首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We previously reported that short exposure of tomato (Lycopersicon esculentum L.) fruits to high temperature protects them from chilling injury. To study the involvement of heat-shock proteins (HSPs) in the acquisition of low-temperature tolerance, we cloned two heat-shock-induced genes that are also expressed at low temperatures. The cloned cDNAs belong to the small HSP group. Sequence analyses of the clones showed perfect homology to the tomato-ripening gene tom66 and to the tomato chloroplastic HSP21 gene tom111. The expression of both genes was induced by high temperature in fruits, flowers, leaves, and stems, but not by low or ambient temperatures or by other stresses such as drought and anaerobic conditions. When the heated fruits were transferred to low temperature, tom66 and tom111 mRNA levels first decreased but were then reinduced. Induction was not observed in nonheated fruits at low temperature. Immunodetection of tom111-encoded protein indicated that this protein is present at low temperatures in the heated fruits. The results of this study show that the expression of tom66 and tom111 is correlated with protection against some, but not all, symptoms of chilling injury.  相似文献   

2.
A combination of hot water (a rinse at 62 degrees C for 20 s) and conditioning (pre-storage at 16 degrees C for 7 d) treatments synergistically reduced chilling injury development in grapefruit (Citrus paradisi, cv. "Star Ruby") during cold storage at 2 degrees C, suggesting that the treatments may activate different chilling tolerance responses. To study the molecular mechanisms involved, chilling- and conditioning-responsive genes were isolated by polymerase chain reaction (PCR) cDNA subtraction, cDNA libraries were constructed from hot water- and conditioning-treated fruit, and cDNA sequencing was used to identify putative stress-responsive and chilling tolerance genes. PCR cDNA subtraction revealed the identification of 17 chilling-responsive and heat- and conditioning-induced genes, and the expression patterns of 11 additional stress-related genes, antioxidant defensive genes, and genes encoding enzymes involved in membrane lipid modifications were characterized. It was found that hot water and conditioning treatments had little effect on gene expression by themselves, but rather had a priming effect, and enabled the fruit to activate their defence responses after subsequent exposure to chilling. RNA gel blot hybridizations revealed that the expression patterns of eight genes, including HSP19-I, HSP19-II, dehydrin, universal stress protein (USP), EIN2, 1,3;4-beta-D-glucanase, and superoxide dismutase (SOD), were specifically regulated by the heat treatment, and four genes, including fatty acid desaturase2 (FAD2) and lipid transfer protein (LTP), were specifically regulated by the conditioning treatment. Furthermore, four more genes were identified, including a translation initiation factor (SUI1), a chaperonin, and alcohol dehydrogenase (ADH), that were commonly regulated by both heat and conditioning treatments. According to these data, it is suggested that pre-storage heat and conditioning treatments may enhance fruit chilling tolerance by activating different molecular mechanisms. The hot water treatment activates mainly the expression of various stress-related genes, whereas the conditioning treatment activates mainly the expression of lipid membrane modification enzymes.  相似文献   

3.
4.
Citrus fruits are sensitive to low temperatures and this often results in the development of chilling injuries during postharvest storage. In order to gain more insight into the molecular mechanisms involved in the acquisition of fruit chilling tolerance, we initiated a grapefruit ( Citrus paradisi, cv. Marsh Seedless) flavedo cDNA sequencing project and used it to identify a cDNA similar to other Poncirus trifoliata and Citrus unshiu dehydrin genes reported to be responsive to low temperatures. The grapefruit dehydrin cDNA, designated cor15 , encodes a predicted polypeptide of 15.1 kDa, that is almost completely identical with other reported citrus dehydrin proteins, except that it contains two large amino acid repeats, whereas P. trifoliata COR11 has only one such repeat and P. trifoliata COR19 and C. unshiu COR19 have three repeats. Together, the various grapefruit, P. trifoliata and C. unshiu dehydrins form a closely related and unique dehydrin gene family that differs from most other plant dehydrins in having an unusual K-segment similar to that of gymnosperms and in having a serine cluster (S-segment) at an unusual position at the carboxy-terminus. The grapefruit cor15 gene is consistently expressed in the fruit peel tissue at harvest, but its message levels dramatically decrease during storage at 2°C. However, a pre-storage hot water treatment, which enhances fruit chilling tolerance, elicited retention of the constant level of cor15 gene expression during cold storage and eliminated its decline. The hot water treatment had no inductive effect on cor15 gene expression when the fruit were held at non-chilling temperatures. The effects of other stresses, such as exposure to ethylene, UV irradiation and wounding, on cor15 gene expression, were temporary and persisted for 1-2 days after the treatments.  相似文献   

5.
6.
Arabidopsis plants show an increase in freezing tolerance in response to exposure to low nonfreezing temperatures, a phenomenon known as cold acclimation. In the present study, we evaluated the physiological and morphological responses of various Arabidopsis ecotypes to continuous growth under chilling (14°C) and cold (6°C) temperatures and evaluated their basal freezing tolerance levels. Seedlings of Arabidopsis plants were extremely sensitive to low growth temperatures: the hypocotyls and petioles were much longer and the angles of the second pair of true leaves were much greater in plants grown at 14°C than in those grown at 22°C, whereas just intermediate responses were observed under the cold temperature of 6°C. Flowering time was also markedly delayed at low growth temperatures and, interestingly, lower growth temperatures were accompanied by longer inflorescences. Other marked responses to low temperatures were changes in pigmentation, which appeared to be both ecotype specific and temperature dependent and resulted in various visual phenotypes such as chlorosis, necrosis or enhanced accumulation of anthocyanins. The observed decreases in chlorophyll contents and accumulation of anthocyanins were much more prominent in plants grown at 6°C than in those grown at 14°C. Among the various ecotypes tested, Mt‐0 plants markedly accumulated the highest levels of anthocyanins upon growth at 6°C. Freezing tolerance examination revealed that among 10 ecotypes tested, only C24 plants were significantly more sensitive to subzero temperatures. In conclusion, Arabidopsis ecotypes responded differentially to cold (6°C), chilling (14°C) and freezing temperatures, with specific ecotypes being more sensitive in particular traits to each low temperature.  相似文献   

7.
8.
‘Fortune’ mandarins are prone to develop pitting and necrosis upon exposure to low temperatures. We have examined the effect of field temperature during fruit maturation and the effect of conditioning temperatures (from 2 to 37°C) prior to cold storage on the content of polyamines (PAs) and on chilling susceptibility in order to understand the role of PAs in maturation and chilling tolerance of this citrus cultivar. Chilling susceptibility and the content of PAs were more affected by seasonal changes in field temperature than by the stage of fruit maturity. The highest putrescine (Put) and spermidine (Spd) content was found in fruits exposed to the lowest field temperatures. These fruits were in turn more susceptible to develop chilling injury (CI) after storage at 2°C. Spermine (Spm), however, decreased in attached fruit with time of exposure to temperatures below 12°C. Temperature pretreatments for 3 days above 20°C of fruits detached from the tree reduced CI, the more so the higher the conditioning temperature. Put and Spd increased with temperature conditioning in detached fruits, differing from the response of fruits attached to the tree. No direct relationship between induced levels of these PAs and the tolerance to CI was found. Levels of Put and Spd increased at temperatures (22, 30 and 37°C) which increased the tolerance and also at temperatures (6 and 12°C) which accelerated the appearance of chilling symptoms. In contrast, a significant increase in Spm levels was only found after conditioning at 30 or 37°C. After cold storage a general decline in PA levels occurred in all temperature‐conditioned mandarins. In most cases no significant differences among fruit exposed to effective and non‐effective pretreatments were observed. PA content increased again after transferring cold‐stored fruits to 20°C, whereas the CI index was barely affected. In conclusion, PA changes in the flavedo of ‘Fortune’ mandarins appear to be related to variations in temperature rather than to stage of maturity or tolerance to chilling.  相似文献   

9.
The temporal dynamics of heat shock protein 70 (HSP70) expression in response to longer‐term acclimation and rapid hardening in the butterfly Lycaena tityrus is investigated. After a 1‐h exposure to 1 °C or 37 °C, HSP70 is quickly up‐regulated within 1 h and down‐regulated within 2 h. The fast dynamic of HSP70 expression is in contrast to the patterns found in organisms inhabiting more stable thermal environments, and is interpreted as an adaptation to the large and rapid temperature variation experienced by flying ectotherms. HSP70 expression is higher in males than in females, as well as in animals reared at 27 °C than at 20 °C, although it is very similar across the high and low induction temperatures. Animals reared at the higher temperature, however, respond less strongly to high‐temperature stress.  相似文献   

10.
11.
Sepals play important roles in protecting inner floral organs from various stresses and in guaranteeing timely flower opening. However, the exact role of sepals in coordinating interior and exterior signals remains elusive. In this study, we functionally characterized a heat shock protein gene, Arabidopsis HSP70‐16, in flower opening and mild heat stress response, using combined genetics with anatomic, physiological, chemical, and molecular analyses. We showed that HSP70‐16 is required for flower opening and mild heat response. Mutation of HSP70‐16 led to a significant reduction in seed setting rate under 22°C, which was more severe at 27°C. Mutation of HSP70‐16 also caused postgenital fusion at overlapping tips of two lateral sepals, leading to failed flower opening, abnormal floral organ formation, and impaired fertilization and seed setting. Chemical and anatomic analyses confirmed specific chemical and morphological changes of cuticle property in mutant lateral sepals, and qRT‐PCR data indicated that expression levels of different sets of cuticle regulatory and biosynthetic genes were altered in mutants grown at both 22°C and 27°C temperatures. This study provides a link between thermal and developmental perception signals and expands the understanding of the roles of sepal in plant development and heat response.  相似文献   

12.
Chilling tolerance was increased in suspension‐cultured cells and seedlings of maize (Zea mays L. cv ‘Black Mexican Sweet’) grown in media containing glycinebetaine (GB). A triphenyl tetrazolium chloride (TTC) reduction test indicated that after a 7 d chilling period at 4 °C, cells treated with 1 mm GB at 26 °C for 1 d had a survival rate (30%) that was twice as high as that of untreated controls. The addition of 2·5 m M GB to the culture medium resulted in maximum chilling tolerance (40%). The results of a cell regrowth assay were consistent with viability determined by the TTC method. In suspension‐cultured cells supplemented with various concentrations of GB, accumulation of GB in the cells was proportional to the GB concentration in the medium and was saturated at a concentration of 240 μ mol (g DW) ? 1. The degree of increased chilling tolerance was positively correlated with the level of GB accumulated in the cells. The increased chilling tolerance was time‐dependent; i.e. it was first observed 3 h after treatment and reached a plateau after 14 h. Feeding seedlings with 2·5 m M GB through the roots also improved their chilling tolerance, as evidenced by the prevention of chlorosis after chilling for 3 d at 4 °C/2 °C. Lipid peroxidation, as expressed by the production of malondialdehyde, was significantly reduced in GB‐treated cells compared with the untreated controls during chilling. These results suggest that increased chilling tolerance may be due, in part, to the reduction of lipid peroxidation of the cell membranes in the presence of GB.  相似文献   

13.
Heat shock proteins (HSP)are essential molecular chaperones that play important roles in the stress stimulation of insects.Bemisia tabaci,a phloem feeder and invasive species,can cause extensive crop damage through direct feeding and transmission of plant viruses.Here we employed comprehensive genomics approaches to identity HSP superfamily members in the Middle East Asia Minor 1 whitefly genome.In total,we identified 26 Hsp genes,including three Hsp90,17 Hsp70,one Hsp60 and five sHSP (small heat shock protein)genes.The HSP gene superfamily of whitefly is expanded compared with the other five insects surveyed here.The gene structures among the same families are relatively conserved.Meanwhile,the motif compositions and secondary structures of BtHsp proteins were predicted.In addition,quantitative polymerase chain reaction analysis showed that the expression patterns of BtHsp gene superfamily were diverse across different tissues of whiteflies.Most Hsp genes were induced or repressed by thermal stress (40℃)and cold treatment (4℃)in whitefly.Silencing the expression of BtHsp70-6 significantly decreased the survival rate of whitefly under 45℃.All the results showed the Hsps conferred thermo-tolerance or cold-tolerance to whiteflies that protect them from being affected by detrimental temperature conditions.Our observations highlighted the molecular evolutionary properties and the response mechanism to temperature assaults of Hsp genes in whitefly.  相似文献   

14.
15.
16.
17.
18.
采用逆转录聚合酶链式反应(RT-PCR)及蛋白免疫印迹杂交(Western Blot)技术,研究0.5 mmol/L亚精胺浸种的黄瓜幼苗在淹水胁迫下,根热激蛋白70基因(HSP70)mRNA和蛋白质的表达量的变化。结果表明:淹水胁迫使黄瓜根HSP70的mRNA和蛋白的表达呈现先上升后下降的趋势,在淹水4 h时,HSP70的mRNA和蛋白表达量均极显著高于未淹水处理; 亚精胺浸种的黄瓜根HSP70的mRNA和蛋白的表达量在24 h内呈一直上升的趋势,在淹水24 h时,HSP70的mRNA和蛋白表达量均极显著高于未淹水处理。淹涝胁迫下,亚精胺浸种的黄瓜根HSP70的mRNA和蛋白表达量在淹水12 h和24 h时极显著高于蒸馏水浸种。外源亚精胺能诱导淹涝胁迫下黄瓜幼苗根HSP70 mRNA和蛋白质的表达量的增加,缓解淹涝胁迫对黄瓜造成的伤害。  相似文献   

19.
The chilling tolerance of cucumber seedling radicles was influenced by their relative levels of vigour. Radicles of high‐vigour seedlings grew to 20 mm in length in 36 h at 25 °C, whereas it took 60 h for low‐vigour seedling radicles to reach that length. Chilling at 2·5 °C for 48 h inhibited the subsequent growth of high‐ and low‐vigour seedlings by 39 and 68%, respectively. The 2,3,5‐triphenyltetrazolium chloride (TTC) viability index, and α,α‐diphenyl‐β‐picrylhydrazyl (DPPH)‐radical scavenging activity were higher in high than low‐vigour radicles. Higher ascorbate peroxidase (APX) and catalase (CAT) enzyme activity, DPPH‐radical scavenging activity, and recovery of CAT activity after chilling in high‐vigour radicles corresponded with their higher level of chilling tolerance in comparison with low‐vigour radicles. In contrast, elevated levels of superoxide dismutase, glutathione reductase and guaiacol peroxidase appear to be correlated with chilling injury since they only showed substantial increases in activity in the more chilling‐­sensitive low‐vigour radicles after chilling. Manipulation of APX, CAT, and/or DPPH activity could produce plants with superior and persistent chilling tolerance.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号