首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Co(II)-glyoxalase I has been prepared by reactivation of apoenzyme from human erythrocytes with Co2+. The visible absorption spectrum showed maxima at 493 and 515 nm and shoulders at 465 and 615 nm. The absorption coefficients at 493 and 515 nm were 35 and 33 M-1 cm-1/cobalt ion, respectively; i.e. 70 and 66 M-1 cm-1 for the dimeric metalloprotein. The product of the enzymatic reaction, S-D-lactoylglutathione, although binding to Co(II)-glyoxalase I, had no demonstrable effect on the visible absorption spectrum, indicating binding outside the first coordination sphere of the metal. The EPR spectrum at 3.9 K was characterized by g1 approximately 6.6, g2 approximately 3.0, and g3 approximately 2.5, and eight hyperfine lines with A1 = 0.025 cm-1. Binding of the strong competitive inhibitor S-p-bromobenzylglutathione to Co(II)-glyoxalase I gave three g values: 6.3, 3.4, and 2.5, indicating a conformational change affecting the environment of the metal ion. Both optical and EPR spectra strongly suggest a high spin Co2+ with octahedral coordination in the active site of the enzyme. The similarities in kinetic properties between native Zn(II)-glyoxalase I and enzyme substituted with Mg2+, Mn2+, or Co2+ is consistent with the view that these enzyme forms have the same metal coordination in the protein.  相似文献   

2.
The metal coordination sphere of cobalt-substituted carboxypeptidase A and its complexes with inhibitors has been characterized by X-band electron paramagnetic resonance (EPR) spectroscopy. The temperature dependence of the EPR spectrum of cobalt carboxypeptidase and the g anisotropy are consistent with a distorted tetrahedral geometry for the cobalt ion. Complexes with L-phenylalanine, a competitive inhibitor of peptide hydrolysis, as well as other hydrophobic L-amino acids all exhibit very similar EPR spectra described by three g values that differ only slightly from that of the cobalt enzyme alone. In contrast, the EPR spectra observed for the cobalt enzyme complexes with 2-(mercaptoacetyl)-D-Phe, L-benzylsuccinate, and L-beta-phenyllactate all indicate an approximately axial symmetry of the cobalt atom in a moderately distorted tetrahedral metal environment. Phenylacetate, beta-phenylpropionate, and indole-3-acetate, which exhibit mixed modes of inhibition, yield EPR spectra indicative of multiple binding modes. The EPR spectrum of the putative 2:1 inhibitor to enzyme complex is more perturbed than that of the 1:1 complex. For beta-phenylpropionate, partially resolved hyperfine coupling (122 x 10(-4) cm-1) is observed on the g = 5.99 resonance, possibly indicating a stronger metal interaction for this binding mode. The structural basis for the observed EPR spectral perturbations is discussed with reference to the existing crystallographic kinetic and electronic absorption, nuclear magnetic resonance, and magnetic circular dichroic data.  相似文献   

3.
Apoenzyme prepared by removal of the 2 mol of Zn2+/mol from Aeromonas aminopeptidase is inactive. Addition of Zn2+ reactivates it completely, and reconstitution with Co2+, Ni2+, or Cu2+ results in a 5.0-, 9.8-, and 10-fold more active enzyme than native aminopeptidase, respectively. Equilibrium dialysis and spectral titration experiments with Co2+ confirm the stoichiometry of 2 mol of metal/mol. The addition of only 1 mol of metal/mol completely restores activity characteristic of the particular metal. Interaction between the two sites, however, causes hyperactivation; thus, addition of 1 mol of Zn2+/mol subsequent to 1 mol of Co2+, Ni2+, or Cu2+ per mole increases activity 3.2-, 42-, or 59-fold, respectively. The cobalt absorption spectrum has a peak of 527 nm with a molar absorptivity of 53 M-1 cm-1 for 1 mol of cobalt/mol, which increases to 82 M-1 cm-1 for a second cobalt atom and is unchanged by further addition of Co2+. Circular dichroic (CD) and magnetic CD spectra indicate that the first Co2+ binding site is tetrahedral-like and that the second is octahedral-like. Stoichiometric quantities of 1-butylboronic acid, a transition-state analogue inhibitor of the enzyme [Baker, J. O., & Prescott, J. M. (1983) Biochemistry 22, 5322], profoundly affects absorption, CD, and MCD spectra, but n-valeramide, a substrate analogue inhibitor, has no effect. These findings suggest that the tetrahedral-like site is catalytic and the other octahedral-like site is regulatory or structural.  相似文献   

4.
Rapid-scanning stopped-flow spectroscopy (425-700 nm) has been used to study spectral changes in cobalt(II)-substituted Bacillus cereus beta-lactamase II during the binding and hydrolysis of benzylpenicillin. The experiments were carried out in aqueous solution over a temperature range of 3-20 degrees C. Three metallointermediates have been characterized by their visible absorption spectra. Two of them have visible absorption spectra identical with the intermediates ES1 and ES2 previously observed at subzero temperatures in a mixed aqueous/organic solvent [Bicknell, R., & Waley, S.G. (1985) Biochemistry 24, 6876-6887]. In addition, the branched kinetic pathway observed with the zinc(II) and cobalt(II) beta-lactamase II at subzero temperatures has been shown to occur with the cobalt(II)-substituted enzyme in aqueous solution at above-zero temperatures; thus, at pH 6.0 and 3 degrees C, the rate and equilibrium constants are readily determined for the reaction scheme: (Formula: see text). A third transient intermediate (called ES*) was found to precede ES1 in the pre-steady-state time period. The identity of the intermediates formed in aqueous solution with those previously observed in the cryostudy confirms that the mechanism is not changed either by the presence of an organic cosolvent or by subzero temperatures. Further characterization of ES1 and the steady-state intermediate ES2 at subzero temperatures, where their lifetime may be extended for up to several hours, has involved circular and magnetic circular dichroic studies. The magnetic circular dichroic spectra identify changes in the coordination sphere of the active-site metal during catalysis.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
Co(II) derivatives of Cu,Zn-superoxide dismutase having cobalt substituted for the copper (Co,Zn-superoxide dismutase and Co,Co-superoxide dismutase) were studied by optical and EPR spectroscopy. EPR and electronic absorption spectra of Co,Zn-superoxide dismutase are sensitive to solvent perturbation, and in particular to the presence of phosphate. This behaviour suggests that cobalt in Co,Zn-superoxide dismutase is open to solvent access, at variance with the Co(II) of the Cu,Co-superoxide dismutase, which is substituted for the Zn. Phosphate binding as monitored by optical titration is dependent on pH with an apparent pKa = 8.2. The absorption spectrum of Co,Zn-superoxide dismutase in water has three weak bands in the visible region (epsilon = 75 M-1 X cm-1 at 456 nm; epsilon = 90 M-1 X cm-1 at 520 nm; epsilon = 70 M-1 X cm-1 at 600 nm) and three bands in the near infrared region, at 790 nm (epsilon = 18 M-1 X cm-1), 916 nm (epsilon = 27 M-1 X cm-1) and 1045 nm (epsilon = 25 M-1 X cm-1). This spectrum is indicative of five-coordinate geometry. In the presence of phosphate, three bands are still present in the visible region but they have higher intensity (epsilon = 225 M-1 X cm-1 at 544 nm; epsilon = 315 M-1 X cm-1 at 575 nm; epsilon = 330 M-1 X cm-1 at 603 nm), whilst the lowest wavelength band in the near infrared region is at much lower energy, 1060 nm (epsilon = 44 M-1 X cm-1). The latter property suggests a tetrahedral coordination around the Co(II) centre. Addition of 1 equivalent of CN- gives rise to a stable Co(II) low-spin intermediate, which is characterized by an EPR spectrum with a highly rhombic line shape. Formation of this CN- complex was found to require more cyanide equivalents in the case of the phosphate adduct, suggesting that binding of phosphate may inhibit binding of other anions. Titration of the Co,Co-derivative with CN- provided evidence for magnetic interaction between the two metal centres. These results substantiate the contention that Co(II) can replace the copper of Cu,Zn-superoxide dismutase in a way that reproduces the properties of the native copper-binding site.  相似文献   

6.
Electronic absorption, circular dichroic (CD), and magnetic circular dichroic (MCD) spectra have been determined for complexes of cobalt(II)-substituted carboxypeptidase A and five reversible inhibitors. Three of the inhibitors, N-(1-carboxy-5-butyloxycarbonylaminopentyl)-L-phenylalanine, (I); (R,S)-2-benzyl-4-oxobutanoic acid, (III); and 2-benzyl-4-oxo-5,5,5-trifluoropentanoic acid, (IV) are mechanism-based inhibitors. Another, N-(1-carboxy-5-carbobenzoxyaminopentyl)-glycyl-L-phenylalanine, (II), is a tight binding, slowly hydrolyzed substrate. The fifth, phosphoramidon, (V), is a mechanism-based inhibitor of thermolysin, and may also bind to carboxypeptidase in a mechanism-based mode. The absorption and CD spectra of the enzyme-inhibitor complexes all differ from the spectrum of the free enzyme and from each other. The MCD spectra indicate that the tetrahedral coordination geometry of cobalt, which is distorted in the free enzyme, is also distorted in the inhibitor complexes, although to various degrees. The complexes of I and III are spectrally similar despite being structurally dissimilar, and that of IV, whose structure resembles III, is spectrally distinct, indicating that I and III, but not IV, may perturb the metal in nearly the same way. The absorption spectrum of IV is identical to that, at high pH, of Co(II)carboxypeptidase in which Glu-270 has been modified by a carbodiimide reagent, possibly pointing to a common perturbation of this residue. The absorption and CD spectra of II are similar to those of the catalytic intermediate that precedes the rate-limiting step in peptide hydrolysis [D. S. Auld, A. Galdes, K. F. Geoghegan, B. Holmquist, R. Martinelli, and B. L. Vallee, Proc. Natl. Acad. Sci. USA 81, 4675-4681 (1984)]. Since II is a substrate, the steady-state bound species that it generates may therefore be a true productive intermediate rather than a nonproductive mimic of an intermediate. The spectra of the complexes with II and V differ considerably despite structural similarities. The negative CD ellipticity of the free enzyme is reversed in sign in the presence of V, a phenomenon previously observed with complexes of Co(II)carboxypeptidase and dipeptides. This resemblance may result from a similar interaction of cobalt with the phosphoramidate group of phosphoramidon and the N-terminal amine of dipeptides. The spectra of reversible, mechanism-based inhibitors permit general structural predictions about true intermediates but require caution when used for assigning precise conformation and ligands of bound catalytic species.  相似文献   

7.
Interaction of anions with the active site of carboxypeptidase A   总被引:1,自引:0,他引:1  
Studies of azide inhibition of peptide hydrolysis catalyzed by cobalt(II) carboxypeptidase A identify two anion binding sites. Azide binding to the first site (KI = 35 mM) inhibits peptide hydrolysis in a partial competitive mode while binding at the second site (KI = 1.5 M) results in competitive inhibition. The cobalt electronic absorption spectrum is insensitive to azide binding at the first site but shows marked changes upon azide binding to the second site. Thus, azide elicits a spectral change with new lambda max (epsilon M) values of 590 (330) and 540 nm (190) and a KD of 1.4 M, equal to the second kinetic KI value for the cobalt enzyme, indicating that anion binding at the weaker site involves an interaction with the active-site metal. Remarkably, in the presence of the C-terminal products of peptide or ester hydrolysis or carboxylate inhibitor analogues, anion (e.g., azide, cyanate, and thiocyanate) binding is strongly synergistic; thus, KD for azide decreases to 4 mM in the presence of L-phenylalanine. These ternary complexes have characteristic absorption, CD, MCD, and EPR spectra. The absorption spectra of azide/carboxylate inhibitor ternary complexes with Co(II)CPD display a near-UV band between 305 and 310 nm with epsilon M values around 900-1250 M-1 cm-1. The lambda max values are close to the those of the charge-transfer band of an aquo Co(II)-azide complex (310 nm), consistent with the presence of a metal azide bond in the enzyme complex.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
W Maret 《Biochemistry》1989,28(26):9944-9949
The catalytic zinc atoms in class III (chi) alcohol dehydrogenase (ADH) and sorbitol dehydrogenase (SDH) from human liver have been specifically removed and replaced by cobalt(II) with a new ultrafiltration technique. The electronic absorption spectrum of class III cobalt ADH (epsiolon 638 = 870 M-1 cm-1) is nearly identical with those of active site substituted horse EE and human class I (beta 1 beta 1) cobalt ADH. Thus, the coordination environment of the catalytic metal is strictly conserved in these enzymes. However, significant differences are noted when the spectra of class III ADH-coenzyme complexes are compared to the corresponding spectra of the horse enzyme. The spectrum of class III ADH.NADH is split into three bands, centered at 680, 638, and 562 nm. The class III ADH.NAD+ species resembles the alkaline form of the corresponding horse enzyme complex but without exhibiting the pH dependence of the latter. These spectral changes underscore the role of the coenzymes in differentially fine tuning the catalytic metal for its particular function in each ADH. The noncatalytic zinc of class III ADH exchanges with cobalt at pH 7.0. While 9 residues out of 15 in the loop surrounding the noncatalytic zinc of class III ADH differ from those of the class I ADH, the electronic absorption spectra of cobalt in the noncatalytic metal site of class III ADH establish that the coordination environment of this site is conserved as well. The spectrum of cobalt SDH differs significantly from those of cobalt ADHs.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
The cobalt(II) derivative of cucumber basic blue copper protein "plantacyanin" has been prepared. The visible absorption, circular dichroic and magnetic circular dichroic spectra of Co(II)-plantacyanin are similar to those of Co(II)-plastocyanin, indicating that the stereochemistry of Co(II) is tetrahedral and at least one cysteinyl ligand around Co(II) ion is responsible for the strong charge transfer bands at 331 and ca. 390 nm.  相似文献   

10.
13C NMR T1 and T2 measurements have been performed on cobalt(II) substituted carboxypeptidase A in the presence of carboxylate-13C-enriched L- and D-phenylalanine. Upon binding to the cobalt enzyme, the longitudinal and transverse relaxation rates T1p-1 and T2p-1 of these inhibitors are enhanced significantly compared to the zinc enzyme, allowing both determination of an affinity constant for inhibitor binding, K, and calculation of the metal-13C carboxylate distances. The L-and D- Phe concentration dependence of T2p-1 yields affinity constants of 290 +/- 60M-1 and 670 +/- 90M-1. The distance measurements calculated for Co-13C from T1p-1 are 0.39 +/- 0.04 and 0.42 +/- 0.04 nm for L-Phe and D-Phe. Both values are too great for direct coordination of their carboxylate groups to the metal atom. Upon formation of their respective ternary enzyme.Phe.N3- complexes, the distances are essentially unaltered. In conjunction with electronic absorption studies on these complexes it can be concluded that N3-, but not the amino acid carboxylate, is bound to the metal.  相似文献   

11.
The coordination sphere of the two metal-binding sites/subunit of the homotetrameric D-xylose isomerase from Streptomyces rubiginosus has been probed by the investigation of the Co2(+)-substituted enzyme using electronic absorption, CD and magnetic circular dichroic spectroscopies in the visible region. The spectrum of the high-affinity site (B site) has an absorption coefficient, epsilon 545, of 18 M-1 cm-1, indicating a distorted octahedral complex geometry. The spectrum of the low-affinity site (A site) shows two absorption maxima at 505 nm and 586 nm with epsilon values of 170 M-1 cm-1 and 240 M-1 cm-1, respectively, which indicates a distorted tetrahedral or pentacoordinated complex structure as also observed for the enzyme from Streptomyces violaceoruber [Callens et al. (1988) Biochem. J. 250, 285-290] having the same feature but lower epsilon values. The first 4 mol Co2+ added/mol apoenzyme occupy both sites nearly equally. Subsequently the Co2+ located in the A site slowly moves into the B site. After equilibrium is reached, the next 4 mol Co2+/mol again occupy the A site with its typical spectrum, restoring full activity. Addition of 4 mol Cd2+ or Pb2+/mol Co4-loaded derivative displaces the Co2+ from the B site to form the Pb4/Co4 derivative containing Co2+ in the A site, reducing activity fourfold while the Pb4/Pb4 species is completely inactive. In contrast, Eu3+ displaces Co2+ preferentially from the A site. Thus, the high- and low-affinity sites may be different for different cations. After addition of the substrates D-xylose, D-glucose and D-fructose and the inhibitor xylitol the intense Co2+ A-site spectrum of both the active Co4/Co4 derivative and the less active Pb4/PCo4 derivative decreases, indicating that these compounds are bound to the A site, changing the distorted tetrahedral or pentacoordinated symmetry there to a distorted octahedral complex geometry.  相似文献   

12.
Spectral studies of cobalt (II)- and Nickel (II)-metallothionein   总被引:1,自引:0,他引:1  
The zinc and cadmium of native rabbit metallothionein-1 were replaced stoichiometrically with either cobalt (II) or nickel (II). The electronic, magnetic circular dichroic (MCD), and electron spin resonance spectra of Co (II)-metallothionein reflect distorted tetrahedral coordination of the cobalt atoms. Both the d-d and charge-transfer spectral regions closely resemble those of simple cobalt-tetrathiolate complexes, implying that their coordination chemistry is analogous. Ni (II) complex ions and Ni (II)-metallothionein similarly exhibit analogous MCD bands in the d-d region. The circular dichroic bands associated with ligand-metal charge-transfer transitions in the non-d-d region of Co (II)- and Ni (II)-metallothionein afford additional evidence for the similarity in tetrahedral microsymmetry of the two metal derivatives. The known ratio of 20 thiolate ligands to 7 metal ions, in conjunction with the spectral evidence for tetrathiolate coordination in metallothionein, represents good evidence that these metal thiolates are organized in clusters.  相似文献   

13.
The magnetic circular dichroic (MCD) spectra of cobalt(II) sugstituted metalloenzymes have been studied and compared to a series of four-, five-, and six-coordinate cobalt(II) model complexes previously examined (T. A. Kaden et al. (1974), Inorg. Chem. 13, 2582). The MCD spectra of cobalt substituted carboxypeptidase A, procarboxypeptidase ta, and thermolysin are consistent with earlier deductions of tetrahedral coordination from absorption spectra and also with X-ray structure analysis. Inhibitors fail to alter their MCD spectra significantly. The MCD spectra of cobalt alkaline phosphatase and carbonic anhydrase are more complex and their pH dependence and alteration by inhibitors are discussed in terms of known cobalt(II) models.  相似文献   

14.
M Good  M Vasák 《Biochemistry》1986,25(26):8353-8356
Metallothioneins (MT's) are unique low molecular weight (Mr 6000-7000) metal- and cysteine-rich proteins characterized by two tetrahedral tetrathiolate clusters containing three and four metal ions. Naturally occurring proteins usually contain the diamagnetic metal ions Zn(II) and/or Cd(II). We have now succeeded in substituting these ions by paramagnetic Fe(II). Rabbit liver MT-1 in which all seven metal binding sites were occupied by Fe(II) ions displays absorption features typical of tetrahedral tetrathiolate Fe(II) coordination. This is documented by the presence of a ligand field 5E----5T2 transition in the near-infrared region centered at about 1850 nm (epsilon Fe approximately 100 M-1 cm-1) and a broad charge-transfer absorption in the UV region with a shoulder at 314 nm. A metal-thiolate cluster structure is inferred from the 7 to 20 ratio of metal ions to cysteine residues and from spectral studies in which successive increments of Fe(II) were incorporated into the metal-free protein. Thus, to about 4 equiv, the charge-transfer absorption and magnetic circular dichroism (MCD) features of the complexes formed resemble closely those of reduced rubredoxin from Desulfovibro gigas in which tetrahedral tetrathiolate Fe(II) coordination is documented. However, upon further addition of Fe(II) ions, the charge-transfer absorption bands undergo a progressive red-shift until the full metal occupancy of seven Fe(II) ions per molecule is reached. The bathochromic shift which is also manifested in the MCD spectra can be ascribed to the transformation of some of the terminal thiolate ligands to bridging when the full complement of Fe(II) is bound.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
The visible absorption bands in the region 525-575 nm of the catalytic cobalt ion in cobalt(II) horse liver alcohol dehydrogenase show characteristic pH-dependent changes both in the free enzyme and its complexes with nicotinamide adenine dinucleotide (NAD+) and NAD+ plus ethanol or 2,2,2-trifluoroethanol. In the free enzyme, the change of the coordination environment has an apparent pK of about 9.4. In the binary complex with NAD+ the spectral changes are complex, indicating changes in the coordination sphere in a lower pH range with an estimated pK value of about 7.9. The ternary complexes enzyme X NAD+ X ethanol and enzyme X NAD+ X 2,2,2-trifluoroethanol exhibit very similar, characteristic spectral features; their apparent pK values are 6.3 and less than 4, respectively. We ascribe these pK values to the ionization of the alcohol bound in the ternary complexes. The results demonstrate that the catalytic cobalt ion is sensing changes of the ionization state of the protein when going from low pH forms to high pH forms both in the absence and presence of coenzyme and substrate/inhibitor.  相似文献   

16.
The binding of 6-nitro-L-tryptophan to trp aporepressor and human serum albumin has been examined by visible difference spectroscopy and circular dichroism. 6-Nitro-L-tryptophan, prepared by nitration of L-tryptophan with nitric acid in glacial acetic acid, exhibits a visible and near-uv absorption spectrum with lambda max at about 330 nm (epsilon = 7 X 10(3) M-1 cm-1) and a shoulder near 380 nm in H2O. In the presence of trp aporepressor, the visible absorption intensity is sharply diminished. Visible difference spectral titration data give KD = 1.27 X 10(-4) M and n = 0.95 per subunit at 25 degrees C. While 6-nitro-L-tryptophan exhibits no significant circular dichroism between 300 and 500 nm, the complex with trp aporepressor exhibits strong circular dichroism signals, with a negative maximum at 386 nm (delta epsilon = -7.5 M-1 cm-1) and a positive maximum at 310 nm (delta epsilon = +6 M-1 cm-1). Circular dichroism titration data give KD = 1.69 X 10(-4) M and n = 0.90 per subunit at 25 degrees C. The KD values determined spectroscopically are in excellent agreement with that determined by equilibrium dialysis, KD = 1.5 X 10(-4) M at 25 degrees C. In the presence of human serum albumin, the spectrum of 6-nitro-L-tryptophan exhibits a blue shift and an increase in absorption intensity; similar changes are observed in solvents of low dielectric contrast such as 80% aqueous dioxane. Visible difference spectral titration data give KD = 8.0 X 10(-5) M and n = 0.95 for human serum albumin. The complex of 6-nitro-L-tryptophan with human serum albumin exhibits a strong positive circular dichroism maximum at 380 nm (delta epsilon = +9.8 M-1 cm-1) with a shoulder at 310-320 nm. Circular dichroism titration data give KD = 6.4 X 10(-5) M and n = 0.83, in good agreement with the visible difference spectral results. Taken together, our results demonstrate the utility of 6-nitro-L-tryptophan as a spectroscopic probe for tryptophan-binding proteins.  相似文献   

17.
Interaction of several representative folate, quinazoline and pyridine nucleotide derivatives with dihydrofolate reductase from amethopterin-resistant Lactobacillus casei induces dramatic changes in its circular dichroic spectral properties. The binding of dihydrofolate induces a large extrinsic Cotton effect at 295 nm ([theta] = 113 800 deg . cm2 . dm-1). The generation of this band by dihydrofolate is strictly dependent on complex formation with a single substrate binding site and a KD = 7 . 10(-6) M. The other binary complexes examined include the enzyme . NADPH, enzyme . amethopterin, enzyme . folate, and enzyme . methasquin. All such complexes differ in spectral detail, the negative ellipticity at 330 nm being characteristic of the "folate site" complexes. The circular dichroic spectrum of the ternary complex of reductase . NADPH . methotrexate shows a positive symmetrical band centered at 360 nm ([theta] - 32 000 deg . cm2 . dm-1). Since both of the corresponding binary complexes exhibit negative bands in this region, this induced band represents a unique molecular property of the ternary complex. Chemical modification of a single tryptophan residue of the enzyme, as determined from magnetic circular dichroism spectra, results in a complete loss in the ability to bind either dihydrofolate or NADPH.  相似文献   

18.
A J Sytkowski  B L Vallee 《Biochemistry》1979,18(19):4095-4099
The noncatalytic and catalytic zinc atoms of horse liver alcohol dehydrogenase, [(LADH)Zn2Zn2] or LADH, have been replaced differentially with 109Cd by equilibrium dialysis, resulting in two new enzymatically active species, [(LADH)109Cd2Zn2] and [(LADH)109Cd2109Cd2]. The UV difference spectra of the cadmium enzymes vs. native [(LADH)Zn2Zn2] reveal maxima at 240 nm with molar absorptivities, delta epsilon 240, of 1.6 X 10(4) M-1 cm-1 per noncatalytic 109Cd atom and 0.9 X 10(4) M-1 cm-1 per catalytic 109Cd atom, consistent with coordination of the metals by four and two thiolate ligands, respectively, strikingly similar to the 250-nm charge-transfer absorbance in metallothionein. Carboxymethylation of the Cys-46 ligand to the catalytic metal in LADH presumably lowers the overall stability constant of the coordination complex and results in loss of catalytic 109Cd or catalytic cobalt but not catalytic zinc from the enzyme.  相似文献   

19.
A 23-residue peptide was synthesized that incorporates the loop which binds the structural zinc atom of mammalian alcohol dehydrogenases and contributes, in part, to subunit interactions in the native enzyme. Neither the amino acid composition nor the sequence of the peptide resemble those of zinc fingers. The reduced peptide stoichiometrically binds zinc or cobalt to form stable complexes with a dissociation constant of the peptide/CO2+ complex of 2.1 microM at pH 7.5. EDTA disrupts the complex. The absorption and magnetic circular dichroic spectra of the cobalt-peptide are indicative of a tetrahedral coordination geometry, and are similar to those of the cobalt-substituted structural site of horse and human (beta 1 beta 1) liver alcohol dehydrogenases. Consequently, the synthetic peptide can serve as a model for the metal-binding segment of alcohol dehydrogenase and for studies of fundamental problems concerning protein/metal interactions.  相似文献   

20.
The infrared, visible and nuclear magnetic resonance spectra of protochlorophyll a and vinylprotochlorophyll a in dry non-polar solvents (carbon tetrachloride, chloroform, cyclohexane) are presented and interpreted in terms of dimer interaction. The infrared spectra in the 1600-1800 cm-1 region clearly show the existence of a coordination interaction between the C-9 ketone oxygen function of one molecule and the central magnesium atom of another molecule. Infrared spectra in the OH stretching region (3200-3800 cm-1) provide a valuable test of the water content in the samples. The analysis of the absorption and circular dichroism spectra of protochlorophyll a and vinylprotochlorophyll a in carbon tetrachloride demonstrates the existence of a monomer-dimer equilibrium in the concentration range from 10(-6) to 5.10(-4) M. The dimerization constants are (6 +/-2).10(5)1.M-1 for protochlorophyll a and (4.5 +/-21.10(5) 1.M-1 for vinylprotochlorophyll a at 20 degrees C. The deconvolution of visible spectra in the red region has been performed in order to obtain quantitative information on the dimer structure. Two models involving a parallel or a perpendicular arrangement of the associated molecules are considered. From 1H NMR spectra, it appears that the region of overlap occurs near ring V, in agreement with the interpretation of the infrared spectra.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号