首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
Toll-like receptor-3 is critically involved in host defense against viruses through induction of type I interferons (IFNs). Recent studies suggest that a Toll/interleukin-1 receptor domain-containing adapter protein (TRIF) and two protein kinases (TANK-binding kinase-1 (TBK1) and IkappaB kinase (IKK)-epsilon) are critically involved in Toll-like receptor-3-mediated IFN-beta production through activation of IFN regulatory factor (IRF)-3 and IRF-7. In this study, we demonstrate that TRIF interacts with both IRF-7 and IRF-3. In addition to TBK1 and IKKepsilon, our results indicate that IKKbeta can also phosphorylate IRF-3 and activate the IFN-stimulated response element. TRIF-induced IRF-3 and IRF-7 activation was mediated by TBK1 and its downstream kinases IKKbeta and IKKepsilon. TRIF induced NF-kappaB activation through an IKKbeta- and tumor necrosis factor receptor-associated factor-6-dependent (but not TBK1- and IKKepsilon-dependent) pathway. In addition, TRIF also induced apoptosis through a RIP/FADD/caspase-8-dependent and mitochondrion-independent pathway. Furthermore, our results suggest that the TRIF-induced IFN-stimulated response element and NF-kappaB activation and apoptosis pathways are uncoupled and provide a molecular explanation for the divergent effects induced by the adapter protein TRIF.  相似文献   

5.
VISA is an adapter protein required for virus-triggered IFN-beta signaling   总被引:14,自引:0,他引:14  
Xu LG  Wang YY  Han KJ  Li LY  Zhai Z  Shu HB 《Molecular cell》2005,19(6):727-740
  相似文献   

6.
7.
Qu L  Feng Z  Yamane D  Liang Y  Lanford RE  Li K  Lemon SM 《PLoS pathogens》2011,7(9):e1002169
Toll-like receptor 3 (TLR3) and cytosolic RIG-I-like helicases (RIG-I and MDA5) sense viral RNAs and activate innate immune signaling pathways that induce expression of interferon (IFN) through specific adaptor proteins, TIR domain-containing adaptor inducing interferon-β (TRIF), and mitochondrial antiviral signaling protein (MAVS), respectively. Previously, we demonstrated that hepatitis A virus (HAV), a unique hepatotropic human picornavirus, disrupts RIG-I/MDA5 signaling by targeting MAVS for cleavage by 3ABC, a precursor of the sole HAV protease, 3C(pro), that is derived by auto-processing of the P3 (3ABCD) segment of the viral polyprotein. Here, we show that HAV also disrupts TLR3 signaling, inhibiting poly(I:C)-stimulated dimerization of IFN regulatory factor 3 (IRF-3), IRF-3 translocation to the nucleus, and IFN-β promoter activation, by targeting TRIF for degradation by a distinct 3ABCD processing intermediate, the 3CD protease-polymerase precursor. TRIF is proteolytically cleaved by 3CD, but not by the mature 3C(pro) protease or the 3ABC precursor that degrades MAVS. 3CD-mediated degradation of TRIF depends on both the cysteine protease activity of 3C(pro) and downstream 3D(pol) sequence, but not 3D(pol) polymerase activity. Cleavage occurs at two non-canonical 3C(pro) recognition sequences in TRIF, and involves a hierarchical process in which primary cleavage at Gln-554 is a prerequisite for scission at Gln-190. The results of mutational studies indicate that 3D(pol) sequence modulates the substrate specificity of the upstream 3C(pro) protease when fused to it in cis in 3CD, allowing 3CD to target cleavage sites not normally recognized by 3C(pro). HAV thus disrupts both RIG-I/MDA5 and TLR3 signaling pathways through cleavage of essential adaptor proteins by two distinct protease precursors derived from the common 3ABCD polyprotein processing intermediate.  相似文献   

8.
9.
MyD88 is a Toll/IL-1 receptor (TIR) domain-containing adapter common to signaling pathways via Toll-like receptor (TLR) family. However, accumulating evidence demonstrates the existence of a MyD88-independent pathway, which may explain unique biological responses of individual TLRs, particularly TLR3 and TLR4. TIR domain-containing adapter protein (TIRAP)/MyD88 adapter-like, a second adapter harboring the TIR domain, is essential for MyD88-dependent TLR2 and TLR4 signaling pathways, but not for MyD88-independent pathways. Here, we identified a novel TIR domain-containing molecule, named TIR domain-containing adapter inducing IFN-beta (TRIF). As is the case in MyD88 and TIRAP, overexpression of TRIF activated the NF-kappaB-dependent promoter. A dominant-negative form of TRIF inhibited TLR2-, TLR4-, and TLR7-dependent NF-kappaB activation. Furthermore, TRIF, but neither MyD88 nor TIRAP, activated the IFN-beta promoter. Dominant-negative TRIF inhibited TLR3-dependent activation of both the NF-kappaB-dependent and IFN-beta promoters. TRIF associated with TLR3 and IFN regulatory factor 3. These findings suggest that TRIF is involved in the TLR signaling, particularly in the MyD88-independent pathway.  相似文献   

10.
Chronic hepatitis C virus (HCV) infection is a major global public health problem. HCV infection is supported by viral strategies to evade the innate antiviral response wherein the viral NS3.4A protease complex targets and cleaves the interferon promoter stimulator-1 (IPS-1) adaptor protein to ablate signaling of interferon alpha/beta immune defenses. Here we examined the structural requirements of NS3.4A and the therapeutic potential of NS3.4A inhibitors to control the innate immune response against virus infection. The structural composition of NS3 includes an amino-terminal serine protease domain and a carboxyl-terminal RNA helicase domain. NS3 mutants lacking the helicase domain retained the ability to control virus signaling initiated by retinoic acid-inducible gene-I (RIG-I) or melanoma differentiation antigen 5 and suppressed the downstream activation of interferon regulatory factor-3 (IRF-3) and nuclear factor kappaB (NF-kappaB) through the targeted proteolysis of IPS-1. This regulation was abrogated by truncation of the NS3 protease domain or by point mutations that ablated protease activity. NS3.4A protease control of antiviral immune signaling was due to targeted proteolysis of IPS-1 by the NS3 protease domain and minimal NS4A cofactor. Treatment of HCV-infected cells with an NS3 protease inhibitor prevented IPS-1 proteolysis by the HCV protease and restored RIG-I immune defense signaling during infection. Thus, the NS3.4A protease domain can target IPS-1 for cleavage and is essential for blocking RIG-I signaling to IRF-3 and NF-kappaB, whereas the helicase domain is dispensable for this action. Our results indicate that NS3.4A protease inhibitors have immunomodulatory potential to restore innate immune defenses to HCV infection.  相似文献   

11.
12.
13.
14.
15.
16.
We describe the development of a selectable, bi-cistronic subgenomic replicon for bovine viral diarrhea virus (BVDV) in Huh-7 cells, similar to that established for hepatitis C virus (HCV). The selection marker and reporter (Luc-Ubi-Neo) in the BVDV replicon was fused with the amino-terminal protease N(pro), and expression of the nonstructural proteins (NS3 to NS5B) was driven by an encephalomyocarditis virus internal ribosome entry site. This BVDV replicon allows us to compare RNA replication of these two related viruses in a similar cellular background and to identify antiviral molecules specific for HCV RNA replication. The BVDV replicon showed similar sensitivity as the HCV replicon to interferons (alpha, beta, and gamma) and 2'-beta-C-methyl ribonucleoside inhibitors. Known nonnucleoside inhibitor molecules specific for either HCV or BVDV can be easily distinguished by using the parallel replicon systems. The HCV replicon has been shown to block, via the NS3/4A serine protease, Sendai virus-induced activation of interferon regulatory factor 3 (IRF-3), a key antiviral signaling molecule. Similar suppression of IRF-3-mediated responses was also observed with the Huh-7-BVDV replicon but was independent of NS3/4A protease activity. Instead, the amino-terminal cysteine protease N(pro) of BVDV appears to be, at least partly, responsible for suppressing IRF-3 activation induced by Sendai virus infection. This result suggests that different viruses, including those closely related, may have developed unique mechanisms for evading host antiviral responses. The parallel BVDV and HCV replicon systems provide robust counterscreens to distinguish viral specificity of small-molecule inhibitors of viral replication and to study the interactions of the viral replication machinery with the host cell innate immune system.  相似文献   

17.
18.
Hepatitis C virus (HCV) infection is sensed in the host cell by the cytosolic pathogen recognition receptor RIG-I. RIG-I signaling is propagated through its signaling adaptor protein MAVS to drive activation of innate immunity. However, HCV blocks RIG-I signaling through viral NS3/4A protease cleavage of MAVS on the mitochondrion-associated endoplasmic reticulum (ER) membrane (MAM). The multifunctional HCV NS3/4A serine protease is associated with intracellular membranes, including the MAM, through membrane-targeting domains within NS4A and also at the amphipathic helix α(0) of NS3. The serine protease domain of NS3 is required for both cleavage of MAVS, a tail-anchored membrane protein, and processing the HCV polyprotein. Here, we show that hydrophobic amino acids in the NS3 helix α(0) are required for selective cleavage of membrane-anchored portions of the HCV polyprotein and for cleavage of MAVS for control of RIG-I pathway signaling of innate immunity. Further, we found that the hydrophobic composition of NS3 helix α(0) is essential to establish HCV replication and infection. Alanine substitution of individual hydrophobic amino acids in the NS3 helix α(0) impaired HCV RNA replication in cells with a functional RIG-I pathway, but viral RNA replication was rescued in cells lacking RIG-I signaling. Therefore, the hydrophobic amphipathic helix α(0) of NS3 is required for NS3/4A control of RIG-I signaling and HCV replication by directing the membrane targeting of both viral and cellular substrates.  相似文献   

19.
Dansako H  Ikeda M  Kato N 《The FEBS journal》2007,274(16):4161-4176
Toll-like receptors and RNA helicase family members [retinoic acid-inducible gene I (RIG-I) and melanoma differentiation associated gene-5 (MDA5)] play important roles in the induction of interferon-beta as a major event in innate immune responses after virus infection. TRIF (adaptor protein of Toll-like receptor 3)-mediated and Cardif (adaptor protein of RIG-I or MDA5)-mediated signaling pathways contribute rapid induction of interferon-beta through the activation of interferon regulatory factor-3 (IRF-3). Previously, it has been reported that the hepatitis C virus NS3-4A serine protease blocks virus-induced activation of IRF-3 in the human hepatoma cell line HuH-7, and that NS3-4A cleaves TRIF and Cardif molecules, resulting in the interruption of antiviral signaling pathways. On the other hand, it has recently been reported that non-neoplastic human hepatocyte PH5CH8 cells retain robust TRIF- and Cardif-mediated pathways, unlike HuH-7 cells, which lack a TRIF-mediated pathway. In the present study, we further investigated the effect of NS3-4A on antiviral signaling pathways. Although we confirmed that PH5CH8 cells were much more effective than HuH-7 cells for the induction of interferon-beta, we obtained the unexpected result that NS3-4A could not suppress the interferon-beta production induced by the TRIF-mediated pathway, although it suppressed the Cardif-mediated pathway by cleaving Cardif at the Cys508 residue. Using PH5CH8, HeLa, and HuH-7-derived cells, we further showed that NS3-4A could not cleave TRIF, in disagreement with a previous report describing the cleavage of TRIF by NS3-4A. Taken together, our findings suggest that the blocking of the interferon production by NS3-4A is not sufficient in HCV-infected hepatocyte cells.  相似文献   

20.
The Nipah virus V and W proteins, which are encoded by the P gene via RNA editing, have a common N-terminal domain but unique C-terminal domains. They localize to the cytoplasm and nucleus, respectively, and have both been shown to function as inhibitors of JAK/STAT signaling. Here we report that V and W proteins also block virus activation of the beta interferon (IFN-beta) promoter and the IFN regulatory factor 3 (IRF3)-responsive IFN-stimulated gene 54 promoter. Surprisingly, only W protein shows strong inhibition of promoter activation in response to stimulation of Toll-like receptor 3 (TLR3) by extracellular double-stranded RNA. This activity is dependent on the nuclear localization of W protein. Within the unique C-terminal domain of W protein, we have identified a nuclear localization signal (NLS) that requires basic residues at positions 439, 440, and 442. This NLS is responsible for mediating the preferential interaction of W protein with karyopherin-alpha 3 and karyopherin-alpha 4. Nuclear localization of W protein therefore enables it to target both virus and TLR3 pathways, whereas the cytoplasmic V protein is restricted to inhibiting the virus pathway. We propose that this discrepancy is in part due to the V protein being less able to block signaling in response to the kinase, TBK-1, whereas both V and W can prevent promoter activation in response to IKKepsilon. We demonstrate that, when the TLR3 pathway is stimulated, the levels of phosphorylated IRF3 are reduced in the presence of W protein but not V protein, confirming the differential effects of these proteins and illustrating that W protein-mediated inhibition is due to a loss of active IRF3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号