首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The characteristics of the Na+-independent high-affinity binding of [3H]GABA to various types of crude synaptic membranes (CSM) prepared from rat brain cortex were studied. In freshly prepared CSM the content of GABA was so high that the high-affinity [3H]GABA binding could not be determined. In contrast when the frozen-thawed CSM were incubated at 37° for 30 min with or without Triton X-100 or phospholipase C and then washed repeatedly, there was a virtual disappearance of GABA from the supernatant extracts and the binding constants of [3H]GABA to CSM could be determined. Two apparent populations of [3H]GABA binding sites, one with a low- and the other with a high-affinity constant, were detected. The ratio of the number of high- to low-affinity binding sites varies with the method used to prepare the membranes. The lowest value of this ratio was observed with membranes incubated at 37° for 30 min. However, when frozen-thawed CSM were treated with 0.05% Triton X-100 repeatedly, the ratio of the number of high- to low-affinity binding sites increased progressively. This increase in ratio is due to a selective increase in the number of the high-affinity sites without significant changes in the number of the low-affinity sites. The extent of the increase in the number of sites that bind [3H]GABA with high affinity after repeated Triton X-100 treatments was paralleled by a decrease of an endogenous protein which inhibits GABA binding. The reapplication of this endogenous material to membranes repeatedly treated with Triton X-100 reduces the number of high-affinity binding sites for [3H]GABA to values similar to those measured in membranes that were not treated with Triton X-100. The inhibitory preparation extracted from CSM incubated with Triton X-100 was shown to be free of GABA or phospholipids. The gel filtration chromatography reveals the presence of two molecular forms of the inhibitor; of these, the high-molecular-weight material fails to bind GABA, whereas the low-molecular-weight material appears to bind GABA. The high-molecular-weight endogenous inhibitor has been termed GABA modulin.  相似文献   

2.
[3H]GABA binding to crude synaptic membranes of rat brain was studied in an attempt to identify GABA binding to its synaptic receptor in the presence of Na+. Membrane vesicles prepared from crude synaptic membrane fractions were useful as a tool to differentiate synaptic GABA receptors from GABA uptake sites. The crude synaptic membranes treated with Triton X-100 [membranes (TX)] involved two classes of GABA binding sites (KD = 38.7 and 78.0 nM) in the absence of Na+, but the high-affinity sites disappeared in the presence of Na+ and a single class of GABA binding sites (KD = 75.0 nM) was detected. The failure to detect an active uptake of [3H]GABA into the vesicles prepared from membranes (TX) suggests that the [3H]GABA binding in the presence of Na+ was related to synaptic GABA receptors. It is probable that Na+ could mask the presence of the high-affinity class of GABA receptor.  相似文献   

3.
Abstract: The binding of [3H]bicuculline methochloride (BMC) to mammalian brain membranes was characterized and compared with that of [3H]γ-aminobutyric acid ([3H]GABA). The radiolabeled GABA receptor antagonist showed significant displaceable binding in Tris-citrate buffer that was improved by high concentrations of chloride, iodide, or thiocyanate, reaching >50% displacement in the presence of 0.1 M SCN?. An apparent single class of binding sites for [3H]BMC (KD= 30 nM) was observed in 0.1 M SCN? for fresh or frozen rat cortex or several regions of frozen and thawed bovine brain. The Bmax was about 2 pmol bound/mg of crude mitochondrial plus microsomal membranes from unfrozen washed and osmotically shocked rat cortex, similar to that for [3H]GABA. Frozen membranes, however, showed decreased levels of [3H]BMC binding with no decrease or an actual increase in [3H]GABA binding sites. [3H]BMC binding was inhibited by GABA receptor specific ligands, but showed a higher affinity for antagonists and lower affinity for agonists than did [3H]GABA binding. Kinetics experiments with [3H]GABA binding revealed that low- and high-affinity sites showed a similar pharmacological specificity for a series of GABA receptor ligands, but that whereas all agonists had a higher affinity for slowly dissociating high-affinity [3H]GABA sites, bicuculline had a higher affinity for rapidly dissociating low-affinity [3H]GABA sites. This reverse potency between agonists and antagonists during assay of radioactive antagonists or agonists supports the existence of agonist- and antagonist-preferring conformational states or subpopulations of GABA receptors. The differential affinities, as well as opposite effects on agonist and antagonist binding by anions, membrane freezing, and other treatments, suggest that [3H]BMC may relatively selectively label low-affinity GABA receptor agonist sites. This study, using a new commercially available preparation of [3H]bicuculline methochloride, confirms the report of bicuculline methiodide binding by Mohler and Okada (1978), and suggests that this radioactive GABA antagonist will be a valuable probe in analyzing various aspects of GABA receptors.  相似文献   

4.
When the binding of [3H]gamma-aminobutyric acid (GABA) to its receptor in catfish synaptic membranes was studied, a high affinity (Kd = 8.4 nM) and a low affinity (Kd = 65 nM) binding component was observed. Muscimol, thiomuscimol, tetrahydroisoxazole-5,4-c-pyridin-3-ol, imidazole acetic acid and bicuculline each competitively inhibited both high affinity and low affinity [3H]GABA binding. The potency of these inhibitors was similar to that reported for the GABA receptor from mammalian brain. It is concluded that the GABA receptor from catfish brain has very similar properties to the receptor from mammalian central nervous system and consequently has not undergone any obvious evolutionary changes.  相似文献   

5.
Sodium-independent binding of [3H]gamma-aminobutyric acid ([3H]GABA) to membranes prepared from ischemic-damaged rat striatum was studied by kinetic and time-course analysis. Three days after 40 min of ischemia, [3H]GABA binding increased fourfold over control values. Scatchard analysis of the binding showed that ischemia significantly increased the affinity (KD) and the total number of binding sites (Bmax) for the high-affinity GABA receptor. These results support the conclusion that transient forebrain ischemia damages striatal GABAergic neurons.  相似文献   

6.
Avermectin B1a, a macrocyclic lactone anthelmintic agent, causes a concentration-dependent increase of [3H]flunitrazepam binding to membranes from rat cerebellum by increasing the affinity and the number of binding sites. This effect appears to be independent of the concentration of chloride ions. The effects of avermectin B1a occur with high affinity (EC50 = 70 nM), and they persist after washing of the membranes with drug-free buffer. Pretreatment of the membranes with Triton X-100 completely abolishes the action of avermectin B1a. GABA and the GABA-mimetic compounds piperidine-4-sulfonic acid and THIP diminish the effects of avermectin B1a on benzodiazepine receptor binding in a bicuculline-methiodide-sensitive mode. In addition, the stimulation of [3H]flunitrazepam binding by avermectin B1a is decreased by the pyrazolopyridines etazolate and cartazolate. These observations suggest that avermectin B1a stimulates benzodiazepine receptor binding by acting on a modulatory site which is independent of the GABA recognition site and of the drug receptor for the pyrazolopyridines, but which is in functional interaction with these sites.  相似文献   

7.
Inherited congenital myoclonus (ICM) of Poll Hereford cattle is a neurological disease in which there are severe alterations in spinal cord glycine-mediated neurotransmission. There is a specific and marked decrease, or defect, in glycine receptors and a significant increase in neuronal (synaptosomal) glycine uptake. Here we have examined the characteristics of the cerebral gamma-aminobutyric acid (GABA) receptor complex, and demonstrate that the malfunction of the spinal cord inhibitory system is accompanied by a change in the major inhibitory system in the cerebral cortex. In synaptic membrane preparations from ICM calves, both high-and low-affinity binding sites for the GABA agonist [3H]muscimol were found (KD = 9.3 +/- 1.5 and 227 +/- 41 nM, respectively), whereas only the high-affinity site was detectable in controls (KD = 14.0 +/- 3.1 nM). The density and affinity of benzodiazepine agonist binding sites labelled by [3H]diazepam were unchanged, but there was an increase in GABA-stimulated benzodiazepine binding. The affinity for t-[3H]butylbicyclo-o-benzoate, a ligand that binds to the GABA-activated chloride channel, was significantly increased in ICM brain membranes (KD = 148 +/- 14 nM) compared with controls (KD = 245 +/- 33 nM). Muscimol-stimulated 36Cl- uptake was 12% greater in microsacs prepared from ICM calf cerebral cortex, and the uptake was more sensitive to block by the GABA antagonist picrotoxin. The results show that the characteristics of the GABA receptor complex in ICM calf cortex differ from those in cortex from unaffected calves, a difference that is particularly apparent for the low-affinity, physiologically relevant GABA receptors.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
The aim of this study was to better understand the mechanisms that underlie adaptive changes in GABAA receptors following their prolonged exposure to drugs. Exposure (48 h) of human embryonic kidney (HEK) 293 cells stably expressing recombinant alpha1beta2gamma2S GABAA receptors to flumazenil (1 or 5 microM) in the presence of GABA (1 microM) enhanced the maximum number (Bmax) of [3H]flunitrazepam binding sites without affecting their affinity (Kd). The flumazenil-induced enhancement in Bmax was not counteracted by diazepam (1 microM). GABA (1 nM-1 mM) enhanced [3H]flunitrazepam binding to membranes obtained from control and flumazenil-pretreated cells in a concentration-dependent manner. No significant differences were observed in either the potency (EC50) or efficacy (Emax) of GABA to potentiate [3H]flunitrazepam binding. However, in flumazenil pretreated cells the basal [3H]flunitrazepam and [3H]TBOB binding were markedly enhanced. GABA produced almost complete inhibition of [3H]TBOB binding to membranes obtained from control and flumazenil treated cells. The potencies of GABA to inhibit this binding, as shown by a lack of significant changes in the IC50 values, were not different between vehicle and drug treated cells. The results suggest that chronic exposure of HEK 293 cells stably expressing recombinant alpha1beta2gamma2S GABAA receptors to flumazenil (in the presence of GABA) up-regulates benzodiazepine and convulsant binding sites, but it does not affect the allosteric interactions between these sites and the GABA binding site. Further studies are needed to elucidate these phenomena.  相似文献   

9.
We evaluated the effect of the two N-trifluoroethyl benzodiazepines, quazepam and its 2-oxo metabolite SCH 15725, which possess preferential affinity for type I benzodiazepine recognition sites, on the binding of [3H] gamma-aminobutyric acid ([3H]GABA) to rat brain membrane preparations. The study also included compounds such as diazepam and N-desalkyl-2-oxoquazepam (SCH 17514), which have equal affinity for the type I and type II receptor subtypes. Binding of [3H]GABA was studied in frozen-thawed and repeatedly washed cortical membranes incubated in 20 mM KH2PO4 plus 50 mM KCl, pH 7.4, at 4 degrees C in the absence and presence of quazepam or its metabolites. Addition of 10(-6) M quazepam increased by 30% specific [3H]GABA binding; as revealed by Scatchard plot analysis, the effect was due to an increase in the total number of GABA receptors. The effect of quazepam was concentration dependent, and it was shared by its active metabolite SCH 15725. The potency of quazepam and SCH 15725 in enhancing [3H]GABA binding was similar to that of diazepam, whereas CL 218872 and SCH 17514 were less active. Moreover, the [3H]GABA binding-enhancing effect of quazepam was mediated by an occupancy of benzodiazepine receptors, because it was specifically antagonized by 5 X 10(-6) M Ro15-1788.  相似文献   

10.
The central actions of 1-(2-o-chlorobenzoyl-4-chlorophenyl)-5-glycylaminomethyl-3-dimethylcarbamoyl-1H-1,2,4-triazole hydrochloride dihydrate (450191-S), a potent sleep-inducing and anxiolytic drug, were re-evaluated in terms of the affinity for benzodiazepine (BZP) receptor and the activation of γ-aminobutyric acid (GABA) receptor binding.The 450191-S showed only very low capacity to displace the bindings of [3H]diazepam, [3H]β-carboline-3-carboxylate-ethylester, [3H]Rol5-1788, [3H]Ro5-4864 and [3H]naloxone to cerebral synaptic membranes. Similarly, this drug had a weak and undistinguishable affinity to both BZPtype 1 and 2 receptors determined under the presence of CL 218,872. On the other hand, 450191-S as well as its active metabolites (M-1, M-2, M-A, M-3 and M-4) showed a remarkable activating effect on the GABA receptor binding with low affinity in cerebral synaptic membranes. This enhancement of the low affinity GABA receptor binding was found to be due to the increase of affinity (Kd) but not to the change in Bmax. Furthermore, it has been found that the observed accentuation of low affinity GABA receptor binding is well-correlated with the potency of the central actions of 450191-S such as potentiation of the hypnotic action of barbiturates and muscle relaxation.These results suggest that the central actions of 450191-S may be due to, at least in part, the activation of central GABA receptor binding with low affinity. The present results also suggest that the activation of low affinity GABA receptor binding may be a better criterion than the affinity of BZP receptor for elucidating the central action of a certain type of BZP derivatives.  相似文献   

11.
Polyclonal antibodies have been raised against the GABA/benzodiazepine receptor purified to homogeneity from bovine cerebral cortex in deoxycholate and Triton X-100 media. Radioimmunoassay was applied to measure specific antibody production using the 125I-labelled gamma-aminobutyric acid (GABA)/benzodiazepine receptor as antigen. The antibodies specifically immunoprecipitated the binding sites for [3H]muscimol and for [3H]flunitrazepam from purified preparations. In addition, when a 3-[(3-cholamidopropyl)dimethylammonio] 1-propanesulphonate (CHAPS) extract of bovine brain membranes was treated with the antibodies, those sites as well as the [3H]propyl-beta-carboline-3-carboxylate binding, the [35S]t-butylbicyclophosphorothionate binding (TBPS), the barbiturate-enhanced [3H]flunitrazepam binding, and the GABA-enhanced [3H]flunitrazepam binding were all removed together into the immunoprecipitate. Western blot experiments showed that these antibodies recognise the alpha-subunit of the purified GABA/benzodiazepine receptor. These results further support the existence in the brain of a single protein, the GABAA receptor, containing a set of regulatory binding sites for benzodiazepines and chloride channel modulators.  相似文献   

12.
Previous studies have identified an effect of estrogen administration on the number of central GABAergic binding sites of rat. We have further characterized this effect by performing a series of experiments in vitro where we analyzed the changes of gamma-aminobutyric acid (GABA) binding in slices of nervous tissue incubated in a physiological medium in presence of estradiol. The tissues were dissected from ovariectomized rats. In such a system, estrogen augmented the amount of [3H]muscimol binding within 3 h of incubation. The effect was dose-dependent and could be blocked by the addition of the anti-estrogen tamoxifen. The increase in [3H]muscimol binding could not be observed by addition of estradiol to broken membranes or by incubation of the slices with steroids deprived of estrogenic activity. Furthermore, the estrogen-induced increase of GABA binding sites could be prevented by addition of cycloheximide and alpha-amanitin in the incubation medium. Our data indicate that the estrogen may increase the number of GABA binding sites by direct interaction with the GABA receptor gene or genes involved in the metabolism of GABA receptor.  相似文献   

13.
The effect of early undernutrition and dietary rehabilitation on [3H]gamma-aminobutyric acid ([3H]GABA) binding in rat brain cerebral cortex and hippocampus was examined. Undernourished animals were obtained by exposing their mothers to a protein-deficient diet during both gestation and lactation. Saturation analysis of [3H]GABA binding in the cerebral cortex and hippocampus revealed high- and low-affinity components in the undernourished group, whereas control animals possessed only a low-affinity site. The concentration of low-affinity binding sites was greater in the undernourished animals. Rehabilitation of undernourished animals completely abolished the binding site differences. Treatment of brain membranes with Triton X-100 yielded two binding components in both the undernourished and control animals, although the concentration of lower affinity sites was still greater in the undernourished group. Neither the efficacy nor the potency of GABA to activate benzodiazepine binding in cerebral cortex was modified by undernutrition. These data suggest that early undernourishment modifies the characteristics of [3H]GABA binding, perhaps by reducing the brain content of endogenous inhibitors of the higher affinity binding site. The lack of effect on GABA-activated benzodiazepine binding suggests the possibility that neither the high- nor the low-affinity GABA binding sites are coupled to this receptor component.  相似文献   

14.
The specific binding of GABA (γ-aminobutyric acid) agonist 3H-muscimol, to synaptic membranes from the rat brain showed a significant increase, when the membranous preparations were treated with a low concentration (10?4–10?5M) of mercurial sulfhydryl reagents such as p-chloromercuribenzoate and mercuric chloride. This activation in GABA receptor binding was bicuculline-sensitive, and was partially restored by subsequent treatments with 10 mM cysteine, penicillamine, or mercaptoethanol. Scatchard analysis of the binding revealed that this activation was due to the increase in the affinity of both high and low affinity bindings sites but not in the Bmax values. On the other hand, the treatment of synaptic membranes with hydrophilic sulfhydryl reagents such as N-ethylmaleimide and iodoacetate had no effect on the binding. These hydrophilic sulfhydryl reagents, however, induced an increase of the binding following the pretreatment of synaptic membranes with 0.01% Triton X-100 or 0.5 U/mg prot. of phospholipase A2 (EC 3.1.1.4.). These results suggest that mercurials-sensitive sulfhydryl groups, which are normally masked by membrane lipids, may play a modulating role in GABA receptor binding at central synapses.  相似文献   

15.
Chronic treatment of male Wistar rats with ethanol by inhalation did not affect the binding of [3H]flunitrazepam, [3H]GABA or [3H]muscimol to extensively washed synaptic membranes. Neither the affinity (Kd) nor the number of binding sites (Bmax) for these ligands was changed. However, GABA enhancement of [3H]flunitrazepam binding was significantly decreased by approx. 40% in ethanol-treated animals (172% compared to 215%). Acute treatment with ethanol did not produce changes in the binding of [3H]flunitrazepam or [3H]muscimol. These findings suggest that chronic ethanol treatment leads to uncoupling of the various receptor sites on the GABA—benzodiazepine receptor ionophore-complex in the brain.  相似文献   

16.
Radiation inactivation was used to estimate the molecular weight of the benzodiazepine (BZ), gamma-aminobutyric acid (GABA), and associated chloride ionophore (picrotoxinin/barbiturate) binding sites in frozen membranes prepared from rat forebrain. The target size of the BZ recognition site (as defined by the binding of the agonists [3H]diazepam and [3H]flunitrazepam, the antagonists [3H]Ro 15-1788 and [3H]CGS 8216, and the inverse agonist [3H]ethyl-beta-carboline-3-carboxylate) averaged 51,000 +/- 2,000 daltons. The presence or absence of GABA during irradiation had no effect on the target size of the BZ recognition site. The apparent molecular weight of the GABA binding site labelled with [3H]muscimol was identical to the BZ receptor when determined under identical assay conditions. However the target size of the picrotoxinin/barbiturate binding site labelled with the cage convulsant [35S]t-butylbicyclophosphorothionate was about threefold larger (138,000 daltons). The effects of lyophilization on BZ receptor binding activity and target size analysis were also determined. A decrease in the number of BZ binding sites (Bmax) was observed in the nonirradiated, lyophilized membranes compared with frozen membranes. Lyophilization of membranes prior to irradiation at -135 degrees C or 30 degrees C resulted in a 53 and 151% increase, respectively, in the molecular weight (target size) estimates of the BZ recognition site when compared with frozen membrane preparations. Two enzymes were also added to the membrane preparations for subsequent target size analysis. In lyophilized preparations irradiated at 30 degrees C, the target size for beta-galactosidase was also increased 71% when compared with frozen membrane preparations. In contrast, the target size for glucose-6-phosphate dehydrogenase was not altered by lyophilization.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
We have measured the postnatal development and GABA modulation of benzodiazepine receptors in neuronal membranes from vitamin B-6 deficient and normal rats. In rats fed vitamin B-6 adequate and deficient diets there were age-dependent changes in [3H]flunitrazepam binding site affinity and in the number of binding sites. Vitamin B-6 deficiency produced a significant reduction in the potency of GABA to enhance [3H]flunitrazepam binding to cortical membranes prepared from 14 day old rats. These results suggests an uncoupling of the GABAa/benzodiazepine receptor at a developmental period when the animals are most susceptible to spontaneous seizures.  相似文献   

18.
The gamma-aminobutyric acid type A receptor (GABA(A)R) carries both high (K(D) = 10-30 nm) and low (K(D) = 0.1-1.0 microm) affinity binding sites for agonists. We have used site-directed mutagenesis to identify a specific residue in the rat beta2 subunit that is involved in high affinity agonist binding. Tyrosine residues at positions 62 and 74 were mutated to either phenylalanine or serine and the effects on ligand binding and ion channel activation were investigated after the expression of mutant subunits with wild-type alpha1 and gamma2 subunits in tsA201 cells or in Xenopus oocytes. None of the mutations affected [(3)H]Ro15-4513 binding or impaired allosteric interactions between the low affinity GABA and benzodiazepine sites. Although mutations at position 74 had little effect on [(3)H]muscimol binding, the Y62F mutation decreased the affinity of the high affinity [(3)H]muscimol binding sites by approximately 6-fold, and the Y62S mutation led to a loss of detectable high affinity binding sites. After expression in oocytes, the EC(50) values for both muscimol and GABA-induced activation of Y62F and Y62S receptors were increased by 2- and 6-fold compared with the wild-type. We conclude that Tyr-62 of the beta subunit is an important determinant for high affinity agonist binding to the GABA(A) receptor.  相似文献   

19.
Muscarinic receptor properties in rat cortical and brain stem synaptoneurosomes and in heart myocytes were examined at resting potential and at depolarization. Depolarization induced the conversion of agonist-binding sites of the receptor from a high to a low affinity state, which could be reversed by a return to resting potential. No effect was observed on the affinity of the receptor for antagonists. Pertussis-toxin (PTX)-catalyzed ADP-ribosylation of all substrates in both synaptoneurosomal and myocyte membranes, when conducted at resting potential, prevented depolarization-induced conversion of the receptor affinity in these preparations. The target substrates were identified by [32P]ADP-ribosylation of membranes prepared from brain stem synaptoneurosomes. Autoradiography revealed labeling of a 39-kDa protein band, which reacted mainly with antibodies to the alpha-subunit of Go-proteins. The possible involvement of G-proteins in depolarization-induced changes in the receptor activity was further investigated by examining the effect of membrane potential on the PTX-sensitive binding of di- and triphosphated guanine nucleotides to synaptoneurosomal membranes. Brain stem synaptoneurosomes were made permeable to guanine nucleotides ([3H]GTP, [3H]GDP, [3H]5'-guanylyl imidodiphosphate) by treatment with ATP. After the synaptoneurosomes had been loaded with labeled GTP/GDP, resealed, and then subjected to either resting potential of short depolarization, binding of [3H]GDP to the membranes of depolarized synaptoneurosomes was 4.0 +/- 0.3 (n = 20) times higher than to the membranes of synaptoneurosomes at resting potential. Repolarization reversed this effect. Enhancement of [3H]GDP binding to the synaptoneurosomal membranes was induced also by muscarinic activation, although the increase obtained was only 30-40% (n = 5) relative to [3H]GDP binding at resting potential. Both the depolarization-induced and the muscarinically-induced enhancement of [3H]GDP binding were prevented following PTX-catalyzed ADP-ribosylation of G-proteins in the synaptoneurosomal membrane. Our results suggest that the depolarization-induced enhancement in the binding of [3H]GTP/[3H]GDP may be attributable to activation of PTX-sensitive G-proteins, which mediate the depolarization-induced alteration of the affinity of the muscarinic receptor for agonists.  相似文献   

20.
Adult male and female genetically seizure-prone rats were assessed for sound-induced seizures. Heterozygous control groups were compared with mild seizure (designated GEPR 3) and severe seizure animals (GEPR 9). Groups of animals were killed and crude synaptosome fractions (P2) prepared from freshly dissected cerebral cortices. Binding sites for gamma-aminobutyric acid (GABA) were assessed by [3H]-muscimol in the absence or presence of excess GABA and/or pentobarbital. Binding sites for benzodiazepines were assessed by [3H]-flunitrazepam in the presence or absence of clonazepam. Compared to controls, GEPR 3 animals had a modest increase and GEPR 9 animals a larger increase in Bmax for both high and low affinity GABA sites, with no change in Kd. Chloride-dependent, barbiturate-enhanced GABA binding (increased Bmax) was observed in all conditions and groups. Likewise benzodiazepine binding (Bmax) increased slightly in GEPR 9 animals. There were no observed changes in binding sites for a survey of biogenic amines. Seizure-prone animals appear to have compensatory denervation-like supersensitivity for their most prominent inhibitory receptor, which may or may not be linked to the seizure event.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号