首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Caffeine was used to study the kinetics of cytogenetic damages repair in Chinese hamster fibroblasts. Its half-time (90 min) was shown to correlate with that of repair of slowly repaired DNA damages. The caffeine-induced increase in the number of irreparable DNA damages, attributed to inhibition of double-strand break repair, is in a quantitative correlation with the effect of the cytogenetic damage modification.  相似文献   

2.
A comparison was made between the results of the effect of poly(ADP-ribosylation) inhibitors (e.g. nicotinamide and 3-aminobenzamide) and a chromatin proteinase inhibitor, phenylmethylsulfonylfluoride, on the cytogenetic damages repair, by a micronucleus test and DNA repair in Chinese hamster fibroblasts. The values of the repair half-periods (5-7 min for the cytogenetic damages and 5 min for the rapidly repaired DNA damages) and a similar modifying effect with regard to radiation cytogenetic damages and kinetics of DNA damages repair were found to be close. This confirms the contribution of repair of DNA single-strand breaks in the initiation of structural damages to chromosomes.  相似文献   

3.
Dark repair of DNA was studied in embryos excised from the advanced sugar beet seeds. Significant increase (from 19 to 321%) in the level of dark DNA repair has been established for all studied conditions of the advanced treatment. Acute -irradiation has been used to investigate the ability of advanced seeds to repair additional DNA damages caused by a standard irradiation dose. It has been concluded that irradiation factor allows to test capacity of DNA repair systems. The later, we suggest, can be used to define the optimal conditions for the seed advancement.  相似文献   

4.
Using centrifugation of the nucleoid in a neutral sucrose gradient, the damages in the secondary structure of DNA and the activity of repair enzymes, such as DNA-polymerases alpha and beta and poly(ADP-riboso) polymerase, induced by 1-methyl-nitrosourea (MNU) and 1.3-bis (2-chloroethyl)-1-nitrosourea (BCNU) injected at maximal nonlethal single doses to mice bearing parent leukemia cells (L1210/0) and resistant to MNU and BCNU leukemia L1210 cells (L1210/MNU and L1210/BCNU), were studied. The MNU-induced production of single-strand breaks in L1210/0 and L1210/MNU cells was more conspicuous in newly replicated DNA than in those in preexisting DNA. A more fast repair of the damages in newly replicated DNA was detected in L1210/BCNU and especially in L1210/MNU leukemia cells as compared with L1210/0 cells. The data obtained suggest that there are prone errors in the repair of DNA template, since most of the single-strand breaks were revealed in the newly replicated DNA synthesized on the repaired DNA. The repair of DNA damages in L1210/BCNU and especially in L1210/MNU cells was accompanied by the activation of DNA-polymerases alpha and beta and poly(ADP-riboso)polymerase. Both DNA-polymerases--alpha and beta--were shown to be involved in repair of DNA damages induced by MNU and only DNA-polymerase beta was involved in the repair of damages induced by BCNU.  相似文献   

5.
Bendtsen KM  Juul J  Trusina A 《PloS one》2012,7(5):e36018
DNA damages, as well as mutations, increase with age. It is believed that these result from increased genotoxic stress and decreased capacity for DNA repair. The two causes are not independent, DNA damage can, for example, through mutations, compromise the capacity for DNA repair, which in turn increases the amount of unrepaired DNA damage. Despite this vicious circle, we ask, can cells maintain a high DNA repair capacity for some time or is repair capacity bound to continuously decline with age? We here present a simple mathematical model for ageing in multicellular systems where cells subjected to DNA damage can undergo full repair, go apoptotic, or accumulate mutations thus reducing DNA repair capacity. Our model predicts that at the tissue level repair rate does not continuously decline with age, but instead has a characteristic extended period of high and non-declining DNA repair capacity, followed by a rapid decline. Furthermore, the time of high functionality increases, and consequently slows down the ageing process, if the DNA repair mechanism itself is vulnerable to DNA damages. Although counterintuitive at first glance, a fragile repair mechanism allows for a faster removal of compromised cells, thus freeing the space for healthy peers. This finding might be a first step toward understanding why a mutation in single DNA repair protein (e.g. Wrn or Blm) is not buffered by other repair proteins and therefore, leads to severe ageing disorders.  相似文献   

6.
A mathematical model of DNA strand breaks postirradiation repair and the methodology allowing to differentiate the mechanism of inhibition of DNA strand breaks recovery after combined actions of ionizing radiation and hyperthermia have been described in this paper. Using this model and the results published by other authors for DNA strand breaks of Ehrlich ascites cells, there have been obtained the data showing that the portion of DNA-damages that the cell incapable to recover after consecutive thermoradiation action was risen with an increase in thermal load under insignificant change of repair constant. It means the mechanism of DNA strand breaks recovery inhibition is realized in a greater extent through the formation of irreversible damages but not through the damage of repair process itself.  相似文献   

7.
DNA damages can lead to drastic perturbations of living cell cycle (e.g., in carcinogenesis) by inducing mutations in the genetic information. Therefore DNA repair processes play an important role during cell life by eliminating DNA damages before mutation fixation. Different repair processes are briefly presented in this review. Two probes were used to provide information on the mechanisms involved in the specific recognition of damaged DNA by proteins and enzymes of the DNA repair machinery. It will be shown that a simple tripeptide Lys-Trp-Lys is able to mimic two repair systems, namely, the photosensitized splitting of pyrimidine dimers and the cleavage of phosphodiester bonds at apurinic sites.  相似文献   

8.
Recently, hydrogen peroxide and its free-radical product, the hydroxyl radical (OH.) have been identified as major sources of DNA damage in living organisms. They occur as ubiquitous metabolic by-products and, in humans, cause several thousand damages in a cell's DNA per day. They are thought to be a major source of DNA damage leading to aging and cancer in multicellular organisms. This raises two questions. First, what pathways are used in repair of DNA damages caused by H2O2 and OH.? Second, a new theory has been proposed that sexual reproduction (sex) evolved to promote repair of DNA in the germ line of organisms. If this theory is correct, then the type of repair specifically available during the sexual process should be able to deal with important natural lesions such as those produced by H2O2 and OH. . Does this occur? We examined repair of hydrogen peroxide damage to DNA, using a standard bacteriophage T4 test system in which sexual reproduction is either permitted or not permitted. Post-replication recombinational repair and denV-dependent excision repair are not dependent on sex. Both of these processes had little or no effect on lethal H2O2 damage. Also, an enzyme important in repair of H2O2-induced DNA damage in the E. coli host cells, exonuclease III, was not utilized in repair of lethal H2O2 damage to the phage. However, multiplicity reactivation, a recombinational form of repair depending on the sexual interaction of two or more of the bacteriophage, was found to repair lethal H2O2 damages efficiently. Our results lend support to the repair hypothesis of sex. Also the homology-dependent recombinational repair utilized in the phage sexual process may be analogous to the homology-dependent recombination which is widespread in diploid eucaryotes. The recombinational repair pathway found in phage T4 may thus be a widely applicable model for repair of the ubiquitous DNA damage caused by endogenous oxidative reactions.  相似文献   

9.
This study provides an analysis of the development of cellular response to the critical DNA damage and the mechanisms for limiting the efficiency of repairing such damages induced by low doses of ionizing radiation exposure. Based on the data of many studies, one can conclude that the majority of damages occurring in the DNA of the cells after exposure to ionizing radiation significantly differ in their chemical nature from the endogenous ones. The most important characteristic of radiation-induced DNA damages is their complexity and clustering. Double strand breaks, interstrand crosslinks or destruction of the replication fork and formation of long single-stranded gaps in DNA are considered to be critical damages for the fate of cells. The occurrence of such lesions in DNA may be a key event in the etiology and the therapy of cancer. The appearance in the cells of the critical DNA damage induces a rapid development of a complex and ramified network of molecular and biochemical reactions which are called the cellular response to DNA damage. Induction of the cellular response to DNA damage involves the activation of the systems of cell cycle checkpoints, DNA repair, changes in the expression of many genes, reconstruction of the chromatin or apoptosis. However, the efficiency of repair of the complex DNA damage in cells after exposure to low doses of radiation remains at low levels. The development of the cell response to DNA damages after exposure to low doses of radiation does not reach the desired result due to a small amount of damage, with the progression of the phase cell cycle being ahead of the processes of DNA repair. This is primarily due to the failure of signalization to activate the checkpoint of the cell cycle for its arrest in the case of a small number of critical DNA lesions. In the absence of the arrest of the phase cell cycle progression, especially during the G2/M transition, the reparation mechanisms fail to completely restore DNA, and cells pass into mitosis with a damaged DNA. It is assumed that another reason for the low efficiency of DNA repair in the cells after exposure to low doses of radiation is the existence of a restricted access for the repair system components to the complex damages at the DNA sites of highly compacted chromatin.  相似文献   

10.
The comet assay was performed to elucidate the linearity of calibration curves and detection limits for DNA damage in multiple organs of whole body X-irradiated mice, and rates of reduction in DNA damage by DNA repair during the irradiation period were estimated in the respective organs by comparing the rates of increase in DNA damage at different absorbed dose rates of X-rays. Of the assay parameters, tail length and the percentage DNA in the tail showed a higher sensitivity to DNA damage in most organs than Olive tail moment. Data at the higher absorbed dose rates (2.22 or 1.44 Gy/min) showed good correlations between absorbed doses and these two parameters, with correlation coefficients of more than 0.7 in many organs. However, this assay had difficulty detecting DNA damage at the lower absorption dose rate (0.72 Gy/min). The estimated rates of increase in DNA damage and those of DNA repair during the irradiation period in the respective organs suggested differences in the radiosensitivity of nuclear DNA and DNA repair capacity among organs. Our results indicated that absorbed dose rates of 1.0-1.3 Gy/min or greater were needed to induce detectable DNA damages by the comet assay in many organs.  相似文献   

11.
DNA-damaging agents can induce clustered lesions or multiply damaged sites (MDSs) on the same or opposing DNA strands. In the latter, attempts to repair MDS can generate closely opposed single-strand break intermediates that may convert non-lethal or mutagenic base damage into double-strand breaks (DSBs). We constructed a diploid S. cerevisiae yeast strain with a chromosomal context targeted by integrative DNA fragments carrying different damages to determine whether closely opposed base damages are converted to DSBs following the outcomes of the homologous recombination repair pathway. As a model of MDS, we studied clustered uracil DNA damages with a known location and a defined distance separating the lesions. The system we describe might well be extended to assessing the repair of MDSs with different compositions, and to most of the complex DNA lesions induced by physical and chemical agents.  相似文献   

12.
Base excision repair (BER) is a very important repair mechanism to remove oxidative DNA damage. A major oxidative DNA damage after exposure to ionizing radiation is 7,8-dihydro-8-oxoguanine (8oxoG). 8oxoG is a strong mutagenic lesion, which may cause G:C to T:A transversions if not repaired correctly. Formamidopyrimidine-DNA glycosylase (Fpg), a repair enzyme which is part of BER, is the most important enzyme to repair 8oxoG. In the past years, evidence evolved that nucleotide excision repair (NER), a repair system originally thought to repair only bulky DNA lesions, can also repair some oxidative DNA damages. Examples of DNA damages which are recognized by NER are thymine glycol and abasic sites (AP sites). The main objective of this study is to determine if NER can act as a backup system for the repair of spontaneous and gamma-radiation-induced damages when Fpg is deficient. For that purpose, the effect of a NER-deficiency on the spontaneous and gamma-radiation-induced mutation spectrum in the lacZ gene was determined, using double-stranded (ds) M13 DNA, with the lacZalpha gene inserted as mutational target sequence. Subsequently the DNA was transfected into a fpg(-)uvrA(-) Escherichia coli strain (BH420) and the mutational spectra were compared with the spectra of a fpg(-) E. coli strain (BH410) and a wild type E. coli strain (JM105), which were determined in an earlier study. Furthermore, to examine effects which are caused by UvrA-deficiency, and not by Fpg-deficiency, the spontaneous and gamma-radiation-induced mutation spectra of an E. coli strain in which only UvrA is deficient (BH430) were also determined and compared with a wild type E. coli strain (JM105). The results of this study indicate that if only UvrA is deficient, there is an increase in spontaneous G:C to T:A transversions as compared to JM105 and a decrease in A:T to G:C transitions. The gamma-radiation-induced mutation spectrum of BH420 (fpg(-)uvrA(-)) shows a significant decrease in G:C to A:T and G:C to T:A mutations, as compared to BH410 where only Fpg is deficient. Based on these results, we conclude that in our experiments NER is not acting as a backup system if Fpg is deficient. Instead, NER seems to make mistakes, leading to the formation of mutations.  相似文献   

13.
The comet assay was performed to elucidate the linearity of calibration curves and detection limits for DNA damage in multiple organs of whole body X-irradiated mice, and rates of reduction in DNA damage by DNA repair during the irradiation period were estimated in the respective organs by comparing the rates of increase in DNA damage at different absorbed dose rates of X-rays. Of the assay parameters, tail length and the percentage DNA in the tail showed a higher sensitivity to DNA damage in most organs than Olive tail moment. Data at the higher absorbed dose rates (2.22 or 1.44 Gy/min) showed good correlations between absorbed doses and these two parameters, with correlation coefficients of more than 0.7 in many organs. However, this assay had difficulty detecting DNA damage at the lower absorption dose rate (0.72 Gy/min). The estimated rates of increase in DNA damage and those of DNA repair during the irradiation period in the respective organs suggested differences in the radiosensitivity of nuclear DNA and DNA repair capacity among organs. Our results indicated that absorbed dose rates of 1.0–1.3 Gy/min or greater were needed to induce detectable DNA damages by the comet assay in many organs.  相似文献   

14.
Characteristic of damage introduced in DNA by ionizing radiation is the induction of a wide range of lesions. Single-strand breaks (SSBs) and base damages outnumber double-strand breaks (DSBs). If unrepaired, these lesions can lead to DSBs and increased mutagenesis. XRCC1 and DNA polymerase beta (polbeta) are thought to be critical elements in the repair of these SSBs and base damages. XRCC1-deficient cells display a radiosensitive phenotype, while proliferating polbeta-deficient cells are not more radiosensitive. We have recently shown that cells deficient in polbeta display increased radiosensitivity when confluent. In addition, cells expressing a dominant negative to polbeta have been found to be radiosensitized. Here we show that repair of radiation-induced lesions is inhibited in extracts with altered polbeta or XRCC1 status, as measured by an in vitro repair assay employing irradiated plasmid DNA. Extracts from XRCC1-deficient cells showed a dramatically reduced capacity to repair ionizing radiation-induced DNA damage. Extracts deficient in polbeta or containing a dominant negative to polbeta also showed reduced repair of radiation-induced SSBs. Irradiated repaired plasmid DNA showed increased incorporation of radioactive nucleotides, indicating use of an alternative long-patch repair pathway. These data show a deficiency in repair of ionizing radiation damage in extracts from cells deficient or altered in polbeta activity, implying that increased radiosensitivity resulted from radiation damage repair deficiencies.  相似文献   

15.
The molecular manifestations of radiation-induced genome instability-changes of the DNA structure, the excision DNA repair and the contents of the reactive oxygen forms in bone marrow cells of the repair proficient mice (CBA) and of the repair-defective (101/H) lines in the dynamics up to 185 day after ionizing radiation exposure in the dose of 1.5 Gy were studied. Is was established, that after irradiation in bone marrow cells the descendants with the decreased activity of excision DNA repair and prone to increased changes of DNA structure DHK is arised. The injection of the phenozane in concentrations causing its receptor interaction with cells, did not defend DNA of the bone marrow cells from the radiation injury after the exposure in a sublethal dose, however it exerted influence on long-term changes. Due to the phenosane of the bone marrow cells of the irradiated mice of CBA line exhibited the larger activity in a DNA repair from damages and maintenance of vitality. The bone marrow cells of male mice of repair defective 101/H line, which phenozan was entered before the irradiation, remained unfit to the remuval of DNA damages by the repair, that probably resulted the activations of the program of the maintenance of genome constancy by the apoptosis in the cells--carriers of the structural defects and the cause of animal lethality.  相似文献   

16.
Radiation and Environmental Biophysics - Different types of DNA damages caused by ionizing radiation may enhance the cancer risk in exposed individuals. Inherited variations in DNA repair genes...  相似文献   

17.
The biological mechanisms responsible for aging remain poorly understood. We propose that increases in DNA damage and mutations that occur with age result from a reduced ability to repair DNA damage. To test this hypothesis, we have measured the ability to repair DNA damage in vitro by the base excision repair (BER) pathway in tissues of young (4-month-old) and old (24-month-old) C57BL/6 mice. We find in all tissues tested (brain, liver, spleen and testes), the ability to repair damage is significantly reduced (50-75%; P<0.01) with age, and that the reduction in repair capacity seen with age correlates with decreased levels of DNA polymerase beta (beta-pol) enzymatic activity, protein and mRNA. To determine the biological relevance of this age-related decline in BER, we measured spontaneous and chemically induced lacI mutation frequency in young and old animals. In line with previous findings, we observed a three-fold increase in spontaneous mutation frequency in aged animals. Interestingly, lacI mutation frequency in response to dimethyl sulfate (DMS) does not significantly increase in young animals whereas identical exposure in aged animals results in a five-fold increase in mutation frequency. Because DMS induces DNA damage processed by the BER pathway, it is suggested that the increased mutagenicity of DMS with age is related to the decline in BER capacity that occurs with age. The inability of the BER pathway to repair damages that accumulate with age may provide a mechanistic explanation for the well-established phenotype of DNA damage accumulation with age.  相似文献   

18.
The goal of the work was to study the sensitivity of isogenic Escherichia coli cells differing in their ability to mediate DNA repair steps to the action of visible light sensitized by chlorine e6. Cells incapable of excision repair as well as those deficient in post-replicative recombination DNA repair were found to be much more sensitive to the combined action of visible light and chlorine e6 as compared to cells whose genes responsible for DNA repair were not damaged. The results indicate that visible light damages bacterial DNA in the presence of chlorine e6.  相似文献   

19.
Abasic (AP) sites are formed spontaneously and are inevitably intermediates during base excision repair of DNA base damages. AP sites are both mutagenic and cytotoxic and key enzymes for their removal are AP endonucleases. However, AP endonuclease independent repair initiated by DNA glycosylases performing β,δ-elimination cleavage of the AP sites has been described in mammalian cells. Here, we describe another AP endonuclease independent repair pathway for removal of AP sites in Schizosaccharomyces pombe that is initiated by a bifunctional DNA glycosylase, Nth1 and followed by cleavage of the baseless sugar residue by tyrosyl phosphodiesterase Tdp1. We propose that repair is completed by the action of a polynucleotide kinase, a DNA polymerase and finally a DNA ligase to seal the gap. A fission yeast double mutant of the major AP endonuclease Apn2 and Tdp1 shows synergistic increase in MMS sensitivity, substantiating that Apn2 and Tdp1 process the same substrate. These results add new knowledge to the complex cellular response to AP sites, which could be exploited in chemotherapy where synthetic lethality is a key strategy of treatment.  相似文献   

20.
Base excision repair in yeast and mammals   总被引:19,自引:0,他引:19  
Base excision repair (BER), as initiated by at least seven different DNA glycosylases or by enzymes that cleave DNA at abasic sites, executes the repair of a wide variety of DNA damages. Many of these damages arise spontaneously because DNA interacts with the cellular milieu, and so BER profoundly influences spontaneous mutation rates. In addition, BER provides significant protection against the toxic and mutagenic effects of DNA damaging agents present in the external environment, and as such is likely to prevent the adverse health effects of such agents. BER pathways have been studied in a wide variety of organisms (including yeasts) and here we review how these varied studies have shaped our current view of human BER.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号