首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
[35S]Taurine injected intravitreally into rabbits was transported axonally to the optic nerve terminals. Considerably more [35S]taurine was transported in young rabbits than in mature rabbits. The time course of taurine transport did not parallel that of proteins labeled with [3H]proline in the same system. The concentration of taurine in all components of the visual system, except retina, was greater in young animals than in mature animals, and was especially high in optic nerve. The possible functions of the high concentrations of taurine and the greater amount of axonally transported taurine in developing mammalian CNS are discussed.  相似文献   

2.
These experiments were performed to characterize the axonally transported taurine in the visual system of developing rabbits. [35S]Taurine, transported axonally after intravitreal injection, disappeared from the components of the visual system more rapidly after nerve section than it did with intact nerves. The decrease was most rapid in the youngest animals, and tended to be most pronounced in the elements nearest to the section (optic nerve, optic tract).3H-labeled proteins present in the visual system changed less markedly than [35S]taurine after nerve section; only in the youngest rabbits was there a marked decrease. These results suggest that a greater proportion of the intraaxonal taurine is labile in young rabbits than in mature rabbits.  相似文献   

3.
After intraocular injections of [3H]leucine, six regions of the visual pathway of adult rabbit were used to study the spatio-temporal pattern of the slow anterograde axonal transport of radioactive proteins associated with the particulate fraction, the water-soluble fraction and the myelin fraction. Unlike other fractions, myelin-associated labelled proteins represented a time-constant (for a given region) percentage of total tissue radioactivity. This percentage increased from the first half to the second half of the optic nerve and remained high in the chiasma and tract. The peak specific radioactivity of myelin decreased in the same direction. Myelin proteins were separated by sodium dodecyl sulphate/polyacrylamide-gel electrophoresis and the labelling patterns obtained in different regions and at different survival times were compared. At the peak of myelin radioactivity of a given region the label was typically associated with four protein bands, L1, L2, L3 and L4, of 40000, 44000, 62000, and 68000 mol.wts. respectively. The basic protein, the proteolipid protein and the W1 component (mol.wt. 51000-53000) of the Wolfgram proteins were not significantly labelled. The radioactivity associated with the W2 component (mol.wt 60000) of the Wolfgram proteins could be derived from the closely migrating L3 component. At shorter survival times no clear labelling pattern could be detected. At longer survival times radioactivity was almost totally localized around band L3. The results presented underline the importance of choosing appropriate experimental conditions to obtain a consistent labelling pattern of myelin-associated proteins and to investigate the possible mechanism responsible for this phenomenon.  相似文献   

4.
The transport of labeled proteins from the hypothalamus to the neurohypophysis following 35S-methionine injection into the rat supraoptic nucleus was studied using a unique approach adapted for the study of short-axon systems. Multiple-rate components to those found in other neuronal systems were demonstrated. Neurosecretory vesicle-containing proteins (e.g., neurophysins) were transported at fast rates (greater than 120 mm/day), whereas the cytoskeletal protein, actin, moved principally in the slow component of transport. Two-dimensional gel electrophoresis was used to analyze the diverse patterns of labeled proteins found in the various rate components of axonal transport in this system.  相似文献   

5.
Abstract: Despite several studies indicating that cyclic nucleotides and their associated enzymes are present in peripheral nerves, their role in neuronal function remains unknown. One possible role is that of a modulating influence in the processes associated with axonal growth and maintenance, and in axonal regeneration. This study has used the frog sciatic nerve as a preparation for investigating the subcellular distribution of neuronai adenylate cyclase activity in normal and crush-injured nerves. The experiments have focused primarily on the axonal transport of adenylate cyclase activity and its subcellular redistribution at the site of constriction. The adenylate cyclase activity measurements were also compared with similar measurements of acetylcholinesterase distribution. Adenylate cyclase activity in normal sciatic nerves increased in the segment proximal to a nerve constriction over time, but did not increase distal to the constriction. Subcellular fractionation of the accumulating activity indicated that the majority of axonally transported enzyme was associated with microsomal organelles; however, an additional transported component was found in the nuclear/mitochondrial fraction. The transport velocities of these two components were different. The microsomal activity appeared to be transported with Group I proteins, while the nuclear/mitochondrial activity was transported with Group II. Rapidly transported Group I proteins have been suggested to be destined principally for the axolemma or the agranular reticu-lum, and the more slowly transported Group II proteins to be associated with intracellular organelles, including synaptic structures. Thus, axonally transported adenylate cyclase activity may have more than one functional role in peripheral nerve. The association of both adenylate cyclase and Protein I, an endogenous substrate for cyclic AMP, with Group II transport offers the intriguing possibility of a structural correspondence. Adenylate cyclase activity in Group I, however, did not appear to be transported with organelles which also contained acetylcholinesterase. The two enzymes, in terms of both velocity of transport and susceptibility to retrograde transport, were handled differently by the neuron. The subcellular distribution of adenylate cyclase activity in an isolated nerve segment was also found to change over time. Microsomal activity decreased, while nuclear/mitochondrial activity transiently increased and then also decreased. This may offer some indication of the morphological location of adenylate cyclase and its potential involvement in Wallerian degeneration and nerve regeneration, particularly in view of recent reports concerning the importance of local injury-induced changes to the initiation of nerve regeneration. We have proposed a dynamic association between axonal calcium and cyclic AMP concentration, which provides a method for membrane renewal or degradation in the intact axon and may offer a molecular basis for the structural reorganization occurring in the proximal segment of an injured nerve.  相似文献   

6.
Stop-flow techniques were used to determine how temperature affected the axonal transport of dopamine-beta-hydroxylase (DBH) activity in rabbit sciatic nerves in vitro. These nerves were cooled locally to 2 degrees C for 1.5 hr, which caused a sharp peak of DBH activity to accumulate above the cooled region. Accumulated DBH was then allowed to resume migration at various temperatures. From direct measurements of the rate of migration, we found that the axonal transport velocity of DBH was a simple exponential function of temperature between 13 degrees C and 42 degrees C. Over this range of temperatures, the results were well described by the equation: V=0.546(1.09)T, where V is velocity in mm/hr, and T is temperature in degrees centigrade. The Q10 between 13 degrees and 42 degrees C was 2.33, and an Arrhenius plot of the natural logarithm of velocity versus the reciprocal of absolute temperature yielded an apparent activation energy of 14.8 kcal. Transport virtually halted when temperature was raised to 47 degrees C, although only about half of the DBH activity disappeared during incubation at this temperature. Another transition occurred at 13 degrees C; below this temperature, velocity fell precipitously. This was not an artifact peculiar to the stop-flow system since the rate of accumulation of DBH activity proximal to a cold-block also decreased abruptly when the temperature above the block was reduced below 13 degrees C.  相似文献   

7.
Uptake and transneuronal passage of wild-type and attenuated strains of a swine alpha-herpesvirus (pseudorabies [PRV]) were examined in rat visual projections. Both strains of virus infected subpopulations of retinal ganglion cells and passed transneuronally to infect retino-recipient neurons in the forebrain. However, the location of infected forebrain neurons varied with the strain of virus. Intravitreal injection of wild-type virus produced two temporally separated waves of infection that eventually reached all known retino-recipient regions of the central neuraxis. By contrast, the attenuated strain of PRV selectively infected a functionally distinct subset of retinal ganglion cells with restricted central projections. The data indicate that projection-specific groups of ganglion cells are differentially susceptible to the two strains of virus and suggest that this sensitivity may be receptor mediated.  相似文献   

8.
Two polypeptides (M1 and M2) which co-sediment with F-actin in an ATP- reversible way have been detected in extracts of tissue from the rabbit visual system. Both polypeptides resemble skeletal muscle myosin in their ATP-sensitive co-sedimentation with actin, while they resemble the heavy chain of myosin and the lighter polypeptide of erythrocyte spectrin in their electrophoretic mobilities. (The estimated molecular weights are: MI congruent to 195,000; myosin congruent 200,000; M2 and spectrin congruent to 220,000). M1 and M2 were labeled in the cell bodies of the retinal ganglion cells with a radioactive amino acid and subsequently recovered in tissues (optic nerve, optic tract, lateral geniculate nucleus, and superior colliculus) containing segments of the retinal ganglion cell axons. The temporal sequence of labeling M1 and M2 in these tissues indicated that both polypeptides were synthesized in the cell bodies of retinal ganglion cells and subsequently transported down their axons at different maximum velocities. The estimated velocities were: M1, 4-8 mm per day; and M2, 2-4 mm per day.  相似文献   

9.
The regulatory characteristics exhibited by ureidosuccinate transport in Saccharomyces cerevisiae led us to hypothesize that this biosynthetic intermediate was transported via the degradative allantoate transport system. The hypothesis was verified by the finding that neither dal5 nor urep1 mutant strains could transport allantoate or ureidosuccinate. Mutations in the two loci were tightly linked and failed to complement one another, suggesting that they were allelic. The use of a common transport system for accumulation of both biosynthetic and degradative metabolites explains the paradoxical characteristics observed for control of ureidosuccinate and allantoate transport.  相似文献   

10.
In an effort to determine whether the “growth state” and the “mature state” of a neuron are differentiated by different programs of gene expression, we have compared the rapidly transported (group I) proteins in growing and nongrowing axons in rabbits. We observed two polypeptides (GAP-23 and GAP-43) which were of particular interest because of their apparent association with axon growth. GAP-43 was rapidly transported in the central nervous system (CNS) (retinal ganglion cell) axons of neonatal animals, but its relative amount declined precipitously with subsequent development. It could not be reinduced by axotomy of the adult optic nerves, which do not regenerate; however, it was induced after axotomy of an adult peripheral nervous system nerve (the hypoglossal nerve, which does regenerate) which transported only very low levels of GAP-43 before axotomy. The second polypeptide, GAP-23 followed the same pattern of growth-associated transport, except that it was transported at significant levels in uninjured adult hypoglossal nerves and not further induced by axotomy. These observations are consistent with the “GAP hypothesis” that the neuronal growth state can be defined as an altered program of gene expression exemplified in part by the expression of GAP genes whose products are involved in critical growth-specific functions. When interpreted in terms of GAP hypothesis, they lead to the following conclusions: (a) the growth state can be subdivided into a “synaptogenic state” characterized by the transport of GAP-23 but not GAP-43, and an “axon elongation state” requiring both GAPs; (b) with respect to the expression of GAP genes, regeneration involves a recapitulation of a neonatal state of the neuron; and (c) the failure of mammalian CNS neurons to express the GAP genes may underly the failure of CNS axons to regenerate after axon injury.  相似文献   

11.
A biochemical analysis of radioactive compounds was performed in the olfactory bulb (OB) and raphe dorsalis (RD) after injection of radioactive [3H] or [14C]serotonin (5-HT ranging from 10?2 M to 10?7 M) into the OB of rats treated or not with a monoamine-oxidase inhibitor (MAOI).In the OB of untreated rats, radioactivity was associated with precipitated protein and soluble perchloric acid (PCA) fractions. High performance liquid chromatography (HPLC) analysis of the PCA-supernatant gave 4 radioactive peaks: one associated with endogenous 5-HT, another with endogenous 5-hydroxyindole acetic acid (5-HIAA) and two without any relationship with endogenous hydroxyindoles: a ‘5-HT derivative A’ and a ‘5-HT derivative B’. The presence of these ‘5-HT derivatives’ was significantly reduced after treatment with 5,6-dihydroxytryptamine.In the RD, radioactivity was associated with the protein fraction and with ‘5-HT derivative A’. The kinetic analysis (from 30 min to 46 h) of the ‘5-HT derivative A’ was characterized by a disappearance in the OB and an accumulation in the RD corresponding to a rate of migration in a range of 0.7 to 2 mm/h. This compound was absent or negligible in other non-serotoninergic neurons (such as the Locus Coeruleus, Amygdala and Cortex piriformis). No clear evidence for retrograde transport of radioactive 5-hydroxytryptophan (5-HTP) or 5-HIAA was found.At lower concentration of 5-HT injected into the OB, the half lives and the times of maximal accumulation for 5-HIAA, ‘5-HT derivative A’ and ‘5-HT derivative B’ were increased. The specific activity of 5-HT and 5-HIAA was also increased.The selective radioactive accumulation in the cell bodies of RD neurons after injection of radioactive 5-HT into the OB is discussed as resulting from a selectivity in (a) the uptake by 5-HT nerve terminals; (b) the metabolism of 5-HT into ‘5-HT derivative A’ in the OB; (c) the retrograde axonal transport of ‘5-HT derivative A’. This ‘5-HT derivative A’ could represent a messenger between nerve terminals and cell bodies and could be involved in homeostatic mechanisms that maintain cellular dynamics.When a MAOI was used, ‘5-HT-derivative A’ and [3H]5-HT were found in the OB and also in the RD cell bodies, and to a lesser extent, in the non-serotoninergic cell bodies. These results indicate that MAO inhibition produces a relative non-selectivity in the ‘uptake-metabolism and retrograde axonal transport’ systems.  相似文献   

12.
Neither methyl-alpha-maltoside nor 5-thiomaltose is utilized by Escherichia coli as a sole carbon source. Both are, however, effective competitive inhibitors of maltose transport into the bacterium (Km for maltose, 0.8 microM, Ki for methyl-alpha-maltoside, 5.5 microM; Ki for 5-thiomaltose, 0.2 microM). Both analogs are bound by the periplasmic maltose-binding protein. Methyl-alpha-[14C]maltoside and 5-[3H]thiomaltose were both accumulated inside E. coli. Methyl-alpha-maltoside was unchanged after accumulation, but 5-thiomaltose was converted to an unidentified compound that could exit from the bacterium. Both analogs were inhibitory to the growth of E. coli, but only when the bacteria were previously induced for the maltose transport system. The analogs are substrates for but poor inducers of the maltose transport system.  相似文献   

13.
The distribution of the proteins migrating with the slow components a (SCa) and b (SCb) of axonal transport were studied in cross-sections of axons with electron microscope autoradiography. Radiolabeled amino acids were injected into the hypoglossal nucleus of rabbits and after 15 d, the animals were killed. Hypoglossal nerves were processed either for SDS-polyacrylamide gel electrophoresis fluorography to identify and locate the two components of slow transport, or for quantitative electron microscope autoradiography. Proteins transported in SCa were found to be uniformly distributed within the cross-section of the axon. Labeled SCb proteins were also found throughout the axonal cross-section, but the subaxolemmal region of the axon contained 2.5 times more SCb radioactivity than any comparable area in the remainder of the axon.  相似文献   

14.
15.
16.
S T Brady  R J Lasek 《Cell》1981,23(2):515-523
The axonal transport of two soluble enzymes of intermediary metabolism was evaluated: the nerve-specific form of the glycolytic enzyme enolase (NSE) and the brain isozyme of creatine phosphokinase (CPK). Previously, little was known about the intracellular movements of the soluble proteins of the cell. Although the soluble enzymes of glycolysis and other pathways of intermediary metabolism have been thought to be freely diffusing in the cytosol, many are required in the axonal extremities of the neuron and must be transported to the sites of utilization. Comigration of purified enzymes with radioactive polypeptides associated with specific rate components of axonal transport in two-dimensional gel electrophoresis indicates that both NSE and CPK move in the axon solely as part of the group of proteins known as slow component b (SCb) at a rate of 2 mm/day. Peptide mapping following limited proteolysis confirmed identification of NSE and CPK in SCb. Materials associated with SCb have been shown to move coherently along the axon and to behave as a discrete cellular structure, the axoplasmic matrix. Association of two soluble enzymes, NSE and CPK, with the SCb complex of proteins requires a reevaluation of the assumption that these and other soluble proteins of the axon are freely diffusible.  相似文献   

17.
18.
19.
Axons from rats treated with the neurotoxic agent beta,beta'-iminodipropionitrile (IDPN) were examined by quick-freeze, deep-etch electron microscopy. Microtubules formed bundles in the central region of the axons, whereas neurofilaments were segregated to the periphery. Most membrane-bounded organelles, presumably including those involved in rapid axonal transport, were associated with the microtubule domain. The high resolution provided by quick-freeze, deep-etch electron microscopy revealed that the microtubules were coated with an extensive network of fine strands that served both to cross-link the microtubules and to interconnect them with the membrane-bounded organelles. The strands were decorated with granular materials and were irregular in dimension. They appeared either singly or as an extensive anastomosing network in fresh axons. The microtubule-associated strands were observed in fresh, saponin-extracted, or aldehyde-fixed tissue. To explore further the identity of the microtubule-associated strands, microtubules purified from brain tissue and containing the high molecular weight microtubule-associated proteins MAP 1 and MAP 2 were examined by quick-freeze, deep-etch electron microscopy. The purified microtubules were connected by a network of strands quite similar in appearance to those observed in the IDPN axons. Control microtubule preparations consisting only of tubulin and lacking the MAPs were devoid of associated strands. To learn which of the MAPs were present in the microtubule bundles in the axon, sections of axons from IDPN-treated rats were examined by immunofluorescence microscopy using antibodies to MAP 1A, MAP 1B, MAP 2, and tubulin. Anti-MAP 2 staining was only marginally detectable in the IDPN-treated axons, consistent with earlier observations. Anti-MAP 1A and anti-MAP 1B brightly stained the IDPN-treated axons, with the staining exclusively limited to the microtubule domains. Furthermore, thin section-immunoelectron microscopy using colloidal gold-labeled second antibodies revealed that both anti-MAP 1A and anti-MAP 1B stained fuzzy filamentous structures between microtubules. In view of earlier work indicating that rapid transport is associated with the microtubule domain in the IDPN-treated axon, it now appears that MAP 1A and MAP 1B may play a role in this process. We believe that MAP 1A and MAP 1B are major components of the microtubule-associated fibrillar matrix in the axon.  相似文献   

20.
Metamorphosis of the sea lamprey, Petromyzon marinus, is a true metamorphosis. The larval lamprey is a filter-feeder who dwells in the silt of freshwater streams and the adult is an active predator found in large lakes or the sea. The transformation usually occurs in the fifth or sixth year of life. Enlargement of the eye has been long accepted as a distinctive indication of metamorphosis in the sea lamprey, but it had been thought that this was because eye development in the larva was arrested after the formation of only the small central region. Recent studies indicate that all of the retina begins its development in the larva and that ganglion, amacrine, and horizontal cells differentiate in the peripheral retina of the larva. Retinal development is arrested during the premetamorphic period, to be resumed during metamorphosis. Metamorphic contributions include the differentiation of photoreceptor and bipolar cells. With the early appearance of ganglion cells, retinal pathways to the thalamus and tectum are established in larvae, as is a centripetal pathway. Tectal development spans the larval period but a spurt in tectal growth and differentiation is correlated with the completion of the retinal circuitry late in metamorphosis. The metamorphic changes in retina and tectum complete the functional development of the visual system and provide for the adult lamprey's predatory and reproductive behavior.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号