首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We examined genetic variation in sympatric diploid and polyploid brine shrimp Artemia parthenogenetica from each of three populations (China, Italy and Spain). Italian and Spanish tetraploids are closely related (I=0.964). Diploids and tetraploids within each of the two European populations are also closely related (mean I=0.905). Most alleles found in diploids also exist in sympatric polyploids. In contrast, the asexual Artemia (2N, 4N and 5N) in our study share few alleles with their close sexual relative, A. tunisiana (mean I=0.002). These results, as well as the work of other authors, strongly suggest that at least the tetraploid Artemia in our study have an autopolyploid origin.Clonal diversity of polyploid Artemia can be very high at least in some population. Both diploids and polyploids had low clonal diversities in the populations dominated by polyploids and high clonal diversities in the population dominated by diploids.The most common genotypes of sympatric diploid and polyploid Artemia frequently differed. Some alleles occurred only in diploids, while others were restricted to polyploids. These results suggest that polyploidy in Artemia has led to genetic divergence from diploid progenitors, and that ploidy-level variation must also be considered in developing an understanding of spatial and temporal allozyme polymorphism in asexual populations.  相似文献   

2.
Polyploid speciation entails substantial and rapid postzygotic reproductive isolation of nascent species that are initially sympatric with one or both parents. Despite strong postzygotic isolation, ecological niche differentiation has long been thought to be important for polyploid success. Using biogeographic data from across vascular plants, we tested whether the climatic niches of polyploid species are more differentiated than their diploid relatives and if the climatic niches of polyploid species differentiated faster than those of related diploids. We found that polyploids are often more climatically differentiated from their diploid parents than the diploids are from each other. Consistent with this pattern, we estimated that polyploid species generally have higher rates of multivariate niche differentiation than their diploid relatives. In contrast to recent analyses, our results confirm that ecological niche differentiation is an important component of polyploid speciation and that niche differentiation is often significantly faster in polyploids.  相似文献   

3.
L. J. Weider 《Oecologia》1987,73(2):251-256
Summary Laboratory life table experiments were conducted using nine clones of obligately parthenogenetic Daphnia pulex that were collected from a site in the Canadian low-arctic. Two of the nine clones were diploids, while the other seven clones were polyploids. Significant clonal differences in age at first reproduction, size at first reproduction, number of offspring in each of the first three broods, offsrring sizes for the first two broods, and intrinsic rates of natural increase were detected. Differences in life histories were evident between polyploids and diploids. Generally, polyploid clones reached maturity at later ages, matured at larger sizes, produced smaller broods, and larger offspring than the diploid clones. The data are discussed in reference to potential biotic (i.e. invertebrate predation) and abiotic factors (i.e. physicochemical gradients) that may influence life history variation in this clonal assemblage.  相似文献   

4.
In many polyploid species, polyploids often have different suites of floral traits and different flowering times than their diploid progenitor species. We hypothesized that such differences in floral traits in polyploids may subsequently affect their interactions with pollinating and other insect visitors. We measured floral morphology and flowering phenology in 14 populations of diploid and autotetraploid Heuchera grossulariifolia Rydb. (Saxifragaceae), determined if repeated evolution of independent polyploid lineages resulted in differentiation in floral morphology among those lineages, and ascertained if there was a consistent pattern of differentiation among genetically similar diploid and autotetraploid populations. In addition, we evaluated the differences in suites of floral visitors within a natural community where diploids and autotetraploids occur sympatrically. Overall, flowers of autotetraploid plants were larger and shaped differently than those of diploids, had a different flowering phenology than that of diploids, and attracted different suites of floral visitors. In comparison with flowers of diploids, tetraploid floral morphology varied widely from pronounced differences between cytotypes in some populations to similar flower shapes and sizes between ploidal levels in other populations. Observations of floral visitors to diploids and autotetraploids in a natural sympatric population demonstrated that the cytotypes had different suites of floral visitors and six of the 15 common visitors preferentially visited one ploidy more frequently. Moreover, we also found that floral morphology differed among independent autotetraploid origins, but there was no consistent pattern of differentiation between genetically similar diploid and autotetraploid populations. Hence, the results suggest that the process of polyploidization creates the potential for attraction of different suites of floral visitors. Multiple origins of polyploidy also presents the opportunity for new or different plant-insect interactions among independent polyploid lineages. These differences in turn may affect patterns of gene flow between diploids and polyploids and also among plants of independent polyploid origin. Polyploidy, therefore, may result in a geographic mosaic of interspecific interactions across a species' range, contributing to diversification in both plant and insect groups.  相似文献   

5.
Paspalum notatum is a subtropical grass widely distributed in the temperate areas of America. Diploids are sexual while polyploids give rise to clonal seeds through aposporous apomixis. RAPD markers were used to analyze the genetic structure of three natural populations: i) diploids reproducing sexually (R2X); ii) sympatric apomictic tetraploids collected in the vicinity of the diploids (R4X); iii) allopatric apomictic tetraploids growing in isolation (C4X). The apomictic reproduction rate was evaluated by the use of molecular markers in progeny tests, while chromosome-counting allowed the verification of ploidy levels. Data revealed that the R4X group presented a variation considerably higher than that observed for C4X. Jaccards coefficients were used to produce a cluster diagram using the UPGMA method. All but one tetraploid genotypes grouped together and were associated to diploid genotype A21. The possibility of occasional generation of novel tetraploid clones from the interaction between tetraploid and diploid individuals is discussed.  相似文献   

6.
Multiple origins of polyploidy from an ancestral diploid plant species were investigated using restriction site polymorphism and sequence variation in the chloroplast DNA (cpDNA) of Heuchera grossulariifolia (Saxifragaceae). Phylogenetic analysis indicated that autopolyploidy has arisen at least twice in the evolutionary history of this species and potentially up to as many as seven times. These results suggest a greater range of independent polyploid origins as compared to a previous study of H. grossulariifolia using cpDNA restriction sites that indicated a minimum of three independent origins. Moreover, most polyploid populations did not contain cpDNA haplotypes from a single origin, but rather combined haplotypes from at least two polyploid origins. Past migration among polyploid populations of independent origin or localized polyploid formation may explain the distribution of polyploid haplotypes within and among populations. The analysis also revealed a discrepancy between relatedness and geographical location. In nearly all sympatric populations of diploids and polyploids, polyploids had the same cpDNA haplotypes as diploids from a geographically remote population. This geographical discordance has several possible explanations, including small sample sizes, extinction of parental diploid haplotypes, chloroplast introgression, and homoplasy in the cpDNA sequence data. We conclude that the recurrent formation of polyploids is an important evolutionary mechanism in the diversification of H. grossulariifolia .  相似文献   

7.
Polyploidy plays a prominent role in the speciation process in plants. Many species are known to be part of agamic complexes comprising sexual diploids and more or less exclusively asexual polyploids. However, polyploid formation has been studied in very few cases, primarily because of the challenges in examining these cases phylogenetically. In this study, we demonstrate the use of a variety of phylogenetic approaches to unravel origins and infer reticulation history in a diploid–polyploid complex of black‐fruited Crataegus. The tree approaches are shown to be useful in testing alternative hypotheses and in revealing genealogies of nuclear genes, particularly in polyploid organisms that may contain multiple copies. Compared to trees, network approaches provide a better indication of reticulate relationships among recently diverged taxa. Taken together, our data point to both the autopolyploid and allopolyploid origins of triploids in natural populations of Crataegus suksdorfii, whereas tetraploids are formed via a triploid bridge, involving the backcross of allotriploid offspring with their diploid C. suksdorfii parent, followed by gene introgression from sympatric C. douglasii. Our findings provide empirical evidence for different pathways of polyploid formation that are all likely to occur within natural populations and the allopatric establishment of neopolyploids subsequent to their formation.  相似文献   

8.
Representatives of theC. pratensis complex were analysed for allozymes, ITS, non-coding cpDNA, and RAPDs to elucidate phylogenetic relationships and the historical biogeography of this species group. Our concepts differ in some important aspects from current ideas. Two diploid species from southeastern Europe form the Basal Group of the complex. A diploid from the Iberian Peninsula represents another old lineage. The phylogenetically younger Derived Group comprises diploid taxa and all known polyploid taxa. The two old lineages represent pleistocene relicts which were not involved in the formation of the Derived Group. All polyploids evolved in postglacial time from diploids of the Derived Group which may have survived the glaciations in refugia centered around and within the Alps. The arctic-circumpolarC. nymanii is of young age and migrated to Scandinavia in postglacial times from south to north.  相似文献   

9.
The primitive pulmonate snail Amphibola crenata embeds embryos within a smooth mud collar on exposed estuarine mudflats in New Zealand. Development through hatching of free-swimming veliger larvae was monitored at 15 salinity and temperature combinations covering the range of 2-30 ppt salinity and 15-25 °C. The effect of exposure to air on developmental rate was also assessed. There were approximately 18,000 embryos in each egg collar. The total number of veligers released from standard-sized egg collar fragments varied with both temperature and salinity: embryonic survival was generally higher at 15 and 20 °C than at 25 °C; moreover, survival was generally highest at intermediate salinities, and greatly reduced at 2 ppt salinity regardless of temperature. Even at 2 ppt salinity, however, about one-third of embryos were able to develop successfully to hatching. Embryonic tolerance to low salinity was apparently a property of the embryos themselves, or of the surrounding egg capsules; there was no indication that the egg collars protected embryos from exposure to environmental stress. Mean hatching times ranged between 7 and 22 days, with reduced developmental rates both at lower temperature and lower salinity. At each salinity tested, developmental rate to hatching was similar at 20 and 25 °C. At 15 °C, time to hatching was approximately double that recorded at the two higher exposure temperatures. Exposing the egg collars to air for 6-9 h each day at 20 °C (20 ppt salinity) accelerated hatching by about 24 h, suggesting that developmental rate in this species is limited by the rates at which oxygen or wastes can diffuse into and from intact collars, respectively. Similarly, veligers from egg capsules that were artificially separated from egg collars at 20 °C developed faster than those within intact egg collars. The remarkable ability of embryos of A. crenata to hatch over such a wide range of temperatures and salinities, and to tolerate a considerable degree of exposure to air, explains the successful colonization of this species far up into New Zealand estuaries.  相似文献   

10.
Experiments were performed to determine suitable conditions for low temperature preservation of small S (Fukuoka) and ultra-small SS (Thai) strains of B. rotundiformis. For this, single rotifers (an adult bearing one egg or a 4-h neonate) were incubated for 10 days in 1 ml seawater (22 ppt salinity). The highest survival was achieved at 10 and 12 °C for S-strain and 12 °C for SS-strain. The effect of salinity, change of culture medium and feeding regime were further tested on rotifers (300 ind. ml–1) cultured in vials containing 10 ml seawater and microalgae at 12 °C. Survival of S-strain was highest (55.5±0.8%) at 35 ppt, while SS-strain survived best (43.1±2.6%) at 17 ppt. Survival was suppressed by changing the culture medium every 4 days. Feeding rotifers every 2 days yielded better survival (66.2±6.6%: S-strains, cultured at 35 ppt and 81.8±5.2%, SS-strains cultured at 17 ppt) than feeding them only at the beginning of the experiment or at 4-day intervals. An acclimation at 20 °C for 24 h before transferring them from their usual culture temperature (28 °C) to 12 °C resulted in higher survival of SS-strain. For S-strain, however, no significant improvement resulted from acclimation. SS-strain was more susceptible to lower temperature and higher salinity than S-strain.  相似文献   

11.
Negative reproductive interactions are likely to be strongest between close relatives and may be important in limiting local coexistence. In plants, interspecific pollen flow is common between co‐occurring close relatives and may serve as the key mechanism of reproductive interference. Agamic complexes, systems in which some populations reproduce through asexual seeds (apomixis), while others reproduce sexually, provide an opportunity to examine effects of reproductive interference in limiting coexistence. Apomictic populations experience little or no reproductive interference, because apomictic ovules cannot receive pollen from nearby sexuals. Oppositely, apomicts produce some viable pollen and can exert reproductive interference on sexuals by siring hybrids. In the Crepis agamic complex, sexuals co‐occur less often with other members of the complex, but apomicts appear to freely co‐occur with one another. We identified a mixed population and conducted a crossing experiment between sexual diploid C. atribarba and apomictic polyploid C. barbigera using pollen from sexual diploids and apomictic polyploids. Seed set was high for all treatments, and as predicted, diploid–diploid crosses produced all diploid offspring. Diploid–polyploid crosses, however, produced mainly polyploidy offspring, suggesting that non‐diploid hybrids can be formed when the two taxa meet. Furthermore, a small proportion of seeds produced in open‐pollinated flowers was also polyploid, indicating that polyploid hybrids are produced under natural conditions. Our results provide evidence for asymmetric reproductive interference, with pollen from polyploid apomicts contributing to reduce the recruitment of sexual diploids in subsequent generations. Existing models suggest that these mixed sexual–asexual populations are likely to be transient, eventually leading to eradication of sexual individuals from the population.  相似文献   

12.
The distributional pattern of geographical parthenogenesis has not yet been clearly explained. In Daphnia pulex, asexuals are found at higher latitude and in more marginal habitats than their sexual relatives. In addition, some asexual lineages, especially northern ones, are polyploid. This study aimed to test if polyploid clones are more resistant than sympatric diploid clones to a wide range of environmental factors and if asexual Daphnia (diploid clones) are more tolerant of extreme environmental conditions than sexual ones. We report significant differences in survivorship after short-term exposure to acute pH, conductivities, and temperature in 12 lineages of the Daphnia pulex complex. Ploidy level, reproductive mode, geographic origin, and heterozygosity level had a significant effect on survival but their effect varied depending on environmental factors.  相似文献   

13.
Plant polyploid complexes provide useful model systems for distinguishing between adaptive and nonadaptive causes of parapatric distributions in closely related lineages. Polyploidy often gives rise to morphological and physiological changes, which may be adaptive to different environments, but separate distributions may also be maintained by reproductive interference caused by postzygotic reproductive isolation. Here, we test the hypothesis that diploid and descendent polyploid races of the wind-pollinated herb Mercurialis annua , which are found in parapatry over an environmental gradient in northeast Spain, are differentiated in their ecophysiology and life history. We also ask whether any such differences represent adaptations to their different natural environments. On the basis of a series of reciprocal transplant experiments in the field, and experiments under controlled conditions, we found that diploid and polyploid populations of M. annua are ecologically differentiated, but that they do not show local adaptation; rather, the diploids have higher fitness than the polyploids across both diploid- and polyploid-occupied regions. In fact, diploids are currently displacing polyploids by advancing south on two separate fronts in Spain, and previous work has shown that this displacement is being driven to a large extent by asymmetrical pollen swamping. Our results here suggest that ecophysiological superiority of the diploids may also be contributing to their expansion.  相似文献   

14.
132 cultivated populations (2x–16x) of 15 arctic-alpine species ofDraba were investigated to clarify a possible relationship between reproductive strategies and polyploid evolution in the genus. The populations were exclusively sexual and produced viable seed after spontaneous self-pollination, but showed large variation both in traits promoting cross-pollination and in autogamous fruit and seed set. Traits promoting cross-pollination, e.g., floral display, protogyny, and delayed selfing, were positively correlated, and these traits were negatively correlated with autogamous fruit and seed set. All diploid and many polyploid populations had high autogamous seed set and small, unscented, non-protogynous, and rapidly selfing flowers. In contrast, all populations with low autogamous seed set and large, scented, and strongly protogynous flowers with distinctly delayed selfing were polyploid. These results are consistent with those previously obtained from enzyme electrophoresis, suggesting that the genetically depauperate diploids are extreme inbreeders and that the highly fixed-heterozygous polyploids vary from extreme inbreeders to mixed maters. The reproductive data lend additional support to the hypothesis that allopolyploidy in arcticDraba serves as an escape from genetic depauperation caused by uniparental inbreeding at the diploid level.  相似文献   

15.
Prieto P  Santos AP  Moore G  Shaw P 《Chromosoma》2004,112(6):300-307
Studies of the meiosis of diploid plants such as Arabidopsis, maize and diploid progenitors of wheat have revealed no premeiotic association of chromosomes. Premeiotic and somatic association of chromosomes has only been previously observed in the anther tissues and xylem vessel cells of developing roots in polyploid plants such as hexaploid and tetraploid wheat, polyploid relatives of wheat and artificial polyploids made from the progenitor diploids of wheat. This suggested that this association was confined specifically to polyploids or was induced by polyploidy. However, we developed procedures for in situ hybridization on structurally well-preserved tissue sections of rice, and analysed two diploid rice species (Oryza sativa and O. punctata). Contrary to expectation, this has revealed that centromeres and telomeres also associate both in the xylem vessel cells of developing root and in undifferentiated anther cells in these diploids. However, in contrast to wheat and related polyploids, where the initial association in undifferentiated anthers is between either non-homologous or related chromosomes, and not homologous chromosomes, the initial association of rice chromosomes seems to be between homologues. Thus, in contrast to the diploid dicot model Arabidopsis, meiotic studies on the diploid model cereal, rice, will now need to take into account the effects of premeiotic chromosome association.Pilar Prieto and Ana Paula Santos are joint first authors.  相似文献   

16.
104 populations of 15 Nordic species (2x–16x) of the taxonomically complex genusDraba were investigated using enzyme electrophoresis. The polyploids were genetic alloploids showing high levels of fixed heterozygosity and electrophoretic variation; the diploids were homozygous and genetically depauperate. Thus, the data suggest that alloploidy in arctic-alpineDraba serves as an escape from genetic depauperation caused by inbreeding at the diploid level. Although some populations probably have local alloploid origins, electrophoretic data indicate that several polyploids have migrated repeatedly into the Nordic area.Draba crassifolia (2n = 40) is probably octoploid based on x = 5. A hypothesis on the evolutionary history of the polyploids based on x = 8 is presented. Diploids contributing to numerous polyploid genomes and multiple origins of polyploids have seriously blurred taxonomic relationships. Relationships inferred from genetic data do not always correspond to those based on morphology; two morphologically very similar polyploids,D. alpina andD. oxycarpa, were, for example, genetically distant and probably represent independent lineages.  相似文献   

17.
Abstract We review in this article the investigations of the significance of agamospermous triploid pollen donors in the sexual relationships between diploids and triploids in Taraxacum . Crossing experiments between diploid sexual mother plants and agamospermous polyploid pollen donors and recent isozyme analyses of the progeny have exhibited the following results: 1) Pollen from Agamospermous polyploid pollen donors have the potential to give rise to the polyploid agamospermous offspring when fertilizing diploid sexual plants. Ploidy level of the progeny is usually the same or higher, but occasionally lower, compared to the pollen donor. 2) Diploid progeny also occur from diploid (♀)-polyploid (♂) crosses, however, these diploids were in our results not hybrids but the results of self-fertilization of the diploids. The self-fertilization is regarded as a cosequence of the breakdown of the self-incompatibility barrier through the sterile triploid's pollen. This breakdown is in all probability a common phenomenon in diploid (♀)-polyploid (♂) crosses. Some examples suggest that agamospermous polyploids can increase their genetic diversity through obtaining genes from coexisting diploids. The evolutionary implications of this phenomenon and the reduction mechanism of chromosome number through agamospermous pollengenesis are discussed.  相似文献   

18.
Summary The krill Euphausia superba, unlike the amphipod, Eusirus antarcticus, tolerates being frozen into solid sea-ice at temperatures down to about-4°C. Cooled in air, the amphipod and the krill freeze and will die at temperatures of-11° and-9°C respectively, representing the supercooling points of the animals. The krill is an osmoconformer in the salinity range of 25 to 45 ppt, while the amphipod conforms in the salinity range of 26 to 40 ppt. The animals thereby lower the melting point of their body fluids in the vicinity of the freezing sea ice, preventing internal ice formation at low temperatures. The mean oxygen consumption rates, at raised and lowered salinities, were not significantly different from rates obtained in normal (35 ppt.) seawater, indicating that salinity has little effect on the metabolism of either species.  相似文献   

19.
Festuca species form a polyploid series but only two of the diploid species have been firmly proposed as progenitors of any polyploid. The number and distribution of rDNA sites on the chromosomes of F. scariosa (section Scariosae) and the four diploid species that comprise section Montanae are presented with their relative DNA amounts and key morphological features. Comparisons of the results with those of some polyploid Festuca species from section Bovinae published previously indicate that F. scariosa and F. altissima could be diploid progenitors of the polyploids. It is unlikely that any one of the other three Montanae species is a progenitor of these polyploids.  相似文献   

20.
Menzel , Margaret Y. (Florida State U., Tallahassee), and James B. Pate . Chromosomes and crossing behavior of some species of Sansevieria. Amer. Jour. Bot. 47(3) : 230—238. Illus. 1960.–Approximately 20 species (28 clones) studied were diploids, tetraploids or hexaploids of the basic numbers x = 20; about 40% of the taxa were polyploid. All species had similar karyotypes, except for chromosome number. Five of 12 combinations of diploid species gave fertile F1 hybrids; 4 studied cytologically showed 20 bivalents at metaphase I. Two triploid interspecific hybrids showed high trivalent frequencies. In contrast, multivalent formation in polyploid species was variable but rather low. Morphological relationships appeared reticulate among and between diploids and polyploids and did not coincide with barriers to crossing or to hybrid fertility. The following tentative hypothesis concerning relationships in the genus is proposed: Sansevieria is monophyletic and speciation has proceeded through genetic variation and hybridization at the diploid level and by allopolyploidy (of the segmental type) ; a low level of chromosome differentiation has accompanied speciation such that complete pairing occurs in diploid hybrids, but considerable preferential pairing occurs in allopolyploids. The occurrence of both polyploid and hybrid vigor, the fertility of hybrids between species differing greatly in morphology and physiology, and the high potential for vegetative propagation make the genus a favorable subject for breeding based on interspecific hybridization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号