypes to temperature highlights the need and opportunities for appropriate matching of planting material with local environments.  相似文献   

16.
Photoperiod insensitivity plays a significant role in ensuring wide adaptability of genotypes across environments. The effect of photoperiod in groundnut (Arachis hypogaea L.) is manifested in post-flowering development including partitioning. The partitioning of assimilates, as measured by harvest index (HI), has the greatest effect on pod yield. The Fi progenies (excluding reciprocals) and their parents from a six-parent diallel cross were studied to estimate combining ability for biomass and HI under short (SD)- and long (LD)-day conditions, and to identify good combiners with high biomass and HI for use in breeding programmes. The experiment was conducted for three seasons in a split plot design with two photoperiods as main plots and 21 genotypes as subplots. The two photoperiod treatments were SD defined as normal-day light period and LD defined as normal-day light period extended by 4 h using incandescent lamps. The multi-environment analogue of Griffing's Method 2 - Model 1 was modified to analyse data for combining ability. While biomass was controlled by both GCA and SCA effects, HI was predominantly controlled by GCA effects. GCA and SCA effects for biomass and HI interacted with environments (six factorial combinations of photoperiods and seasons). SCA effects remained insensitive to variation in photoperiod both for biomass and HI. However, GCA effects for HI were sensitive to photoperiod. V6 (ICG 2405) was a good general combiner for both biomass and HI across environments. None of the crosses showed positive and significant SCA effects for both biomass and HI. Photoperiod influenced the sensitivity of GCA effects of V2 (ICGV 86694) and V6 for HI. However, the difference between SCA effects of V2 × V6 was not significant. The results of this study emphasise the need for future experiments with random genotypes over a range of photoperiods.  相似文献   

17.
Field studies were conducted in 1981 and 1982 to ascertain the effects of pod removal on senescence of nodulating and nonnodulating isolines of soybean (Glycine max [L.] Merr. cv Harosoy) plants. Specifically, the test hypothesis was that nodules act as a nitrogen source and a carbohydrate sink which would in turn prevent or delay senescence in the absence of pods. Senescence was judged by changes in metabolite levels, in dry matter accumulation, and by visual observation.

For both nodulated and nonnodulated plants, pod removal had no effect on the magnitude or rate of dry matter and reduced-N accumulation by whole plants. Phosphorus accumulation was significantly less in both nodulated- and nonnodulated-depodded plants, compared with respective control plants with pods. These data suggested a role for pods in phosphorus uptake. Accumulation of dry matter, reduced N, and phosphorus ceased at approximately the same time for all treatments.

Pod removal did affect partitioning of plant constitments, with leaves and stems of depodded plants serving as a major alternate sink for accumulation of dry matter, reduced N, phosphorus, and nonstructural carbohydrates (primarily starch). While depodded plants eventually lost a significant amount of leaves, leaf drop was delayed relative to plants with pods; and depodded plants still retained some green leaves at 2 weeks past grain maturity of control (podded) plants.

The results indicated that senescence patterns of soybean plants were the same for nodulated and nonnodulated plants, and that pods did not control the initiation of senescence, but rather altered the partitioning of plant constituents and the visual manifestations of senescence.

  相似文献   

18.
IRIT  KONSENS; J.  KIGEL 《Annals of botany》1991,67(4):391-399
The effect of temperature on production and abscission of flowerbuds, flowers and pods was studied in a determinate snap-beancultivar (cv. Tenderette). Under moderate temperature (e.g.27/17 °C) the onset of pod development was associated withcessation of flower bud production and with enhanced abscissionof flower buds. Raising night temperature from 17 °C to27 °C strongly reduced pod production, mature pod size andseeds per pod, while an increase in day temperature from 22°C to 32 °C had smaller and less consistent effects.Pod production under high night temperature was not constrainedby flower production since 27 °C at night promoted branchingand flower bud appearance. Under 32/27 °C day/night temperaturethe large reduction in pod set was due to enhanced abscissionof flower buds, flowers and young pods (< 3 cm). Flowershad the highest relative abscission followed by young pods andflower buds. Therefore, the onset of anthesis and of pod developmentwere the plant stages most sensitive to night temperature. Podslarger than 3 cm did not abscise but usually aborted and shrivelledunder high night temperature. The effects of 32/27 °C werenot due to transient water stresses and were observed even undercontinuous irrigation and mist-spraying. High temperature, flower production, pod set, seed set, abscission, snap bean, Phaseolus vulgaris L., cv. Tenderette  相似文献   

19.
A precursor in tetrapyrrole biosynthesis, 5-aminolevulinic acid (ALA), was applied via presowing soaking in Vigna catjung, V. mungo, and V. radiata. ALA increased plant growth and influenced dry matter accumulation in leaves, stems, and pods through increased chlorophyll content and photosynthetic CO2 absorption. At harvest, ALA treated plants had increased number of pods per plant, seeds per pod, 100 seed dry matter, biological yield, and the harvest index. Therefore, pretreatment of seeds with optimal concentration of ALA is recommended for improving the growth and productivity of tropical legumes. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

20.
Summary The hypothesis tested was that lack of photoperiod gene activity allows inherent partitioning of photosynthate to continued growth of the earliest potential buds, flowers, pods, and seeds (the organs that give rise to the yield). Alternatively, and competitively, photoperiod gene activity causes the photosynthate to be partitioned predominantly toward continued growth of new vegetative organs plus later initiation of more reproductive (yield) organs. This hypothesis was tested by comparing an insensitive and a photoperiod-sensitive bean (Phaseolus vulgaris L.) cultivar and their F1 with F2 segregates of undetermined genotype. Randomly derived homozygous F8 segregates were also compared. The F8 generation included one photoperiod-insensitive and one photoperiod-sensitive genotype in a 1:1 ratio, which verified control by one photoperiod gene. Under long daylength (LD), in addition to early versus late flowering and maturity, the two genotypes expressed opposite levels of 23 other traits that would be changed by competitive partitioning of the photosynthate. In contrast, under short daylength (SD), both genotypes flowered and matured early, and both expressed the levels for all 25 traits that the photoperiod-insensitive genotype expressed in both SD and LD. The photoperiod gene interacted with daylength to control the levels of all three major physiological components of yield: the aerial biomass, harvest index, and days to maturity. Included among the other traits with levels altered by daylength-modulated photoperiod gene activity were: the number of branches, nodes, leaves and leaf area, the rate of yield accumulation, and sink activity.Department of Plant Breeding and Biometry paper no. 758  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号