首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
Zahn K  Inui M  Yukawa H 《Nucleic acids research》2000,28(23):4623-4633
Widespread occurrence of a separate small RNA derived from the 5'-end of 23S rRNA and of an intervening sequence (IVS) which separates this domain from the main segment of 23S rRNA in the alpha-proteobacteria implies that processing reactions which act to excise the IVS are also maintained in this group. We previously characterized the first example of processing of this IVS in Rhodopseudomonas palustris, which is classified with the Bradyrhizobia In this case, IVS excision occurs by a multistep process and RNase III appears to act at an early step. Here, we characterize in vivo and in vitro IVS processing in two other related, but phenotypically distinct, Bradyrhizobia We also examine in vivo and in vitro processing of rRNA precursors from a more distantly related alpha-proteobacterium, Rhodobacter sphaeroides which produces a separate 5' 23S rRNA domain but has different sequences in the 5' 23S rRNA IVS. The details of the in vivo processing of all of the Bradyrhizobial rRNAs closely resemble the R. palustris example and in vitro studies suggest that all of the Bradyrhizobia utilize RNase III in the first step of IVS cleavage. Remarkably, in vivo and in vitro studies with R.sphaeroides indicate that initial IVS cleavage uses a different mechanism. While the mechanism of IVS cleavage differs among these alpha-proteobacteria, in all of these cases the limits of the internal segments processed in vivo are almost identical and occur far beyond the initial cleavage sites within the IVSs. We propose that these bacteria possess common secondary maturation pathways which enable them to generate similarly processed 23S rRNA 5'- and 3'-ends.  相似文献   

4.
Intervening sequences (IVSs) were originally identified in the rrl genes for 23S rRNA (rrl genes, for large ribosomal subunit, part of rrn operon encoding rRNA) of Salmonella enterica serovars Typhimurium LT2 and Arizonae. These sequences are transcribed but later removed during RNase III processing of the rRNA, resulting in fragmentation of the 23S species; IVSs are uncommon, but have been reported in at least 10 bacterial genera. Through PCR amplification of IVS-containing regions of the rrl genes we showed that most Proteus and Providencia strains contain IVSs similar to those of serovar Typhimurium in distribution and location in rrl genes. By extraction and Northern blotting of rRNA, we also found that these IVSs result in rRNA fragmentation. We report the first finding of two very different sizes of IVS (113 bp and 183 to 187 bp) in different rrl genes in the same strain, in helix 25 of Proteus and Providencia spp.; IVSs from helix 45 are 113 to 123 bp in size. Analysis of IVS sequence and postulated secondary structure reveals striking similarities of Proteus and Providencia IVSs to those of serovar Typhimurium, with the stems of the smaller IVSs from helix 25 being similar to those of Salmonella helix 25 IVSs and with both the stem and the central loop domain of helix 45 IVSs being similar. Thus, IVSs of related sequences are widely distributed throughout the Enterobacteriaceae, in Salmonella, Yersinia, Proteus, and Providencia spp., but we did not find them in Escherichia coli, Citrobacter, Enterobacter, Klebsiella, or Morganella spp.; the sporadic distribution of IVSs of related sequence indicates that lateral genetic transfer has occurred.  相似文献   

5.
C Conrad  R Rauhut    G Klug 《Nucleic acids research》1998,26(19):4446-4453
23S rRNA in Rhodobacter capsulatus shows endoribonuclease III (RNase III)-dependent fragmentation in vivo at a unique extra stem-loop extending from position 1271 to 1331. RNase III is a double strand (ds)-specific endoribonuclease. This substrate preference is mediated by a double-stranded RNA binding domain (dsRBD) within the protein. Although a certain degree of double strandedness is a prerequisite, the question arises what structural features exactly make this extra stem-loop an RNase III cleavage site, distinguishing it from the plethora of stem-loops in 23S rRNA? We used RNase III purified from R.capsulatus and Escherichia coli, respectively, together with well known substrates for E.coli RNase III and RNA substrates derived from the special cleavage site in R.capsulatus 23S rRNA to study the interaction between the Rhodobacter enzyme and the fragmentation site. Although both enzymes are very similar in their amino acid sequence, they exhibit significant differences in binding and cleavage of these in vitro substrates.  相似文献   

6.
K Zahn  M Inui    H Yukawa 《Nucleic acids research》1999,27(21):4241-4250
We demonstrate the presence of a separate processed domain derived from the 5' end of 23S rRNA in ribosomes of Rhodopseudomonas palustris, a member of the alpha-++proteobacteria. Previous sequencing studies predicted intervening sequences (IVS) at homologous positions within the 23S rRNA genes of several alpha-proteobacteria, including R.palustris, and we find a processed 23S rRNA 5' domain in unfractionated RNA from several species. 5.8S rRNA from eukaryotic cytoplasmic large subunit ribosomes and the bacterial processed 23S rRNA 5' domain share homology, possess similar structures and are both derived by processing of large precursors. However, the internal transcribed spacer regions or IVSs separating them from the main large subunit rRNAs are evolutionarily unrelated. Consistent with the difference in sequence, we find that the site and mechanism of IVS processing also differs. Rhodopseudomonas palustris IVS-containing RNA precursors are cleaved in vitro by Escherichia coli RNase III or a similar activity present in R.palustris extracts at a processing site distinct from that found in eukaryotic systems and this results in only partial processing of the IVS. Surprisingly, in a reaction unlike characterized cases of eubacterial IVS processing, an RNA segment larger than the corresponding DNA insertion is removed which contains conserved sequences. These sequences, by analogy, serve to link the 23S rRNA 5' rRNA domains or 5.8S rRNAs to the main portion of other prokaryotic 23S rRNAs or to eukaryotic 28S rRNAs, respectively.  相似文献   

7.
In Rhodobacter capsulatus and Rhizobium leguminosarum, an internal transcribed spacer consisting of helices 9 and 10 is removed during 23S rRNA processing, which leads to the occurrence of a 5.8S-like rRNA. The particular rRNA maturation steps are not known, with exception of the initial RNase III cleavage in helix 9. We found that GC-rich stem-loop structures of helix 9, which are released by RNase III, are immediately degraded. The degradation of helix 10 is slower and its kinetics differs in both species. Nevertheless, the helix 10 processing mechanism is conserved and includes cleavages by RNase E.  相似文献   

8.
E Kordes  S Jock  J Fritsch  F Bosch    G Klug 《Journal of bacteriology》1994,176(4):1121-1127
In Rhodobacter capsulatus wild-type strains, the 23S rRNA is cleaved into [16S] and [14S] rRNA molecules. Our data show that a region predicted to form a hairpin-loop structure is removed from the 23S rRNA during this processing step. We have analyzed the processing of rRNA in the wild type and in the mutant strain Fm65, which does not cleave the 23S rRNA. In addition to the lack of 23S rRNA processing, strain Fm65 shows impeded processing of a larger 5.6-kb rRNA precursor and slow maturation of 23S and 16S rRNAs from pre-23S and pre-16S rRNA species. Similar effects have also been described previously for Escherichia coli RNase III mutants. Processing of the 5.6-kb precursor was independent of protein synthesis, while the cleavage of 23S rRNA to generate 16S and 14S rRNA required protein synthesis. We identified a DNA fragment of the wild-type R. capsulatus chromosome that conferred normal processing of 5.6-kb rRNA and 23S rRNA when it was expressed in strain Fm65.  相似文献   

9.
Rische T  Klug G 《RNA biology》2012,9(3):343-350
The essential processing of ribosomal rRNA precursors requires concerted and sequential cleavages by different endo- and exoribonucleases. Despite long lasting investigations of these processes the exact order of steps remained elusive. Many bacteria perform additional rRNA processing steps by removing intervening sequences within the 23S rRNA. This leads to disintegration of the 23S rRNA and discontinuously assembled fragments within the ribosomes. The maturation of these fragments also requires successive cleavage events by different RNases. Our study reveals that the 5'-to-3' exoribonuclease RNase J is responsible for the final 5'-end maturation of all three 23S rRNA fragments in the α-proteobacterium Rhodobacter sphaeroides. Additionally the results show that 5'- and 3'-processing steps are closely coupled: mature 5'-ends are a strict prerequisite for the final 3'-trimming of the 23S rRNA fragments.  相似文献   

10.
Salmonella typhimurium LT2 contains intervening sequences (IVSs) of 90–110 nt within all its 23S rRNA that are cleaved out by RNase III, resulting in rRNA fragmentation. In order to determine the functionality of 23S rRNA that contains unexcised IVSs, we constructed an S. typhimurium RNase III (rnc) deficient strain by transducing a mini-Tn10 (rnc-14::Tn10) from Escherichia coli K-12. The resulting strain of S. typhimurium was viable, contained IVSs within all of its 23S rRNA, and showed a growth reduction similar to that observed for the RNase III deficient strain of E. coli. These results indicate that ribosomes containing 23S rRNA in which IVSs are not excised are functional in translation, and make it unlikely that RNase III excision of IVSs from strain LT2 23S rRNA is dictated by a selective pressure to uphold the functional integrity of ribosomes.  相似文献   

11.
12.
Completion of Tropheryma whipplei genome sequencing may provide insights into the evolution of the molecular mechanisms underlying the pathogenicity of this microorganism. The first postgenomic application was the successful design of a comprehensive culture medium that allows axenic growth of this bacterium, which is particularly recalcitrant to cultivation. This achievement in turn permitted analysis of T. whipplei RNA without contaminating eukaryotic nucleic acids. To obtain high-quality RNA, several extraction methods were compared, but under all conditions tested an atypical profile was observed. By using a Northern blot assay we demonstrated that an insertion sequence previously described in T. whipplei 23S rRNA is in fact an intervening sequence excised during maturation. This cleavage could involve an RNase III identified in the genome of this microorganism. Among the bacteria with a 23S rRNA insertion sequence, T. whipplei is the only gram-positive microorganism. We present phylogenetic evidence that this mobile genetic element was acquired by lateral gene transfer from another enteric bacterium.  相似文献   

13.
14.
15.
16.
17.
Completion of Tropheryma whipplei genome sequencing may provide insights into the evolution of the molecular mechanisms underlying the pathogenicity of this microorganism. The first postgenomic application was the successful design of a comprehensive culture medium that allows axenic growth of this bacterium, which is particularly recalcitrant to cultivation. This achievement in turn permitted analysis of T. whipplei RNA without contaminating eukaryotic nucleic acids. To obtain high-quality RNA, several extraction methods were compared, but under all conditions tested an atypical profile was observed. By using a Northern blot assay we demonstrated that an insertion sequence previously described in T. whipplei 23S rRNA is in fact an intervening sequence excised during maturation. This cleavage could involve an RNase III identified in the genome of this microorganism. Among the bacteria with a 23S rRNA insertion sequence, T. whipplei is the only gram-positive microorganism. We present phylogenetic evidence that this mobile genetic element was acquired by lateral gene transfer from another enteric bacterium.  相似文献   

18.
R Rauhut  A Jger  C Conrad    G Klug 《Nucleic acids research》1996,24(7):1246-1251
The large subunit ribosomal RNA of the purple bacterium Rhodobacter capsulatus shows fragmentation into pieces of 14 and 16S, both fragments forming the functional equivalent of intact 23S rRNA. An RNA-processing step removes an extra stem-loop structure from the 23S rRNA [Kordes, E., Jock, S., Fritsch, J., Bosch, F. and Klug, G. (1994) J. Bacteriol., 176, 1121-1127]. Taking advantage of the fragmentation deficient mutant strain Fm65, we used genetic complementation to find the mutated gene responsible for this aberration. It was identified as the Rhodobacter homologue to mc from Escherichia coli encoding endoribonuclease III (RNase III). The predicted protein has 226 amino acids with a molecular weight of 25.5 kDa. It shares high homology with other known RNase III enzymes over the full length. In particular it shows the double-stranded RNA-binding domain (dsRBD) motif essential for binding of dsRNA substrates. The Fm65 mutant has a frame shift mutation resulting in complete loss of the dsRBD rendering the enzyme inactive. The cloned Rhodobacter enzyme can substitute RNase III activity in an RNase III deficient E. coli strain. Contrary to E. coli, the Rhodobacter mc is in one operon together with the lep gene encoding the leader peptidase.  相似文献   

19.
Processing pathway of Escherichia coli 16S precursor rRNA.   总被引:5,自引:2,他引:3       下载免费PDF全文
Immediate precursors of 16S rRNA are processed by endonucleolytic cleavage at both 5' and 3' mature termini, with the concomitant release of precursor fragments which are further metabolized by both exo- and endonucleases. In wild-type cells rapid cleavages by RNase III in precursor-specific sequences precede the subsequent formation of the mature ends; mature termini can, however, be formed directly from pre-16S rRNA with no intermediate species. The direct maturation is most evident in a strain deficient in RNase III, and the results in whole cells are consistent with results from maturation reactions in vitro. Thus, maturation does not require cleavages within the double-stranded stems that enclose mature rRNA sequences in the pre-16S rRNA.  相似文献   

20.
The rrl genes for 23S rRNA of Salmonella typhimurium LT2 are known to carry intervening sequences (IVSs) at two sites, helix-25 and helix-45, which are excised by RNase III during rRNA maturation, resulting in rRNA which is fragmented but nevertheless functional. We isolated DNA fragments containing the seven rrl genes from BlnI, I-CeuI, and SpeI genomic digests following pulsed-field gel electrophoresis and used these DNA fragments as templates for PCRs utilizing primers upstream and downstream of helix-25 and helix-45. Variance in amplicon length and cycle sequencing indicated that rrlG and rrlH have IVSs in helix-25 of approximately 110 bp which are only 56% identical. rrnA, rrnB, rrnC, rrnD, rrnE, and rrnH have IVSs of approximately 90 bp in helix-45, and all have the same nucleotide sequence. Twenty-one independent wild-type strains of S. typhimurium from Salmonella Reference Collection A were analyzed for IVSs by using PCRs with genomic DNAs and by denaturing agarose electrophoresis of RNAs. Many strains resemble LT2, but some have no IVSs in helix-25 and others have IVSs in helix-45 in all seven rrl genes. However, the IVSs in individual wild-type lines are relatively stable, for several LT2 isolates separated over many years by many single-colony isolations are indistinguishable from one another, with the exception of line LB5010, which differs by one helix-25 IVS. We postulate that IVSs have entered strain LT2 by three independent lateral-transfer events and that the IVS in helix-45 was dispersed to and maintained in the same sequence in six of the seven rrl genes by the mechanism of gene conversion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号