首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To find out stable and effective producers of major protective antigens intended for use as components of cholera chemical vaccine against V. cholerae strains of serogroups O and O139, the comparative analysis of the production of cholera toxin, toxin-coregulated pili (TCP), antigens O1 and O139, polysaccharide capsule and outer membrane protein OmpU in different V. cholerae strains groups O1 and O139 has been made. V. cholerae strain KM68, serogroup O1, has been found capable of the production of antigen O1, serovar Ogawa, protein OmpU at a sufficiently high level and the hyperproduction of cholera toxin and TCP, and thus suitable for use in the manufacture of cholera bivalent vaccine as the source of these antigens. Specially selected alysogenic noncapsular strain KM137 of serogroup O139, characterized by a high and stable level of the biosynthesis of this somatic antigen when grown in both laboratory and production conditions, may serve as the produces of antigen O139.  相似文献   

2.
The morphological and physical characteristics of the capsule of Vibrio cholerae O139 were examined. An electron microscopic study using the freeze-substitution technique showed that all of the V. cholerae strains of the O139 serogroup examined have a very thin fibrous layer on the outside of the outer membrane. In contrast, the mutants of strain O139, strain MO10T4 (which lacks capsule synthesis), and strain Bengal-2R1 (which fails to synthesize both the capsule and the O-antigen of lipopolysaccharide) were all found to have lost the surface layer. In addition, the capsule layer could also not be observed on the surface of V. cholerae strain O1. To determine the biological characteristics of the capsule of strains of the O139 serogroup, we investigated the serum killing activity and bacterial phagocytosis by polymorphonuclear leukocytes. The O139 strains were more resistant to the serum killing activity than were the V. cholerae O1 strain and the O139 mutant strains, thus suggesting that the existence of the capsule gave a serum-resistant character to the O139 strains. The surface character of the O139 strains had the same hydrophobic character as did that of the O139 mutant strains and the O1 strain. In addition, all the V. cholerae O1 and O139 strains examined, including the mutant strains, were effectively ingested by the human polymorphonuclear leukocytes. The number of ingested bacteria was not significantly different among the strains, and the ingestion of the acapsular O139 mutants thus showed that the capsule does not play an antiphagocytic role. These data suggest that the capsule of V. cholerae O139 has a physiological function different from that of the ordinal hydrophilic capsule that is found in invasive bacteria such as Klebsiella pneumoniae. Received: 23 March 1998 / Accepted: 28 July 1998  相似文献   

3.
Vibrio cholerae is the etiological agent of cholera. V. cholerae serogroup O1 had been, until 1992, the only serogroup responsible for large epidemics and pandemics of cholera. In 1992, a new serotype of V. cholerae emerged in South-East Asia that caused a massive outbreak of cholera in India and neighboring countries. The new serotype was named V. cholerae O139. The main differences between V. cholerae O139 and O1 are that the former possesses a capsular polysaccharide and different lipopolysaccharide. Capsular polysaccharides are, in general, T-independent antigens giving rise to poor immune responses lacking immunological memory. In order to overcome this, monoclonal antibodies against the capsular polysaccharide of V. cholerae O139 were used to screen different phage-displayed random peptide libraries. Eight different phage clones were selected and characterized using enzyme immunoassay with the monoclonal antibodies, and then tested for specificity by competition with V. cholerae O139 capsular polysaccharide. Selected peptides were sequenced, synthesized and conjugated to bovine serum albumin (BSA) and keyhole limpet hemocyanin (KLH). The conjugated peptides were used to immunize mice. It is evident that the anti-peptide mouse antibodies bind to the V. cholerae O139 capsular polysaccharide. In addition, the anti-peptide antibodies are protective in a suckling mouse model. The protective efficacy is both specific and dose-dependent. A PCT (PCT/IT2003/000489) with the publication number WO 2004/056851 has been filed for the sequences of the eight peptides.  相似文献   

4.
Cholera bacteriophages have been isolated from 27 lysogenic cultures of V. cholerae O139. As shown the pages under study belong to two morphological groups A1 and F1 and serological types II and XII. The use of prophage typing and the sensitivity test to specific phage made it possible to differentiate V. cholerae strains, serogroup O139.  相似文献   

5.
Abstract Vibrio cholerae O139, a causative agent of a large epidemic of cholera-like illness, has suddenly emerged and spread widely over several months. To investigate the characteristics unique to O139, traditional typing techniques for V. cholerae , such as biochemical characteristics, antibiotic susceptibility and detection of toxin production, were performed, with the result that 145 O139 strains, except for two O139 strains isolated from Argentina and Germany, were indistinguishable from O1 strains. Thus, in order to clarify the genetical relatedness among O139 strains, and between O139 and O1 strains, the RAPD (random amplified polymorphic DNA) DNA fingerprinting method was undertaken. Although the RAPD arrays in five O139 isolates from Vellore with one arbitrary primer were slightly different from the other O139 strains, the RAPD patterns of the 145 forty-five O139 strains except for two O139 strains from Argentina and Germany were quite similar to each other, but were different from those of O1 strains, indicating that those O139 epidemic strains are closely related to each other regardless of their place of isolation. Furthermore, the RAPD patterns of the O139 strains resembled those of E1 Tor strains rather than classical strain, and a small change in the RAPD pattern of O139 strains occurred during subculture for 200 generations. These results taken together suggested that O139 V. cholerae have emerged from a common origin associated with the E1 Tor strain.  相似文献   

6.
The distribution, characterization and function of the tcpA gene was investigated in Vibrio cholerae O1 strains of the El Tor biotype and in a newly emergent non-O1 strain classified as serogroup O139. The V. cholerae tcpA gene from the classical biotype strain O395 was used as a probe to identify a clone carrying the tcpA gene from the El Tor biotype strain E7946. The sequence of the E7946 tcpA gene revealed that the mature El Tor TcpA pilin has the same number of residues as, and is 82% identical to, TcpA of classical biotype strain O395. The majority of differences in primary structure are either conservative or clustered in a manner such that compensatory changes retain regional amino acid size, polarity and charge. In a functional analysis, the cloned gene was used to construct an El Tor mutant strain containing an insertion in tcpA. This strain exhibited a colonization defect in the infant mouse cholera model similar in magnitude to that previously described for classical biotype tcpA mutants, thus establishing an equivalent role for TCP in intestinal colonization by El Tor biotype strains. The tcpA analysis was further extended to both a prototype El Tor strain from the Peru epidemic and to the first non-O1 strain known to cause epidemic cholera, an O139 V. cholerae isolate from the current widespread Asian epidemic. These strains were shown to carry tcpA with a sequence identical to E7946. These results provide further evidence that the newly emergent non-O1 serogroup O139 strain represents a derivative of an El Tor biotype strain and, despite its different LPS structure, shares common TCP-associated antigens. Therefore, there appear to be only two related sequences associated with TCP pilin required for colonization by all strains responsible for epidemic cholera, one primary sequence associated with classical strains and one for El Tor strains and the recent O139 derivative. A diagnostic correlation between the presence of tcpA and the V. cholerae to colonize and cause clinical is now extended to strains of both O1 and non-O1 serotypes.  相似文献   

7.
Pathogenic strains of Vibrio cholerae O139 possess the cholera toxin A subunit (ctxA) gene as well as the gene for toxin co-regulated pili (tcpA). We report the isolation of a ctxA-negative, tcpA-negative V. cholerae O139 strain (INDREI) from a patient in Mexico diagnosed with gastrointestinal illness. Certain phenotypic characteristics of this strain were identical to those of V. cholerae O1 biotype El Tor. Unlike ctxA-positive V. cholerae O139 strains, this strain was sensitive to a wide panel of antibiotics, including ampicillin, chloramphenicol, ciprofloxacin, gentamicin, furazolidone, nalidixic acid, nitrofurantoin, tetracycline, trimethoprim-sulfamethoxazole, and streptomycin, but was resistant to polymyxin B. Ribotype and pulsed-field gel electrophoresis profiles of INDRE1 differed from those of ctxA-positive V. cholerae O139 and other V. cholerae strains. Phenotypic characteristics of the Mexico strain were similar to those reported for V. cholerae O139 isolates from Argentina and Sri Lanka.  相似文献   

8.
A total of 26 strains of Vibrio cholerae, including members of the O1, O139, and non-O1, non-O139 serogroups from both clinical and environmental sources, were examined for the presence of genes encoding cholera toxin (ctxA), zonula occludens toxin (zot), accessory cholera enterotoxin (ace), hemolysin (hlyA), NAG-specific heat-stable toxin (st), toxin-coregulated pilus (tcpA), and outer membrane protein (ompU), for genomic organization, and for the presence of the regulatory protein genes tcpI and toxR in order to determine relationships between epidemic serotypes and sources of isolation. While 22 of the 26 strains were hemolytic on 5% sheep blood nutrient agar, all strains were PCR positive for hlyA, the hemolysin gene. When multiplex PCR was used, all serogroup O1 and O139 strains were positive for tcpA, ompU, and tcpI. All O1 and O139 strains except one O1 strain and one O139 strain were positive for the ctxA, zot, and ace genes. Also, O1 strain VO3 was negative for the zot gene. All of the non-O1, non-O139 strains were negative for the ctxA, zot, ace, tcpA, and tcpI genes, and all of the non-O1, non-O139 strains except strain VO26 were negative for ompU. All of the strains except non-O1, non-O139 strain VO22 were PCR positive for the gene encoding the central regulatory protein, toxR. All V. cholerae strains were negative for the NAG-specific st gene. Of the nine non-ctx-producing strains of V. cholerae, only one, non-O1, non-O139 strain VO24, caused fluid accumulation in the rabbit ileal loop assay. The other eight strains, including an O1 strain, an O139 strain, and six non-O1, non-O139 strains, regardless of the source of isolation, caused fluid accumulation after two to five serial passages through the rabbit gut. Culture filtrates of all non-cholera-toxigenic strains grown in AKI media also caused fluid accumulation, suggesting that a new toxin was produced in AKI medium by these strains. Studies of clonality performed by using enterobacterial repetitive intergenic consensus sequence PCR, Box element PCR, amplified fragment length polymorphism (AFLP), and pulsed-field gel electrophoresis (PFGE) collectively indicated that the V. cholerae O1 and O139 strains had a clonal origin, whereas the non-O1, non-O139 strains belonged to different clones. The clinical isolates closely resembled environmental isolates in their genomic patterns. Overall, there was an excellent correlation among the results of the PCR, AFLP, and PFGE analyses, and individual strains derived from clinical and environmental sources produced similar fingerprint patterns. From the results of this study, we concluded that the non-cholera-toxin-producing strains of V. cholerae, whether of clinical or environmental origin, possess the ability to produce a new secretogenic toxin that is entirely different from the toxin produced by toxigenic V. cholerae O1 and O139 strains. We also concluded that the aquatic environment is a reservoir for V. cholerae O1, O139, non-O1, and non-O139 serogroup strains.  相似文献   

9.
Vibrio cholerae serogroup O139 Bengal is the first documented serogroup other than O1 to cause epidemic cholera. The O139 Bengal strains are very similar to V. cholerae serogroup O1 biotype El Tor strains. The major differences between the two serogroups are that O139 Bengal contains a distinct O antigen and produces a polysaccharide capsule. We previously described three Tn phoA mutants of O139 strain AI1837 which abolish both O antigen and capsule production. These Tn phoA insertions were mapped to a 21.5 kb Eco RI fragment of the O139 chromosome. We describe here the cloning and mapping of this 21.5 kb Eco RI fragment and it was shown to complement each of the mutants in trans to produce O antigen and capsule. The Eco RI fragment contains 13 kb of DNA that is specific to O139 and 8.5 kb of DNA that is common to O1 and O139. Sequence analysis of the 13 kb of O139-specific DNA revealed that it contains 11 open reading frames all of which are transcribed in the same direction. Eight of the 11 open reading frames are homologous to sugar biosynthesis genes from other organisms. Using extended polymerase chain reactions, we show that the extent of the DNA region in O139 that is not present in O1 is approximately 35kb. The site of insertion of this O139-specific DNA in the O1 chromosome was mapped to the rfb O1 region. We also demonstrate that O139 Bengal strain AI1837 contains a deletion of 22 kb that in serogroup O1 strains contains the rfb region. Therefore, O139 Bengal probably arose from an O1 strain that had undergone genetic rearrangements including deletion of the O1 rfb region and acquisition of a 35 kb region of DNA which encodes O139 surface polysaccharide.  相似文献   

10.
1992年以来,许多国家和地区先后暴发了O139霍乱大流行。本文从微生物学和分子遗传学的角度对来自不同地区的四株O139霍乱弧菌的生物学特性进行了研究。结果表明四株O139霍乱弧菌均呈典型弧形、单端单鞭毛,培养要求不高、耐碱,固体平板上菌落呈不透明。电镜下显示有菌毛、荚膜结构。有较广的抗生素敏感谱及霍乱Heiberg氏Ⅰ群的糖发酵能力。DNAG+CMOL%测定值均在霍乱弧菌范围之内且数值接近。质粒图谱检测发现四株中有三株含有一个4.10MDa大小的质粒,而另一株不含质粒。O139霍乱弧菌的生物学特性大多数与O1群菌相似,两者重大的区别在于O139菌具荚膜结构。  相似文献   

11.
霍乱O139型菌苗的试制   总被引:3,自引:1,他引:2  
对来自孟加拉、泰国、印度、中国四地区O139型霍乱菌株进行了毒力、免疫原性、免疫力与相互交叉保护力试验,结果显示不同地区分离的O139型霍乱弧菌其所试特性相互间无差异。用中国(93-3)株试制的菌体菌苗,其抗原性、毒性、免疫力安全性等经检定符合霍乱菌苗规程要求。鉴于O139型霍乱弧菌存在荚膜的特性,而现有的几种荚膜多糖菌苗都显示有明显的保护作用,因而,使用O139型菌苗有可能在一定程度上达到控制O139型霍乱流行的目的。  相似文献   

12.
Bacteriophage K139 was recently characterized as a temperate phage of O1 Vibrio cholerae. In this study we have determined the phage adsorption site on the bacterial cell surface. Phage-binding studies with purified lipopolysaccharide (LPS) of different O1 serotypes and biotypes revealed that the O1 antigen serves as the phage receptor. In addition, phage-resistant O1 El Tor strains were screened by using a virulent isolate of phage K139. Analysis of the LPS of such spontaneous phage-resistant mutants revealed that most of them synthesize incomplete LPS molecules, composed of either defective O1 antigen or core oligosaccharide. By applying phage-binding studies, it was possible to distinguish between receptor mutants and mutations which probably caused abortion of later steps of phage infection. Furthermore, we investigated the genetic nature of O1-negative strains by Southern hybridization with probes specific for the O antigen biosynthesis cluster (rfb region). Two of the investigated O1 antigen-negative mutants revealed insertions of element IS1004 into the rfb gene cluster. Treating one wbeW::IS1004 serum-sensitive mutant with normal human serum, we found that several survivors showed precise excision of IS1004, restoring O antigen biosynthesis and serum resistance. Investigation of clinical isolates by screening for phage resistance and performing LPS analysis of nonlysogenic strains led to the identification of a strain with decreased O1 antigen presentation. This strain had a significant reduction in its ability to colonize the mouse small intestine.  相似文献   

13.
Yu L  Zhou Y  Wang R  Lou J  Zhang L  Li J  Bi Z  Kan B 《PloS one》2012,7(6):e38633
Regarded as an emerging diarrheal micropathogen, Vibrio cholerae serogroup O139 was first identified in 1992 and has become an important cause of cholera epidemics over the last two decades. O139 strains have been continually isolated since O139 cholera appeared in China in 1993, from sporadic cases and dispersed foodborne outbreaks, which are the common epidemic types of O139 cholera in China. Antibiotic resistance profiles of these epidemic strains are required for development of clinical treatments, epidemiological studies and disease control. In this study, a comprehensive investigation of the antibiotic resistance of V. cholerae O139 strains isolated in China from 1993 to 2009 was conducted. The initial O139 isolates were resistant to streptomycin, trimethoprim-sulfamethoxazole and polymyxin B only, while multidrug resistance increased suddenly and became common in strains isolated after 1998. Different resistance profiles were observed in the isolates from different years. In contrast, most V. cholerae O1 strains isolated in the same period were much less resistant to these antibiotics and no obvious multidrug resistance patterns were detected. Most of the non-toxigenic strains isolated from the environment and seafood were resistant to four antibiotics or fewer, although a few multidrug resistant strains were also identified. These toxigenic O139 strains exhibited a high prevalence of the class I integron and the SXT element, which were rare in the non-toxigenic strains. Molecular subtyping of O139 strains showed highly diverse pulsed-field gel electrophoresis patterns, which may correspond to the epidemic state of sporadic cases and small-scale outbreaks and complex resistance patterns. Severe multidrug resistance, even resistance transfers based on mobile antibiotic resistance elements, increases the probability of O139 cholera as a threat to public health. Therefore, continual epidemiological and antibiotic sensitivity surveillance should focus on the occurrence of multidrug resistance and frequent microbial population shifts in O139 strains.  相似文献   

14.
The sequence of part of the rfb region of Vibrio cholerae serogroup O139 and the physical map of a 35-kb region of the O139 chromosome have been determined. The O139 rfb region presented contains a number of open reading frames which show similarities to other rfb and capsular biosynthesis genes found in members of the Enterobacteriaceae family and in V. cholerae O1. The cloned and sequenced region can complement the defects in O139 antigen biosynthesis in transposon insertions within the O139 rfb cluster. Linkage is demonstrated among IS1358 of V. cholerae O139, the rfb region, and the recently reported otnA and otnB genes (E. M. Bik, A. E. Bunschoten, R. D. Gouw, and F. R. Mooi, EMBO J. 14:209-216, 1995). In addition, the whole of this region has been linked to the rfaD gene. Furthermore, determination of the sequence flanking IS1358 has revealed homology to other rfb-like genes. The exact site of insertion with respect to rfaD is defined for the novel DNAs of both the Bengal and the Argentinian O139 isolates.  相似文献   

15.
A total of 26 strains of Vibrio cholerae, including members of the O1, O139, and non-O1, non-O139 serogroups from both clinical and environmental sources, were examined for the presence of genes encoding cholera toxin (ctxA), zonula occludens toxin (zot), accessory cholera enterotoxin (ace), hemolysin (hlyA), NAG-specific heat-stable toxin (st), toxin-coregulated pilus (tcpA), and outer membrane protein (ompU), for genomic organization, and for the presence of the regulatory protein genes tcpI and toxR in order to determine relationships between epidemic serotypes and sources of isolation. While 22 of the 26 strains were hemolytic on 5% sheep blood nutrient agar, all strains were PCR positive for hlyA, the hemolysin gene. When multiplex PCR was used, all serogroup O1 and O139 strains were positive for tcpA, ompU, and tcpI. All O1 and O139 strains except one O1 strain and one O139 strain were positive for the ctxA, zot, and ace genes. Also, O1 strain VO3 was negative for the zot gene. All of the non-O1, non-O139 strains were negative for the ctxA, zot, ace, tcpA, and tcpI genes, and all of the non-O1, non-O139 strains except strain VO26 were negative for ompU. All of the strains except non-O1, non-O139 strain VO22 were PCR positive for the gene encoding the central regulatory protein, toxR. All V. cholerae strains were negative for the NAG-specific st gene. Of the nine non-ctx-producing strains of V. cholerae, only one, non-O1, non-O139 strain VO24, caused fluid accumulation in the rabbit ileal loop assay. The other eight strains, including an O1 strain, an O139 strain, and six non-O1, non-O139 strains, regardless of the source of isolation, caused fluid accumulation after two to five serial passages through the rabbit gut. Culture filtrates of all non-cholera-toxigenic strains grown in AKI media also caused fluid accumulation, suggesting that a new toxin was produced in AKI medium by these strains. Studies of clonality performed by using enterobacterial repetitive intergenic consensus sequence PCR, Box element PCR, amplified fragment length polymorphism (AFLP), and pulsed-field gel electrophoresis (PFGE) collectively indicated that the V. cholerae O1 and O139 strains had a clonal origin, whereas the non-O1, non-O139 strains belonged to different clones. The clinical isolates closely resembled environmental isolates in their genomic patterns. Overall, there was an excellent correlation among the results of the PCR, AFLP, and PFGE analyses, and individual strains derived from clinical and environmental sources produced similar fingerprint patterns. From the results of this study, we concluded that the non-cholera-toxin-producing strains of V. cholerae, whether of clinical or environmental origin, possess the ability to produce a new secretogenic toxin that is entirely different from the toxin produced by toxigenic V. cholerae O1 and O139 strains. We also concluded that the aquatic environment is a reservoir for V. cholerae O1, O139, non-O1, and non-O139 serogroup strains.  相似文献   

16.
The results obtained in the study of the main biological properties of 9 E. coli strains, serogroup O139:K., isolated from monkeys at the Sukhumi monkey breeding colony and yielding the positive result in Sereny's keratoconjunctival test are presented. For the first time E. coli of serovar O139:K.:431 were isolated; these organisms differed from reference strain O139K82:H1 in their enzymatic activity, in the partial composition of O-antigen and in their capacity for inducing experimental keratoconjunctivitis. The isolation of the above-mentioned cultures from monkeys with diagnosed acute intestinal diseases of unclear etiology, both during the life of the animals and in the process of autopsy, from a monkey having had contacts with sick animals in the focus of clinical dysentery, and from monkey subjected to prophylactic examination, as well as the pathogenicity of these strains for guinea pigs, evaluated on the keratoconjunctivitis model, suggest their probable etiological role in E. coli infection in primates and make it possible to regard them as the invasive variants of E. coli, serogroup O139:K..  相似文献   

17.
Abstract A series of monoclonal antibodies of different isotypes specific for Vibrio cholerae O139, the new pandemic strain of cholera, was produced. These mAbs reacted only with the reference strain (MO45) representing serovar O139 but did not react with any of the other reference strains representing serovars O1 to O140. Significantly, the mAbs did not agglutinate the R-cultures of V. cholerae (CA385, 20–93) which demonstrated the exceptional specificity of these mAbs and indicated that the mAbs recognized antigenic determinants unique for the O139 serovar. There was heterogeneity in the intensity of reactivity of the mAbs with strains of V. cholerae O139 isolated from diverse sources. Apart from 4H6, the other mAbs agglutinated all the O139 strains examined. 2D12 and 2F8 were the best mAbs based on the intensity of agglutination with all the O139 strains. Evaluation of 3A10 in comparison with a polyclonal anti-O139 antibody raised in rabbit using the slide agglutination format revealed that 3A10 fared as well as the polyclonal antibody for the laboratory identification of the O139 serovar. The acquisition of these mAbs provide reagents which would be very useful in the development of simple immunodiagnostic assays for the diagnosis of V. cholerae O139 infections.  相似文献   

18.
Vibrio cholerae O139 Bengal has recently been identified as a cause of epidemic cholera in Asia. In contrast to V. cholerae O1, V. cholerae O139 Bengal has a polysaccharide capsule. As determined by high-performance anion-exchange chromatography and 1H nuclear magnetic resonance analysis, the capsular polysaccharide of V. cholerae O139 Bengal strain Al1837 has six residues in the repeating subunit; this includes one residue each of N-acetylglucosamine, N-acetylquinovosamine (QuiNAc), galacturonic acid (GalA), and galactose and two residues of 3,6-dideoxyxylohexose (Xylhex). The proposed structure is [formula: see text]  相似文献   

19.
In the past decade, several outbreaks of cholera have been reported to be caused by Vibrio cholerae O139, a strain which differs from the more common O1 strain in that the former is encapsulated. The hexasaccharide repeating subunit has been isolated from the V. cholerae O139 capsular polysaccharide by digestion with a recently discovered polysaccharide lyase derived from a bacteriophage specific for this serogroup. It specifically cleaves at a single position of the 4-linked galacturonic acid producing an unsaturated sugar product in quantities for conformational studies by (1)H and (13)C NMR spectroscopy. We report conformational studies on this oligosaccharide by molecular modeling and NMR spectroscopy including nuclear Overhauser effects and residual dipolar coupling of a sample weakly oriented in liquid crystalline solution. The structure contains a tetrasaccharide epitope homologous to the human Lewis(b) blood group antigen, which adopts a relatively well-defined single conformation. Comparison of these results with those of a previously published study of the intact capsular polysaccharide indicates that the conformations of the epitope in the two cases are identical or at least closely similar. Thus, this epitope, which may be essential for the pathogenicity of this V. cholerae strain, is not a "conformational epitope" requiring a certain critical size for antigenicity as has been reported for several other bacterial capsular antigens.  相似文献   

20.
The action of nitrosoguanidine (NG) on the culture of V. cholerae O139 P-16064 resulted in the appearance of mutant 16064 NG6, not agglutinating with commercial diagnostic serum O139. Its incapacity of agglutination was due to the sorption of the specific serum with strains V. cholerae O22 and R-variant RCA-385, which caused the loss of antibodies to common determinants. Experiments with the sorption of immune sera made it possible to suggest that one of the determinants of LPS O139, phosphate-galactose, was absent in NG mutant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号