首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
Histone H3 K56 hyperacetylation perturbs replisomes and causes DNA damage   总被引:2,自引:0,他引:2  
Celic I  Verreault A  Boeke JD 《Genetics》2008,179(4):1769-1784
Deacetylation of histone H3 K56, regulated by the sirtuins Hst3p and Hst4p, is critical for maintenance of genomic stability. However, the physiological consequences of a lack of H3 K56 deacetylation are poorly understood. Here we show that cells lacking Hst3p and Hst4p, in which H3 K56 is constitutively hyperacetylated, exhibit hallmarks of spontaneous DNA damage, such as activation of the checkpoint kinase Rad53p and upregulation of DNA-damage inducible genes. Consistently, hst3 hst4 cells display synthetic lethality interactions with mutations that cripple genes involved in DNA replication and DNA double-strand break (DSB) repair. In most cases, synthetic lethality depends upon hyperacetylation of H3 K56 because it can be suppressed by mutation of K56 to arginine, which mimics the nonacetylated state. We also show that hst3 hst4 phenotypes can be suppressed by overexpression of the PCNA clamp loader large subunit, Rfc1p, and by inactivation of the alternative clamp loaders CTF18, RAD24, and ELG1. Loss of CTF4, encoding a replisome component involved in sister chromatid cohesion, also suppresses hst3 hst4 phenotypes. Genetic analysis suggests that CTF4 is a part of the K56 acetylation pathway that converges on and modulates replisome function. This pathway represents an important mechanism for maintenance of genomic stability and depends upon proper regulation of H3 K56 acetylation by Hst3p and Hst4p. Our data also suggest the existence of a precarious balance between Rfc1p and the other RFC complexes and that the nonreplicative forms of RFC are strongly deleterious to cells that have genomewide and constitutive H3 K56 hyperacetylation.  相似文献   

2.
The packaging of eukaryotic DNA into chromatin is likely to be crucial for the maintenance of genomic integrity. Histone acetylation and deacetylation, which alter chromatin accessibility, have been implicated in DNA damage tolerance. Here we show that Schizosaccharomyces pombe Hst4, a homolog of histone deacetylase Sir2, participates in S-phase-specific DNA damage tolerance. Hst4 was essential for the survival of cells exposed to the genotoxic agent methyl methanesulfonate (MMS) as well as for cells lacking components of the DNA damage checkpoint pathway. It was required for the deacetylation of histone H3 core domain residue lysine 56, since a strain with a point mutation of its catalytic domain was unable to deacetylate this residue in vivo. Hst4 regulated the acetylation of H3 K56 and was itself cell cycle regulated. We also show that MMS treatment resulted in increased acetylation of histone H3 lysine 56 in wild-type cells and hst4Delta mutants had constitutively elevated levels of histone H3 K56 acetylation. Interestingly, the level of expression of Hst4 decreased upon MMS treatment, suggesting that the cell regulates access to the site of DNA damage by changing the level of this protein. Furthermore, we find that the phenotypes of both K56Q and K56R mutants of histone H3 were similar to those of hst4Delta mutants, suggesting that proper regulation of histone acetylation is important for DNA integrity. We propose that Hst4 is a deacetylase involved in the restoration of chromatin structure following the S phase of cell cycle and DNA damage response.  相似文献   

3.
The composition of posttranslational modifications on newly synthesized histones must be altered upon their incorporation into chromatin. These changes are necessary to maintain the same gene expression state at individual chromosomal loci before and after DNA replication. We have examined how one modification that occurs on newly synthesized histone H3, acetylation of K56, influences gene expression at epigenetically regulated loci in Saccharomyces cerevisiae. H3 K56 is acetylated by Rtt109p before its incorporation into chromatin during S phase, and this modification is then removed by the NAD+-dependent deacetylases Hst3p and Hst4p during G2/M phase. We found silenced loci maintain H3 K56 in a hypoacetylated state, and the absence of this modification in rtt109 mutants was compatible with HM and telomeric silencing. In contrast, loss of HST3 and HST4 resulted in hyperacetylation of H3 K56 within silent loci and telomeric silencing defects, despite the continued presence of Sir2p throughout these loci. These silencing defects in hst3Δ hst4Δ mutants could be suppressed by deletion of RTT109. In contrast, overexpression of Sir2p could not restore silencing in hst3Δ hst4Δ mutants. Together, our findings argue that HST3 HST4 play critical roles in maintaining the hypoacetylated state of K56 on histone H3 within silent chromatin.  相似文献   

4.
Mutations are a major driving force of evolution and genetic disease. In eukaryotes, mutations are produced in the chromatin environment, but the impact of chromatin on mutagenesis is poorly understood. Previous studies have determined that in yeast Saccharomyces cerevisiae, Rtt109-dependent acetylation of histone H3 on K56 is an abundant modification that is introduced in chromatin in S phase and removed by Hst3 and Hst4 in G2/M. We show here that the chromatin deacetylation on histone H3 K56 by Hst3 and Hst4 is required for the suppression of spontaneous gross chromosomal rearrangements, base substitutions, 1-bp insertions/deletions, and complex mutations. The rate of base substitutions in hst3Δ hst4Δ is similar to that in isogenic mismatch repair-deficient msh2Δ mutant. We also provide evidence that H3 K56 acetylation by Rtt109 is important for safeguarding DNA from small insertions/deletions and complex mutations. Furthermore, we reveal that both the deacetylation and acetylation on histone H3 K56 are involved in mutation avoidance mechanisms that cooperate with mismatch repair and the proofreading activities of replicative DNA polymerases in suppressing spontaneous mutagenesis. Our results suggest that cyclic acetylation and deacetylation of chromatin contribute to replication fidelity and play important roles in the protection of nuclear DNA from diverse spontaneous mutations.  相似文献   

5.
6.
The SIR2 homologues HST3 and HST4 have been implicated in maintenance of genome integrity in the yeast Saccharomyces cerevisiae. We find that Hst3 has NAD-dependent histone deacetylase activity in vitro and that it functions during S phase to deacetylate the core domain of histone H3 at lysine 56 (H3K56). In response to genotoxic stress, Hst3 undergoes rapid Mec1-dependent phosphorylation and is targeted for ubiquitin-mediated proteolysis, thus providing a mechanism for the previously observed checkpoint-dependent accumulation of Ac-H3K56 at sites of DNA damage. Loss of Hst3-mediated regulation of H3K56 acetylation results in a defect in the S phase DNA damage checkpoint. The pathway that regulates H3K56 acetylation acts in parallel with the Rad9 pathway to transmit a DNA damage signal from Mec1 to Rad53. We also observe that loss of Hst3 function impairs sister chromatid cohesion (SCC). Both S phase checkpoint and SCC defects are phenocopied by H3K56 point mutants. Our findings demonstrate that Hst3-regulated H3K56 acetylation safeguards genome stability by controlling the S phase DNA damage response and promoting SCC.  相似文献   

7.
Lysine 56 is acetylated on newly synthesized histone H3 in yeast, Drosophila and mammalian cells. All of the proteins involved in histone H3 lysine 56 (H3K56) acetylation are important for maintaining genome integrity. These include Rtt109, a histone acetyltransferase, responsible for acetylating H3K56, Asf1, a histone H3/H4 chaperone, and Hst3 and Hst4, histone deacetylases which remove the acetyl group from H3K56. Here we demonstrate a new role for Rtt109 and H3K56 acetylation in maintaining repetitive DNA sequences in Saccharomyces cerevisiae. We found that cells lacking RTT109 had a high level of CAG/CTG repeat contractions and a twofold increase in breakage at CAG/CTG repeats. In addition, repeat contractions were significantly increased in cells lacking ASF1 and in an hst3Δhst4Δ double mutant. Because the Rtt107/Rtt101 complex was previously shown to be recruited to stalled replication forks in an Rtt109-dependent manner, we tested whether this complex was involved. However, contractions in rtt109Δ cells were not due to an inability to recruit the Rtt107/Rtt101 complex to repeats, as absence of these proteins had no effect on repeat stability. On the other hand, Dnl4 and Rad51-dependent pathways did play a role in creating some of the repeat contractions in rtt109Δ cells. Our results show that H3K56 acetylation by Rtt109 is important for stabilizing DNA repeats, likely by facilitating proper nucleosome assembly at the replication fork to prevent DNA structure formation and subsequent slippage events or fork breakage.  相似文献   

8.
Several recent reports have identified lysine 56 (K56) as a novel site of acetylation in yeast histone H3. K56 acetylation is predicted to disrupt some of the histone-DNA interactions at the entry and exit points of the nucleosome core particle. This modification occurs in virtually all the newly synthesised histones that are deposited into chromatin during S-phase. Cells with mutations that block K56 acetylation show increased genome instability and hypersensitivity to genotoxic agents that interfere with replication. Removal of K56 acetylation takes place in the G2/M phase of the cell cycle and is dependent upon Hst3 and Hst4, two proteins that are related to the NAD+-dependent histone deacetylase Sir2. In response to DNA damage checkpoint activation during S-phase, expression of Hst3/Hst4 is delayed to extend the window of opportunity in which K56 acetylation can act in the DNA damage response. The high abundance of histone H3 K56 acetylation, its regulation and strategic location in the nucleosome core particle raise a number of fascinating issues that we discuss here.  相似文献   

9.
Recognition and repair of damaged DNA occurs within the context of chromatin. The key protein components of chromatin are histones, whose post-translational modifications control diverse chromatin functions. Here, we report our findings from a large-scale screen for DNA-damage-responsive histone modifications in human cells. We have identified specific phosphorylations and acetylations on histone H3 that decrease in response to DNA damage. Significantly, we find that DNA-damage-induced changes in H3S10p, H3S28p and H3.3S31p are a consequence of cell-cycle re-positioning rather than DNA damage per se. In contrast, H3K9Ac and H3K56Ac, a mark previously uncharacterized in human cells, are rapidly and reversibly reduced in response to DNA damage. Finally, we show that the histone acetyl-transferase GCN5/KAT2A acetylates H3K56 in vitro and in vivo. Collectively, our data indicate that though most histone modifications do not change appreciably after genotoxic stress, H3K9Ac and H3K56Ac are reduced in response to DNA damage in human cells.  相似文献   

10.
Choy JS  Acuña R  Au WC  Basrai MA 《Genetics》2011,189(1):11-21
Hypoacetylated H4 is present at regional centromeres; however, its role in kinetochore function is poorly understood. We characterized H4 acetylation at point centromeres in Saccharomyces cerevisiae and determined the consequences of altered H4 acetylation on chromosome segregation. We observed low levels of tetra-acetylated and K16 acetylated histone H4 (H4K16Ac) at centromeres. Low levels of H4K16Ac were also observed at noncentromeric regions associated with Cse4p. Inhibition of histone deacetylases (HDAC) using nicotinamide (NAM) caused lethality in cse4 and hhf1-20 kinetochore mutants and increased centromeric H4K16Ac. Overexpression of Sas2-mediated H4K16 acetylation activity in wild-type cells led to increased rates of chromosome loss and synthetic dosage lethality in kinetochore mutants. Consistent with increased H4K16 acetylation as a cause of the phenotypes, deletion of the H4K16 deacetylase SIR2 or a sir2-H364Y catalytic mutant resulted in higher rates of chromosome loss compared to wild-type cells. Moreover, H4K16Q acetylmimic mutants displayed increased rates of chromosome loss compared to H4K16R nonacetylatable mutants and wild-type cells. Our work shows that hypoacetylated centromeric H4 is conserved across eukaryotic centromeres and hypoacetylation of H4K16 at centromeres plays an important role in accurate chromosome segregation.  相似文献   

11.
12.
In Saccharomyces cerevisiae, histone H3 lysine 56 acetylation (H3K56ac) is a modification of new H3 molecules deposited throughout the genome during S-phase. H3K56ac is removed by the sirtuins Hst3 and Hst4 at later stages of the cell cycle. Previous studies indicated that regulated degradation of Hst3 plays an important role in the genome-wide waves of H3K56 acetylation and deacetylation that occur during each cell cycle. However, little is known regarding the mechanism of cell cycle-regulated Hst3 degradation. Here, we demonstrate that Hst3 instability in vivo is dependent upon the ubiquitin ligase SCFCdc4 and that Hst3 is phosphorylated at two Cdk1 sites, threonine 380 and threonine 384. This creates a diphosphorylated degron that is necessary for Hst3 polyubiquitylation by SCFCdc4. Mutation of the Hst3 diphospho-degron does not completely stabilize Hst3 in vivo, but it nonetheless results in a significant fitness defect that is particularly severe in mutant cells treated with the alkylating agent methyl methanesulfonate. Unexpectedly, we show that Hst3 can be degraded between G2 and anaphase, a window of the cell cycle where Hst3 normally mediates genome-wide deacetylation of H3K56. Our results suggest an intricate coordination between Hst3 synthesis, genome-wide H3K56 deacetylation by Hst3, and cell cycle-regulated degradation of Hst3 by cyclin-dependent kinases and SCFCdc4.  相似文献   

13.
Histone H3 lysine 56 acetylation (H3K56Ac) has recently been identified and shown to be important for genomic stability in yeast. However, whether or not H3K56 acetylation occurs in mammals is not clear. Here, we report that H3K56Ac exists in mammals. Mammalian H3K56Ac requires the histone chaperone Asf1 and occurs mainly at the S phase in unstressed cells. Moreover, SIRT1, which is a mammalian member of sirtuin family of NAD+-dependent deacetylases, regulates the deacetylation of H3K56. We further showed that proper H3K56 acetylation is critical for genomic stability and DNA damage response. These results establish the existence and functional significance of H3K56Ac in mammals and identify two regulators of this modification.  相似文献   

14.
Histone modifications have been implicated in both DNA repair and checkpoint-mediated responses to DNA damage. Recently much attention has focused on the acetylation of H3 K56. Indeed, this modification is cell cycle-regulated, maintained upon replicative damage in a checkpoint-dependent manner, and is essential for surviving DNA damage. We and others have discovered that two members of the HDAC Sirtuin family, Hst3 and Hst4, negatively regulate H3 K56 acetylation in budding yeast. Additionally, we have shown that these two HDACs are targeted for repression by the DNA damage checkpoint, which is vital for DNA damage tolerance. Discovery that two HDACs are negative regulators of the cellular response to DNA damage and that they target the acetylation of H3 K56 reveals a complex relationship between histone modifications, HDACs, and the DNA damage response. Here, we discuss the recent reports of the regulation of H3 K56-Ac by Hst3 and Hst4 and put forth the critical questions that remain for understanding the intimate, though poorly characterized, connection between chromatin states and genomic maintenance.  相似文献   

15.
SIR2 proteins have NAD(+)-dependent histone deacetylase activity, but no metabolic role has been assigned to any of these proteins. In Salmonella enterica, SIR2 function was required for activity of the acetyl-CoA synthetase (Acs) enzyme. A greater than two orders of magnitude increase in the specific activity of Acs enzyme synthesized by a sirtuin-deficient strain was measured after treatment with homogeneous S. enterica SIR2 protein. Human SIR2A and yeast SIR2 proteins restored growth of SIR2-deficient S. enterica on acetate and propionate, suggesting that eukaryotic cells may also use SIR2 proteins to control the synthesis of acetyl-CoA by the level of acetylation of acetyl-CoA synthetases. Consistent with this idea, growth of a quintuple sir2 hst1 hst2 hst3 hst4 mutant strain of the yeast Saccharomyces cerevisiae on acetate or propionate was severely impaired. The data suggest that the Hst3 and Hst4 proteins are the most important for allowing growth on these short-chain fatty acids.  相似文献   

16.
Histone-modifying enzymes play a critical role in modulating chromatin dynamics. In this report we demonstrate that one of these enzymes, PR-Set7, and its corresponding histone modification, the monomethylation of histone H4 lysine 20 (H4K20), display a distinct cell cycle profile in mammalian cells: low at G1, increased during late S phase and G2, and maximal from prometaphase to anaphase. The lack of PR-Set7 and monomethylated H4K20 resulted in a number of aberrant phenotypes in several different mammalian cell types. These include the inability of cells to progress past G2, global chromosome condensation failure, aberrant centrosome amplification, and substantial DNA damage. By employing a catalytically dead dominant negative PR-Set7 mutant, we discovered that its mono-methyltransferase activity was required to prevent these phenotypes. Importantly, we demonstrate that all of the aberrant phenotypes associated with the loss of PR-Set7 enzymatic function occur independently of p53. Collectively, our findings demonstrate that PR-Set7 enzymatic activity is essential for mammalian cell cycle progression and for the maintenance of genomic stability, most likely by monomethylating histone H4K20. Our results predict that alterations of this pathway could result in gross chromosomal aberrations and aneuploidy.  相似文献   

17.
Acetylation of histone H3 lysine 56 is a covalent modification best known as a mark of newly replicated chromatin, but it has also been linked to replication-independent histone replacement. Here, we measured H3K56ac levels at single-nucleosome resolution in asynchronously growing yeast cultures, as well as in yeast proceeding synchronously through the cell cycle. We developed a quantitative model of H3K56ac kinetics, which shows that H3K56ac is largely explained by the genomic replication timing and the turnover rate of each nucleosome, suggesting that cell cycle profiles of H3K56ac should reveal most first-time nucleosome incorporation events. However, since the deacetylases Hst3/4 prevent use of H3K56ac as a marker for histone deposition during M phase, we also directly measured M phase histone replacement rates. We report a global decrease in turnover rates during M phase and a further specific decrease in turnover at several early origins of replication, which switch from rapidly replaced in G1 phase to stably bound during M phase. Finally, by measuring H3 replacement in yeast deleted for the H3K56 acetyltransferase Rtt109 and its two co-chaperones Asf1 and Vps75, we find evidence that Rtt109 and Asf1 preferentially enhance histone replacement at rapidly replaced nucleosomes, whereas Vps75 appears to inhibit histone turnover at those loci. These results provide a broad perspective on histone replacement/incorporation throughout the cell cycle and suggest that H3K56 acetylation provides a positive-feedback loop by which replacement of a nucleosome enhances subsequent replacement at the same location.  相似文献   

18.
19.
The DNA glycosylase MutY homolog (Myh1) excises adenines misincorporated opposite guanines or 7,8-dihydro-8-oxo-guanines on DNA by base excision repair thereby preventing G:C to T:A mutations. Schizosaccharomyces pombe (Sp) Hst4 is an NAD+-dependent histone/protein deacetylase involved in gene silencing and maintaining genomic integrity. Hst4 regulates deacetylation of histone 3 Lys56 at the entry and exit points of the nucleosome core particle. Here, we demonstrate that the hst4 mutant is more sensitive to H2O2 than wild-type cells. H2O2 treatment results in an SpMyh1-dependent decrease in SpHst4 protein level and hyperacetylation of histone 3 Lys56. Furthermore, SpHst4 interacts with SpMyh1 and the cell cycle checkpoint Rad9-Rad1-Hus1 (9-1-1) complex. SpHst4, SpMyh1, and SpHus1 are physically bound to telomeres. Following oxidative stress, there is an increase in the telomeric association of SpMyh1. Conversely, the telomeric association of spHst4 is decreased. Deletion of SpMyh1 strongly abrogated telomeric association of SpHst4 and SpHus1. However, telomeric association of SpMyh1 is enhanced in hst4Δ cells in the presence of chronic DNA damage. These results suggest that SpMyh1 repair regulates the functions of SpHst4 and the 9-1-1 complex in maintaining genomic stability.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号