首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bovine parathyroid hormone (PTH) 1-34 [bPTH(1-34)] and human PTH related protein [hPTHrP(1-34)] stimulated cAMP accumulation in opossum kidney (OK) cells with Km of 5 x 10(-9) M, but inhibition of phosphate uptake was obtained with 17-fold lower Km of 3 x 10(-10) M. Phosphate uptake was partially inhibited with [Nle8.18Tyr34]bPTH(3-34)NH2 without concomitant cAMP stimulation. With hPTHrP(7-34)NH2, cAMP accumulation was increased in parallel to inhibition of phosphate uptake. [D-Trp12Tyr34]bPTH(7-34)NH2 and [Tyr34]hPTH(7-34)NH2 had no agonist activity on cellular cAMP and inhibition of phosphate uptake. bPTH(1-34)-stimulated cAMP accumulation was antagonized by [Nle8.18Tyr34]bPTH(3-34)NH2, [D-Trp12Tyr34]bPTH(7-34)NH2, hPTHrP(7-34)NH2 and [Tyr34]hPTH(7-34)NH2 with Ki of 1.4 x 10(-7), 2 x 10(-7), 4.7 x 10(-7) and 3.7 x 10(-6) M, respectively. But [Nle8.18Tyr34]bPTH(3-34)NH2 and [D-Trp12Tyr34]bPTH(7-34)NH2 reversed the inhibition of phosphate uptake only marginally, and hPTHrP(7-34)NH2 and [Tyr34]hPTH(7-34)NH2 were inactive. With hPTHrP(1-34) the Ki for cAMP accumulation of [Nle8,18Tyr34]bPTH(3-34)NH2 and hPTHrP(7-34)NH2 were 1.9 x 10(-7) and 7.2 x 10(-7) M, and inhibition of phosphate uptake was partially reversed with [Nle8,18Tyr34]bPTH(3-34)NH2, but not with hPTHrP(7-34)NH2. The present results indicate that truncated hPTHrP(7-34)NH2, unlike [Tyr34]hPTH(7-34)NH2 and [D-Trp12Tyr34]bPTH(7-34)NH2, elevates cellular cAMP and inhibits phosphate uptake. bPTH(1-34)- and hPTHrP(1-34)-evoked cAMP accumulation is suppressed by PTH and PTHrP fragments while inhibition of phosphate uptake remains largely unaltered.  相似文献   

2.
The conversion of [4 14C]corticosterone[( 14C]B) and 11-deoxy-[1,2-3H]corticosterone [( 3H]DOC) to steroidal carboxylic acids was studied in the BALB/c mouse. There was rapid and preferential excretion of [3H]DOC metabolites into the gastrointestinal tract. Excretion of 14C through the kidney was higher than 3H excretion. Within minutes of intraperitoneal injection, levels of 3H and 14C in most organs reached their maximal levels and subsequently decreased in an exponential pattern. The majority of the organs took up 14C to a greater extent than 3H. Using tissue blood ratio of tracer (T/B) as criterion, it was found that liver, gall bladder, intestine, and kidney concentrated 3H and 14C-labeled steroid from blood. T/B for 3H exceeded that for 14C in the gastrointestinal tract. Abdominal fat preferentially took up [3H]DOC tracer, whereas [14C]B tracer was not taken up by this tissue. T/B was less than 1 for 3H and 14C in heart, thymus, spleen, brain, skeletal muscle and skin. In these organs uptake of B and its metabolites was greater than that of DOC and its metabolites. In liver, [14C]B and [3H]DOC were converted to carboxylic acid metabolites which accumulated in the intestine. The most abundant acid was 11 beta,20 alpha-dihydroxy-3-oxo-pregn-4-en-21-oic acid from B. The acid metabolites of DOC were not identified. For both steroids, acids were major metabolic end-products.  相似文献   

3.
The specific localization and the characterization of the parathyroid hormone (PTH) receptor in bone have been studied using 18-d embryonic chick calvariae and biologically active, electrolytically labeled [125I] bovine PTH(1-34). Binding was initiated by adding [125I]-bPTH(1-34) to bisected calvariae at 30 degrees C. Steady state binding was achieved at 90 min at which time 10 mg drg wt of calvaria specifically bound 17% of the added [125I]bPTH(1-34). Nonspecific binding in the presence of 244 nM unlabeled bPTH(1-34) was less than 2%. Insulin, glucagon, and calcitonin (1 microgram/ml) did not compete for PTH binding sites. Half-maximal inhibition of binding was achieved at concentrations of unlabeled bPTH(1-34) or bPTH(1-84) of about 10 nM. The range of concentration (2-100 nM) over which bPTH(1-34) and bPTH(1-84) stimulated cyclic 3'5'adenosine monophosphate (cAMP) production was similar to that which inhibited the binding of [125I]bPTH(1-34). Light microscope autoradiograms showed that grains were concentrated over cells (osteoblasts and progenitor cells) at the external surface of the calvariae and in trabeculae. In the presence of excess unlabeled PTH, labeling of control autoradiograms was reduced to near background levels. No labeling of osteocytes or osteoclasts was observed. At the electron microscopic level, grains were localized primarily over cell membranes. A quantitative analysis of grain distribution suggested that cellular internalization of PTH occurred.  相似文献   

4.
1. (3)H-labelled o-aminoazotoluene was synthesized from [G-(3)H]o-toluidine on a semi-micro scale. 2. An association of (3)H with DNA, RNA and protein from the liver, kidney and spleen of female C57b mice was demonstrated after the administration of a single dose of [(3)H]o-aminoazotoluene. 3. This association is judged to represent covalent binding as a result of experiments involving solvent extraction, examination of the acid hydrolysates of the DNA and RNA and administration of [(3)H]water with unlabelled o-aminoazotoluene. 4. Examination of the extents of binding at various times after the administration of a single dose of [(3)H]o-aminoazotoluene showed that there was a peak of binding to liver DNA in the female mice at about 16hr. that was not present in the male mice. 5. The extent of binding to DNA, RNA and protein at 16hr. in the female C57b mouse liver was greater than that in the spleen and kidney.  相似文献   

5.
It has long been debated whether binder IB represents a unique form of the glucocorticoid receptor or is derived from the larger molecular weight form, binder II, by limited proteolysis. Transformed glucocorticoid receptors in kidney, liver and mixed kidney/liver cytosols were examined using anion exchange and gel filtration chromatography. The transformed receptor in liver cytosols chromatographs as binder II on DEAE-Sephadex A-50 anion exchange columns and has a Stokes radius of approx 6.0 nm. The transformed receptor in kidney cytosols chromatographs as binder IB on DEAE-Sephadex A-50 anion exchange columns and has a Stokes radius of 3.0-4.0 nm (3.2 nm on agarose; 3.0-4.0 nm on Sephadex G-100). Using cytosols prepared from mixed homogenates (2 g kidney plus 8 g liver tissue), our experiments show that binder II is converted to a lower molecular weight form (Rs = 3.2 nm on agarose; Rx = 3.9 nm on Sephadex G-100) that is identical to binder IB in its elution position from DEAE-Sephadex anion exchange resin. Identical results are obtained using kidney/liver/cytosols mixed in vitro in which only the hepatic receptor, binder II, is labelled with [3H]TA. These results support the hypothesis that the renal receptor, binder IB, is a proteolytic fragment of binder II and does not represent a polymorphic form of the glucocorticoid receptor. The renal converting activity is dependent on free-SH for full activity but is insensitive to the protease inhibitors leupeptin, antipain, and PMSF. The conversion of hepatic binder II to binder IB in in vitro mixing experiments can be prevented if kidney cytosol is gel filtered on Sephadex G-25 and the eluted macromolecular fraction is adjusted to 10 mM EGTA (or EDTA) prior to mixing with the [3H]TA labelled hepatic cytosol.  相似文献   

6.
We have found that carp and bastard halibut contain 25-hydroxyvitamin D3 (25-D3)-1 alpha-hydroxylase in the liver besides in the kidney by the following in vivo and in vitro experiments. When [3H]-25-D3 was intraperitoneally injected to vitamin D(D)-deficient carp and normal bastard halibut (D-deficient bastard halibut could not be raised because they died during farming), the profiles of high-performance liquid chromatography (HPLC) of the plasma lipid extract showed the formation of a peak corresponding to [3H]-1 alpha,25-dihydroxyvitamin D3 (1,25-D3). When [3H]-25-D3 was incubated with liver homogenates of the fish, a peak corresponding to [3H]-1,25-D3 was also observed in the profile of HPLC. The formation of the metabolite was confirmed by the thermal isomerization into the pre-isomer and mass fragmentography. Although the 1 alpha-hydroxylase was also observed in the kidney, the activity of the enzyme was lower than that in the liver. The results suggest that 25-D3-1 alpha-hydroxylase exists in the liver of carp and bastard halibut and the 25-D3 formed from D3 in the liver is immediately metabolized into 1,25-D3 in the same tissue. The suggestion is supported by the fact that D3 is a major circulating compound with small amounts of 1,25-D3 in the fish while the plasma levels of 25-D3 are under the limit of detection.  相似文献   

7.
Analysis of urinary metabolites of [1, 2-3H]-aldosterone and [1, 2-3H]-3 alpha, 5 beta-tetrahydroaldosterone was performed in male rabbits. The preliminary separation of urinary metabolites was carried out by submitting these metabolites to countercurrent distribution. Further separation of each fraction thus obtained was achieved by means of DEAE-Sephadex A-25 column chromatography. The separated peak was then hydrolyzed with the enzyme and the free steroid released was identified on the basis of the mobilities of the steroid and its derivatives on paper chromatography. After the injection of [1, 2-3H]-aldosterone, a major urinary metabolite was characterized as monosulphate of 3 alpha, 5 beta-tetrahydroaldosterone. In addition, a small amount of the monoglucosiduronate fraction was found in the urine. 3 alpha, 5 beta-tetrahydroaldosterone and 3 beta, 5 alpha-tetrahydroaldosterone were detected as aglycones in this fraction. After the injection of [1, 2-3H]-3 alpha, 5 beta-tetrahydroaldosterone, a similar pattern of urinary radiometabolites was observed. The close similarity between the profile of urinary metabolites of [1, 2-3H]-aldosterone and that of [1, 2-3H]-3 alpha, 5 beta-tetrahydroaldosterone suggests that the conversion of aldosterone to 3 alpha, 5 beta-tetrahydroaldosterone is needed before the conjugation processes take place.  相似文献   

8.
A specific fraction from the nuclei of the AKR mouse embryo cell-line (fraction I) displayed a much greater localization of radioactivity compared to fraction II and III when the chemical carcinogen, [3H]benzo[a]pyrene (B[a]P) was incubated with the cells for 24 h. The radioactivity in fraction I consisted of both covalently and non-covalently bound metabolites. Isolation of the DNA, RNA and protein of fraction I revealed that 94% of the covalently bound radioactivity was to protein, 5% to RNA and 1% to DNA. Analysis of the fraction I proteins by SDS gel electrophoresis revealed that there was more radioactivity covalently bound to the larger proteins than to smaller proteins. Isoelectric focusing (IEF) of the purified proteins displayed two peaks of radioactivity, one at a pH of 5 and the other at 11. The former proteins bound more radioactivity per mass of protein than the latter proteins. Analysis of fraction I histones on acid urea polyacrylamide gels showed that the radioactivity coincided with histones H3 and H2B and low levels of radioactivity associated with histones H1, H2A and H4. Two significant peaks of radioactivity closely migrated near but did not co-migrate with histone H1. The distribution of the bound radioactivity is probably a reflection of the availability of the proteins to the reactive carcinogen metabolites. The possible binding of B[a]P metabolites to phosphorylated histones and to the high mobility of group (HMG) proteins 1 and 2 is discussed.  相似文献   

9.
To achieve biologic potency, vitamin D must undergo two successive hydroxylations, first, in the liver and then, in the kidney. Carbon tetrachloride is known to cause extensive damage to the liver, but its effect on vitamin D metabolism has not been studied thoroughly. The effect of carbon tetrachloride on renal hydroxylation of 25-hydroxyvitamin D3 has not been studied. To evaluate the acute effect of carbon tetrachloride on vitamin D metabolism in the liver, vitamin D depleted rats received a single intraperitoneal injection of carbon tetrachloride (2.0 mL/kg body weight). After 24 h, they were given 55, 550, or 5050 pmol [3H]vitamin D3 intravenously. Twenty-four hours after injection of [3H]vitamin D3, aliquots of serum and liver were analyzed for [3H]vitamin D3 and its metabolites by high performance liquid chromatography. Sera of carbon tetrachloride treated rats had higher [3H]vitamin D3 and [3H]25-hydroxyvitamin D and lower [3H]1,25-dihydroxyvitamin D3 concentrations than did control sera. Livers of carbon tetrachloride treated rats contained more [3H]vitamin D3, [3H]25-hydroxyvitamin D3, and more fat. Liver histology showed massive centrilobular necrosis in the treated rats. Thus, our experiment in rats given an acute dose of carbon tetrachloride provided no evidence of impairment of vitamin D metabolism by the liver, but offered a suggestion that 25-hydroxyvitamin D3 metabolism by the kidney might be impaired. To determine the acute effect of carbon tetrachloride on metabolism of vitamin D3 by the kidney, we studied hydroxylation of [3H]25-hydroxyvitamin D3 in isolated perfused kidney. Kidneys from the treated rats showed a 66% reduction in [3H]1,25-dihydroxyvitamin D3 production.  相似文献   

10.
The biosynthesis of glucagon was studied in microdissected pigeon pancreatic, islets. [3H]-Tryotophan and [3H]leucine were incorporated into big and little glucagon. No precursor-product relationship was evident between big and little glucagon after radioactive pulsechase and immunoreactive chase incubations. Radioactive and immunoreactive little glucagon and immunoreactive big glucagon were actively secreted and the synthesis of both glucagons was inhibited by high concentrations of glucose. [3H]Tryptophan and [3H]leucine were incorporated into an islet protein of about 20000mol.wt. Gel filtration of extracts of turkey pancreas revealed the presence of an immunoreactive peak of mol.wt. approx. 20000. This glucagon-immunoreactive component was also present in dog and ox pancreas and was stable to chaotropic agents and elution at various pH values. A similar-sized glucagon-immunoreactive species was present in the dog circulation. These results are discussed in the light of the presently accepted mechanisms of glucagon biosynthesis.  相似文献   

11.
1. Cell cultures propagated from foetal bovine ligamentum nuchae synthesized and secreted two glycoproteins, designated MFP I and MFP II, that are closely related to elastic-fibre microfibrils. Glycoproteins MFP I (apparent mol.wt. 150 000) and MFP II (apparent mol.wt. 300 000) were metabolically labelled, separated from other culture-medium components by immunoprecipitation with a specific anti-(microfibrillar protein) serum, and analysed by sodium dodecyl sulphate/polyacrylamide-gel electrophoresis and sodium dodecyl sulphate/gel-filtration chromatography. 2. Ligament cells also synthesized and secreted fibronectin, but salt-fractionation and immunoprecipitation studies with a specific anti-(cold-insoluble globulin) serum established that neither glycoprotein MFP I nor glycoprotein MFP II was related to fibronectin. 3. The secretion of glycoprotein MFP I, but not that of glycoprotein MFP II, was enhanced by the addition of ascorbate to the culture medium. 4. Ascorbate-supplemented ligament cells incorporated [3H]proline into glycoprotein MFP I, and 36% of the nondiffusible proline residues were hydroxylated, exclusively as 4-hydroxy[3H]proline. Less than 1% of the total proline residues in [3H]proline-labelled glycoprotein MFP II were hydroxylated. 5. Ascorbate-supplemented cells incorporated [14C]lysine into glycoprotein MFP I and 30% of the non-diffusible lysine residues were hydroxylated. 6. Newly secreted glycoprotein MFP I was digested by highly purified bacterial collagenase to yield polypeptide fragments of apparent mol.wts. 50 000 and 30 000. Glycoprotein MFP II was not digested by bacterial collagenase. 7. The results suggest that elastic-fibre microfibrils are composed of a novel collagenous glycoprotein MFP I in association, as yet undefined, with a non-collagenous glycoprotein MFP II.  相似文献   

12.
Distribution of radioactivity in different tissues has been studied by liquid scintillation counting 60 sec after administration of [3H] PGE2 and [3H] PGA2 in the rat. In addition, renal autoradiographs were prepared 15 sec and 60 sec after tritiated PG administration. In some experiments, [3H] PGE2 was accompanied by a large dose of PGE2 (isotopic dilution). 60 sec after [3H] PGE2 administration, radioactivity concentrates principally in the kidney, followed by the liver and the lung. Within the kidney, radioactivity concentrated predominantly in the cortex. Isotopic dilution diminished radioactivity due to [3H] PGE2 in all regions of the kidney. Renal autoradiographs 15 sec after [3H] PGE2 administration showed cortical radioactivity to be higher in glomeruli than in tubules. After [3H] PGA2 radioactivity also concentrates in the kidney, liver and lung but to a lesser extent than after [3H] PGE2 and no glomerular concentration of radioactivity was found.  相似文献   

13.
In vitro methylation of the elongation factor EF-Tu from Escherichia coli   总被引:2,自引:0,他引:2  
H Toledo  C A Jerez 《FEBS letters》1985,193(1):17-21
The in vitro methylation of the elongation factor EF-Tu from Escherichia coli was investigated. The methylation of newly synthesized EF-Tu was obtained using lambda rifd 18 DNA as template and S-adenosyl [methyl-3H]methionine as methyl donor. About 3 mol methyl residues were incorporated for every 10 mol EF-Tu synthesized. Analysis of the nature of the methyl-containing residues by protein hydrolysis followed by paper chromatography showed that both mono- and dimethyllysine were present. The methylation of EF-Tu was also studied separately from its synthesis by using cell-free systems with artificially undermethylated components.  相似文献   

14.
Binding of bile acids by 100 000g supernatants from rat liver.   总被引:5,自引:4,他引:1       下载免费PDF全文
1. The binding of glycocholic acid, chenodeoxycholic acid and lithocholic acid to rat liver 1000 000g supernatants was studied by equilibrium dialysis. 2. The binding characteristics of the bile acids suggest that the binding components are involved in bile acid transport. 3. When mixtures of [14C]lithocholic acid and liver supernatants were eluted from columns of Sephadex G-75, a prominent peak of [14C]lithocholic acid appeared with proteins of mol.wt. approx. 40000. A second, smaller, peak of [14C]lithocholic acid was eluted with proteins of mol.wt. approx. 100000. 4. The inclusion of cholic acid, glycocholic acid or chenodeoxycholic acid in the eluting buffer decreased the amount of [14C]lithocholic acid that was eluted with the higher-molecular-weight component.  相似文献   

15.
1. 1 alpha-Hydroxy[7-3H]cholecalciferol (specific radioactivity of 2-Ci/mmol) was synthesized, and its metabolism in chicks studied. 2. 1 alpha-Hydroxy[7-3H]cholecalciferol was metabolized very rapidly in the chick to 1 alpha,25-dihydroxy[7-3H]cholecalciferol and to a metabolite less polar than 1 alpha-hydroxycholecalciferol. Intestine exhibited highest accumulation of 1 alpha-25-dihydroxy[7-3H]cholecalciferol, and liver exhibited highest accumulation of the non-polar metabolite. 3. Tissue uptake of 1 alpha-hydroxy[7-3H]cholecalciferol and its metabolites in chicks that were dosed continuously for 16 days with 1 alpha-hydroxy[7-3H]cholecalciferol did not exceed by very much that observed in tissues obtained from chicks that were dosed with a single injection of 1 alpha-hydroxy[7-3H]cholecalciferol 24 h before killing, except for liver and kidney. 4. Lowest accumulation of metabolites was noted in muscle and bone, and for the latter, highest uptake of 1 alpha,25-dihydroxy[7-3H]cholecalciferol was noted in the epiphysial periosteum and the metaphysis. 5. Formation of 1 alpha,24,25-trihydroxy[7-3H]cholecalciferol was not observed in the chicks that were dosed continuously with 1 alpha-hydroxy[7-3H]cholecalciferol, despite the fact that plasma calcium and phosphorus were normal and despite the presence of renal 24-hydroxylase activity. 6. The vitamin D status of the chicks did not appear to affect the metabolic profile of the administered 1 alpha-hydroxy[7-3H]cholecalciferol.  相似文献   

16.
Truncated N-terminal fragments of parathyroid hormone (PTH), [Tyr34]bovine PTH(7-34)NH2, and parathyroid hormone related protein (PTHrP), PTHrP(7-34)NH2, inhibit [Nle8,18,[125I]iodo-Tyr34]-bPTH(1-34)NH2 binding and PTH-stimulated adenylate cyclase in bone and kidney assays. However, the receptor interactions of these peptides are 2-3 orders of magnitude weaker than those of their agonist counterparts. To produce an antagonist with increased receptor-binding affinity but lacking agonist-like properties, structure-function studies were undertaken. Glycine at position 12 (present in all homologues of PTH and in PTHrP), which is predicted in both hormones to participate in a beta-turn, was examined by substituting conformational reporters, such as D- or L-Ala, Pro, and alpha-aminoisobutyric acid (Aib), in both agonist and antagonist analogues. Except for N-substituted amino acids, which substantially diminished potency, substitutions were well tolerated, indicating that this site can accept a wide latitude of modifications. To augment receptor avidity, hydrophobic residues compatible with helical secondary structure were introduced. Incorporation of the nonnatural amino acids D-Trp, D-alpha-naphthylalanine (D-alpha-Nal), or D-beta-Nal into either [Tyr34]bPTH(7-34)NH2 or [Nle8,18,Tyr34]bPTH(7-34)NH2 resulted in antagonists that were about 10-fold more active than their respective 7-34 parent compound. Similarly, [D-Trp12]PTHrP(7-34)NH2 was 6 times more potent than the unsubstituted peptide but retained partial agonistic properties, although markedly reduced, similar to PTHrP(7-34)NH2. The antagonistic potentiating effect was configurationally specific.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
Metabolism of S-(2-chloro-1,1,2-trifluoroethyl)-L-cysteine (CTFC) yields chlorofluorothioacetyl fluoride, which reacts with cellular proteins to form stable lysine adducts. Little is known about the subcellular localization of these protein adducts or about their role in CTFC-induced nephrotoxicity. A method for the synthesis of CTFC and other cysteine S-conjugates labeled with 3H at the S-alkyl or S-alkenyl position would be useful in studies of S-conjugate metabolism and toxicity. Reaction of L-cysteine, chlorotrifluoroethene, 1,8-diazabicyclo[5.4.0]undec-7-ene, and 3H-labeled water followed by repeated crystallization yielded radiochemically pure [3H]CTFC (235 mg, 20% yield; sp act 1.07 x 10(9) Bq/mmol), which was identical to CTFC by TLC, 1H NMR, and 19F NMR. 3H NMR revealed a doublet of triplets at 6.5 ppm with geminal and vicinal T-F couplings of 51.5 and 6.0 Hz, respectively, consistent with the proposed structure. When 2H-labeled water was used, [2H]CTFC was formed, and its structure was confirmed by 1H and 19F NMR, FAB-MS, and TLC. Analysis of renal and hepatic subcellular fractions of rats given 1, 10, or 100 mumol/kg [3H]CTFC showed a dose-dependent binding of 3H-containing metabolites to liver and kidney proteins.  相似文献   

18.
Gel filtration on Sephadex G-75 of crude rat liver supernatant preincubated with [1-14C]oleic acid yields three peaks of radioactivity which are attributed to the presence in these fractions of fatty acid binding proteins. We have confirmed these observations with binding assays by phase partition, polyacrylamide gel electrophoresis, and thin layer electrofocusing. Peak I (mol. wt. 60,000 pI 5.01 was shown to be albumin, which mainly arises from a contamination of the liver preparation by blood. Peak II (mol. wt. 10,000, pI 5.9) is a fatty acid binding protein. Finally peak III (mol. wt. 1500, pI 5.7) is a fatty acid binding component, the chemical nature of which was not elucidated. These fatty acid binding fractions have no effect on the reaction of acyl-CoA synthetase whereas the crude liver supernatant does stimulate the activation of fatty acid as shown earlier. In consequence, the physiological role of these fatty acid binding fractions is not yet elucidated.  相似文献   

19.
The stimulation of DNA synthesis in primary cell cultures of chicken chondrocytes by parathyroid hormone was studied by assaying [3H]thymidine incorporation into DNA. Optimal assay conditions were determined by varying cell age, plating density, and incubation time. Under these conditions DNA synthesis was significantly stimulated by parathyroid hormone (PTH) and some of its fragments: cells treated with human (h)PTH(1-84), bovine (b)PTH(1-34) and [Nle8,18,Tyr34]bPTH(3-34)amide and hPTH(13-34) displayed 2.6-fold enhanced [3H]thymidine incorporation in a dose-dependent manner. The fragment hPTH(28-48) led to a similar stimulation, whereas [Tyr43]hPTH(43-68) and [Tyr52,Asp76]hPTH(52-84) had no effect. Using a series of synthetic hPTH peptides covering the central region of the hormone molecule (residues 25-47), we could delimitate further this putative mitogenic functional domain to a core region between amino acid residues 30 and 34. The effect of PTH on [3H]thymidine incorporation could not be mimicked by forskolin, indicating that the corresponding signal is not mediated by cAMP. It is, however, inhibited by EGTA and cannot be provoked in the absence of calcium ions in the medium. Therefore, the results presented indicate a hitherto unidentified functional domain of PTH in the central part of the molecule which exerts its mitogenic effect on chondrocytes in a cAMP-independent manner but seems to involve calcium ions for signal transduction.  相似文献   

20.
Milligram amounts of [3 beta-3H]lithocholic (3 alpha-hydroxy-5 beta-cholanoic) acid were administered by intravenous infusion to rats prepared with a biliary fistula. Analysis of sequential bile samples by thin-layer chromatography (TLC) demonstrated that lithocholic acid glucuronide was present in bile throughout the course of the experiments and that its secretion rate paralleled that of total isotope secretion. Initial confirmation of the identity of this metabolite was obtained by the recovery of labeled lithocholic acid after beta-glucuronidase hydrolysis of bile samples. For detailed analysis of biliary metabolites of [3H]lithocholic acid, pooled bile samples from infused rats were subjected to reversed-phase chromatography and four major labeled peaks were isolated. After complete deconjugation, the two major compounds in the combined first two peaks were identified as murideoxycholic (3 alpha, 6 beta-dihydroxy-5 beta-cholanoic) and beta-muricholic (3 alpha, 6 beta, 7 beta-trihydroxy-5 beta-cholanoic) acids and the third peak was identified as taurolithocholic acid. The major component of the fourth peak, after isolation, derivatization (to the methyl ester acetate), and purification by high pressure liquid chromatography (HPLC), was positively identified by proton nuclear magnetic resonance as lithocholic acid 3 alpha-O-(beta-D-glucuronide). These studies have shown, for the first time, that lithocholic acid glucuronide is a product of in vivo hepatic metabolism of lithocholic acid in the rat.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号