首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The observation of 2h J iso(N, N) coupling has prompted considerable interest in this phenomenon from experimentalists and theoreticians due to the potential these couplings hold for the determination of secondary and tertiary structure in biologically important molecules. Here, we present an ab initio (MCSCF) study of the complete 2h J(N, N) tensor for a model methyleneimine dimer system as a function of (i) the N-N separation, r NN, and (ii) the hydrogen bond angle, . This simple system models the 2h J(N, N) tensor of nucleic acid base pairs. Results indicate that although the Fermi-contact mechanism dominates 2h J iso(N, N), the coupling tensor is anisotropic due to contributions from the Fermi-contact spin-dipolar cross term. The variation in 2h J iso(N, N) as a function of r NN is fit to an exponential decay. The influence of on the coupling constant is less pronounced but must be considered if experimental coupling constants are to be used for quantitative structure determination. Our results for this simple model system demonstrate that 2h J iso(N, N) is a valuable probe of hydrogen bonding in nucleic acid base pairs.  相似文献   

2.
Coherences were observed between 15N3 of cytosine and its trans amino proton (H42) using a modified gradient-based heteronuclear single quantum coherence (HSQC) pulse sequence optimized for three-bond proton-nitrogen couplings. The method is demonstrated with a 22-nucleotide RNA fragment of the P5abc region of a group I intron uniformly labeled with 15N. Use of intraresidue 15 N3-amino proton couplings to assign cytosine 15 N3 signals complements the recently proposed JNN HNN COSY [Dingley, A.J. and Grzesiek, S. (1998) J. Am. Chem. Soc., 120, 8293–8297] method of identifying hydrogen-bonded base pairs in RNA.  相似文献   

3.
4.
Methyl α-cellobioside (methyl β-d-glucopyranosyl-(1→4)-α-d-glucopyranoside) was labeled with 13C at C4′ for use in NMR studies in DMSO-d6 solvent to attempt the detection of a trans-H-bond J-coupling (3hJCCOH) between C4′ and OH3. Analysis of the OH3 signal at 600 MHz revealed only the presence of two homonuclear J-couplings: 3JH3,OH3 and a smaller, longer range JHH. No evidence for 3hJC4′,OH3 was found. The longer range JHH was traced to 4JH4,OH3 based on 2D 1H–1H COSY data and inspection of the H2 and H4 signal lineshapes. A limited set of DFT calculations was performed on a methyl cellobioside mimic to evaluate the structural dependencies of 4JH2,O3H and 4JH4,O3H on the H3–C3–O3–H torsion angle. Computed couplings range from about −0.7 to about +1.1 Hz, with maximal values observed when the C–H and O–H bonds are roughly diaxial.  相似文献   

5.
Summary A method for measuring three-bond 13C-1H scalar coupling constants across glycosidic bonds in a cyclic (12)-glucan icosamer is presented. This oligosaccharide molecule, with its high degree of symmetry, represents a particular challenge for NMR spectroscopy to distinguish inter-residue from intra-residue heteronuclear coupling effects. Chemically equivalent H2 protons in adjacent glucosyl residues are distinguished on the basis of their different through-space, dipolar interactions with the anomeric protons (H1). The strong NOE contact between anomeric (H1) and aglyconic (H2) protons permits the selective observation of the inter-residue heteronuclear couplings 3JC1H2 and 3JC2H1 in a natural-abundance 13C-1-half-filtered {1H,1H} ROESY experiment.Abbreviations COSY scalar correlated spectroscopy - NOE nuclear Overhauser effect - NOESY NOE spectroscopy - ROESY rotating-frame NOE spectroscopy  相似文献   

6.
Scalar coupling correlations across hydrogen bonds with carbonyl groups as acceptors have been observed in a variety of proteins, but not in nucleic acids. Here we present a pulse scheme that allows such an observation and quantification of trans-hydrogen bond 3hJNC correlations in nucleic acid base pairs, between the imino nitrogen 15N1 and the carbonyl 13C6 nuclei within the guanine quartets of the Oxy-1.5 DNA-quadruplex. Intra- and internucleotide N-H···O=C connectivities can be traced around each guanine quartet, allowing the hydrogen bonding partners to be unambiguously assigned. Absolute values of the 3hJNC couplings are approximately 0.2 Hz as quantified by a selective long-range H(N)CO experiment and are thus on average smaller than the analogous 3hJNC couplings observed in proteins. In addition, an improved version of the pseudo-heteronuclear H(N)N-COSY [Majumdar et al. (1999) J. Biomol. NMR, 14, 67–70] is presented which allows simultaneous detection of the 15N-donor and 15N-acceptor resonances connected by 2hJNN couplings in hydrogen bonds involving amino groups. Using this experiment, values ranging between 6 and 8 Hz are determined for the 2hJNN couplings between 15N2 and 15N7 nuclei in the guanine quartet. These values are not strongly influenced by the presence of a significant amount of chemical exchange broadening due to amino group rotations.  相似文献   

7.
The interference between conformational exchange-induced time-dependent variations of chemical shifts in a pair of scalar coupled 1H and 15N spins is used to construct novel TROSY-type NMR experiments to suppress NMR signal loss in [15N,1H]-correlation spectra of a 14-mer DNA duplex free in solution and complexed with the Antp homeodomain. An analysis of double- and zero-quantum relaxation rates of base 1H–15N moieties showed that for certain residues the contribution of conformational exchange-induced transverse relaxation might represent a dominant relaxation mechanism, which, in turn, can be effectively suppressed by TROSY. The use of the new TROSY method for exchange-induced transverse relaxation optimization is illustrated with two new experiments, 2D h1 J HN,h2 J NN-quantitative [15N,1H]-TROSY to measure h1 J HN and h2 J NN scalar coupling constants across hydrogen bonds in nucleic acids, and 2D (h2 J NN+h1 J NH)-correlation-[15N,1H]-TROSY to correlate 1HN chemical shifts of bases with the chemical shifts of the tertiary 15N spins across hydrogen bonds using the sum of the trans-hydrogen bond coupling constants in nucleic acids.  相似文献   

8.
Based on the HSQC scheme, we have designed a 2D heterocorrelated experiment which combines constant time (CT) 13C and variable time (VT) 15N chemical shift labelling. Although applicable to all carbons, this mode is particularly suitable for simultaneous recording of methyl-carbon and nitrogen chemical shifts at high digital resolution. The methyl carbon magnetisation is in the transverse plane during the whole CT period (1/JCC=28.6 ms). The magnetisation originating from NH protons is initially stored in the 2HzNz state, then prior to the VT chemical shift labelling period is converted into 2HzNy coherence. The VT -15N mode eliminates the effect of 1 J N,CO and 1,2 J N,CA coupling constants without the need for band-selective carbon pulses. An optional editing procedure is incorporated which eliminates signals from CH2 groups, thus removing any potential overlap with the CH3 signals. The CT-13CH3,VT-15N HSQC building block is used to construct two 3D experiments: 3D NOESY-CH3NH and 3D 13C,15N HSQC-NOESY-CH3NH. Combined use of these experiments yields proton and heteronuclear chemical shifts for moieties experiencing NOEs with CH3 and NH protons. These NOE interactions are resolved as a consequence of the high digital resolution in the carbon and nitrogen chemical shifts of CH3 and NH groups, respectively. The techniques are illustrated using a double labelled sample of the CH domain from calponin.  相似文献   

9.
Summary Improved experimental schemes for the recently introduced J-modulated [15N,1H]-correlation experiment for measurements of the homonuclear amide proton-C proton vicinal coupling constants.3JHN, in uniformly15N-labeled proteins are described, and a nonlinear fit procedure is presented for quantitative evaluation of3JHN. The method was first tested with the N-terminal DNA-binding domain of the 434 repressor (M=7.3 kDa), where at 13 C precise values of3JHN in the range 2.0–9.5 Hz were obtained for all residues with resolved15N-1H cross peaks. It was then applied to theAntennapedia homeodomain complexed to a synthetic 14-base pair DNA fragment (molecular weight of the complex 18 kDa). The3JHN values measured were found to be in excellent agreement with those predicted from the secondary structure of this protein in the complex.Abbreviations and symbols NOE nuclear Overhauser effect - COSY two-dimensional correlated spectroscopy - 3JHN or J homonuclear vicinal amide proton-C proton coupling constant - 434 repressor(1–69) N-terminal DNA-binding domain of the 434 repressor comprising 69 residues  相似文献   

10.
A hydrogen bond between the amide backbone of Arg7 and the remote imidazole side chain of His106 has been directly observed by improved TROSY-NMR techniques in the 44 kDa trimeric enzyme chorismate mutase from Bacillus subtilis. The presence of this hydrogen bond in the free enzyme and its complexes with a transition state analog and the reaction product was demonstrated by measurement of 15N-15N and 1H-15N trans-hydrogen bond scalar couplings, 2h J NN and 1h J HN, and by transfer of nuclear polarization across the hydrogen bond. The conformational dependences of these coupling constants were analyzed using sum-over-states density functional perturbation theory (SOS-DFPT). The observed hydrogen bond might stabilize the scaffold at the active site of BsCM. Because the Arg7-His106 hydrogen bond has not been observed in any of the high resolution crystal structures of BsCM, the measured coupling constants provide unique information about the enzyme and its complexes that should prove useful for structural refinement of atomic models.  相似文献   

11.
Abstract

Assignment of the 1H and 31P resonances of a decamer DNA duplex, d(CGCTTAAGCG)2 was determined by two-dimensional COSY, NOESY and 1H- 31P Pure Absorption phase Constant time (PAC) heteronuclear correlation spectroscopy. The solution structure of the decamer was calculated by an iterative hybrid relaxation matrix method combined with NOESY-distance restrained molecular dynamics. The distances from the 2D NOESY spectra were calculated from the relaxation rate matrix which were evaluated from a hybrid NOESY volume matrix comprising elements from the experiment and those calculated from an initial structure. The hybrid matrix-derived distances were then used in a restrained molecular dynamics procedure to obtain a new structure that better approximates the NOESY spectra. The resulting partially refined structure was then used to calculate an improved theoretical NOESY volume matrix which is once again merged with the experimental matrix until refinement is complete. JH3′-P coupling constants for each of the phosphates of the decamer were obtained from 1H-31P J-resolved selective proton flip 2D spectra. By using a modified Karplus relationship the C4′-C3′-03′-P torsional angles (?) were obtained. Comparison of the 31P chemical shifts and JH3′-P coupling constants of this sequence has allowed a greater insight into the various factors responsible for 31P chemical shift variations in oligonucleotides. It also provides an important probe of the sequence-dependent structural variation of the deoxyribose phosphate backbone of DNA in solution. These correlations are consistent with the hypothesis that changes in local helical structure perturb the deoxyribose phosphate backbone. The variation of the 31P chemical shift, and the degree of this variation from one base step to the next is proposed as a potential probe of local helical conformation within the DNA double helix. The pattern of calculated ? and ζ torsional angles from the restrained molecular dynamics refinement agrees quite well with the measured JH3′-P coupling constants. Thus, the local helical parameters determine the length of the phosphodiester backbone which in turn constrains the phosphate in various allowed conformations.  相似文献   

12.
A modified version of the JHH-TOCSY experiment, `signed COSY', is presented that allows the determination of the sign of residual dipolar 1H-1H coupling constants with respect to the sign of one-bond 1H-X coupling constants in linear three-spin systems X-1H-1H, where X = 13C or 15N. In contrast to the original JHH-TOCSY experiments, the signs of J HH couplings may be determined for CH2-CH2 moieties and for uniformly 13C/15N-labelled samples. In addition, sensitivity is enhanced, diagonal peaks are suppressed and cross peaks are observed only between directly coupled protons, as in a COSY spectrum.  相似文献   

13.
Quantitative φ-dihedral angle determinations of non-glycine and non-proline residues in Desulfovibrio vulgaris flavodoxin are carried out on the exclusive basis of 3 J coupling constants. In total 124 3 JHNH α , 123 3 JHNC ′i , 118 3 JHNC β , 117 3 JC′ i–1Hα , 109 3 JC′ i–1C′i , and 103 3 JC′ i–1Hβ values form the experimental basis for translating J coupling data into geometry information using various combinations of Karplus parameters given in the literature. In addition, each backbone torsional angle φ is adjusted assuming different models of local geometry, either a rigid torsion, a Gaussian distribution centered at a distinct angle, or a two-site jump model. Numerical optimization is followed by a statistical significance evaluation to assess the results. It is found that experimental coupling constants of most of the residues involved in secondary structure elements agree best with those predicted from rigid local conformations. For dihedral angles in loop regions, mobility effects are not negligible, and a single torsion (Glu 42) is likely to adopt two distinct adjustments. However, α-helix conformations with –60° < φ < –45° give rise to an alternate solution with φ≈+170° with similar statistical significance when using the four traditionally determined proton-involved 3 J couplings. This ambiguity is efficiently avoided only when taking advantage of the complete data set comprising six available experimental 3 J coupling constants and of the degeneracy intrinsic to the Karplus relation. The optimized φ conformations are compared with reference values from the crystal structure of flavodoxin.  相似文献   

14.
The 17 base pair operator O R 3 oligonucleotide, which is the preferential binding site for the Cro repressor of phage , was studied by two-dimensional NMR spectroscopy. A sequential assignment procedure based on two-dimensional Nuclear Overhauser Effect (NOESY) and scalar coupling correlated (COSY) NMR spectroscopy, together with the knowledge of the oligodesoxynucleotide sequence, made it possible to assign the non-exhangeable base protons and the H1 and the H2-H2 sugar protons of the O R 3 operator DNA. The pattern of the observed NOE connectivities is consistent with a right-handed helical DNA structure. The base and sugar proton assignments provide the necessary information for further studies of the O R 3 operator — Cro repressor interaction.Abbreviations COSY correlated spectroscopy - FID free induction decay - NOE nuclear Overhauser effect - NOESY nuclear Overhauser effect spectroscopy - RD relaxation delay - TSP sodium 3-trimethylsilyl-(2,2,3,3-2H4)propionate - EDTA sodium ethylendiamine tetraacetate  相似文献   

15.
New types of stable chrysanthemic acids and esters were synthesized, and their 13C-NMR were examined and fully analyzed. The configurations of the cyclopropanecarboxylic acid and halomethylvinyl group were reflected on the spin-lattice relaxation time of the substituted methyl carbon involved in their structure. The long-range spin-spin coupling constants (3JCH) correlated well to the NOE and T1 measurements, which can generally be used to distinguish the geometry of the substituted double bond.  相似文献   

16.
Summary A simple E.COSY type technique is described for measurement of two-bond JCOH coupling constants in proteins that are uniformly enriched with13C. The method has been used to measure2JCOH for 132 residues in the proteins calmodulin and staphylococcal nuclease having non-overlapping H–C correlations. Measured2JCOH coupling constants fall in the 0 to –9.5 Hz range. A separate experiment, measuring the accuracy of these values, indicates a root-mean-square error of 1 Hz. Comparison of the J couplings with the dihedral back bone angles from crystallographic studies confirms a weak but statistically significant correlation between the dihedral angle and the magnitude of2JCOH, but also indicates that parameters other than have a significant effect on the value of the coupling.  相似文献   

17.
A two-dimensional, quantitative J-correlation NMR experiment for precise measurements of the proton-carbon vicinal coupling constants 3JC2/4–H1 and 3JC6/8–H1 in uniformly 13C-labeled nucleic acids is presented. To reduce loss of signal due to 1H -13C dipole-dipole relaxation, a multiple-quantum constant time experiment with appropriately incorporated band selective 1H and 13C pulses was applied. The experiment is used to obtain the 3JC2/4–H1 and 3JC6/8–H1 coupling constants in a uniformly 13C, 15N-labeled [d(G4T4G4)]2 quadruplex. The measured values and glycosidic torsion angles in the G-quadruplex, obtained by restrained molecular dynamics with explicit solvent using the previously published restraints, along with selected data from the literature are used to check and modify existing parameters of the Karplus equations. The parameterizations obtained using glycosidic torsion angles derived from the original solution and recently determined X-ray structures are also compared.  相似文献   

18.
Rutin, vitamin P, was extracted from Salvia macrosiphon and identified by 1H, 13C, 1H-1H COSY, HMQC, and HMBC spectroscopy. In parallel, density functional theory (DFT) using B3LYP functional and split-valance 6-311G∗∗ basis set has been used to optimize the structures and conformers of rutin. Also experimental and theoretical methods have been used to correlate the dependencies of 1J, 2J, and 3J involving 1H and 13C on the C5″-C6″ (ω), C6″-O6″ (θ), and C1?-O6″ (φ) torsion angles in the glycosidic moiety. New Karplus equations are proposed to assist in the structural interpretation of these couplings. 3JHH depends mainly on the C-C (ω) torsion angle, as expected, and 2JHH values depend on both C-C (ω) and C-O (θ) torsions. 1JCH values within hydroxymethyl fragments were also examined and found to depend on rCH, which is modulated by specific bond orientation and stereoelectronic factors. In all calculations solvent effects were considered using a polarized continuum model (PCM).  相似文献   

19.
An experiment is presented to determine 3JHNHα coupling constants, with significant advantages for applications to unfolded proteins. The determination of coupling constants for the peptide chain using 1D 1H, or 2D and 3D 1H-15N correlation spectroscopy is often hampered by extensive resonance overlap when dealing with flexible, disordered proteins. In the experiment detailed here, the overlap problem is largely circumvented by recording 1H-13C′ correlation spectra, which demonstrate superior resolution for unfolded proteins. J-coupling constants are extracted from the peak intensities in a pair of 2D spin-echo difference experiments, affording rapid acquisition of the coupling data. In an application to the cytoplasmic domain of human neuroligin-3 (hNlg3cyt) data were obtained for 78 residues, compared to 54 coupling constants obtained from a 3D HNHA experiment. The coupling constants suggest that hNlg3cyt is intrinsically disordered, with little propensity for structure.  相似文献   

20.
Summary NMR pulse sequences for measuring coupling constants in 13C, 15N-labeled proteins are presented. These pulse sequences represent improvements over earlier experiments with respect to resolution and number of radiofrequency pulses. The experiments are useful for measuring JNH , JNCO, JNC , JH N CO and JH N H . Applications to chymotrypsin inhibitor 2 (CI-2) are shown.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号