首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Knowledge of the distribution of growth times from individual spores and quantification of this biovariability are important if predictions of growth in food are to be improved, particularly when, as for Clostridium botulinum, growth is likely to initiate from low numbers of spores. In this study we made a novel attempt to determine the distributions of times associated with the various stages of germination and subsequent growth from spores and the relationships between these stages. The time to germination (t(germ)), time to emergence (t(emerg)), and times to reach the lengths of one (t(C1)) and two (t(C2)) mature cells were quantified for individual spores of nonproteolytic C. botulinum Eklund 17B using phase-contrast microscopy and image analysis. The times to detection for wells inoculated with individual spores were recorded using a Bioscreen C automated turbidity reader and were compatible with the data obtained microscopically. The distributions of times to events during germination and subsequent growth showed considerable variability, and all stages contributed to the overall variability in the lag time. The times for germination (t(germ)), emergence (t(emerg) - t(germ)), cell maturation (t(C1) - t(emerg)), and doubling (t(C2) - t(C1)) were not found to be correlated. Consequently, it was not possible to predict the total duration of the lag phase from information for just one of the stages, such as germination. As the variability in postgermination stages is relatively large, the first spore to germinate will not necessarily be the first spore to produce actively dividing cells and start neurotoxin production. This information can make a substantial contribution to improved predictive modeling and better quantitative microbiological risk assessment.  相似文献   

2.
The effects of temperature on the activation, glucose-induced germination, and outgrowth of Bacillus megaterium QM B1551 spores were investigated. There was no evidence for discontinuities in the response of spores to temperature in these processes reflecting reported thermal anomalies in the physical structure of water. Increasing the temperature of heat activation (aqueous suspensions, 5 min) increased the germinability of spores. Activation, as measured by extent of germination, was optimal after heating at 62 to 78 C, and the rate of spore germination was maximal after heat activation at 64 to 68 C. Increasing the temperature of activation above 68 C depressed the germination rate and increased the time lag before this rate was reached. Germination occurred over a wide range of temperatures, but was optimal between 28 and 38 C. The highest rate of germination was at 38 C; at lower incubation temperatures, the maximum attained rate was lower and the lag in attaining this rate was extended. Outgrowth (postgerminative development through the first cell division) of the germinated spores in Brain Heart Infusion (BHI) occurred in at least two phases-a temperature-dependent lag phase followed by a relatively temperature-independent phase of maximum outgrowth rate, during which increase in optical density was a linear function of time. Outgrowth time (time required for doubling of the initial optical density), essentially dependent on the time for completion of the lag phase, was shortest at temperatures between 34 and 40 C. The temperature-dependent lag phase was completed in a rich medium (e.g., BHI) but not in the glucose germination medium, suggesting that the endogenous reserves of the germinated spore were inadequate to support the metabolic synthetic events occurring during this period.  相似文献   

3.
Germination of spores of Clostridium tyrobutyricum between 9° and 45°C was followed by the decrease in optical density of the spore suspension. An empirical equation with three parameters is proposed to describe the time-course of spore germination. Each parameter of the model has a direct biological significance and is modelled vs temperature. In the framework of predictive microbiology, the equation may be used for the prediction of the overall lag time of growth.  相似文献   

4.
The influence of sporulation temperature (20, 30 and 37 °C) on the heat resistance and initiation of germination and inactivation by high pressure on Bacillus cereus ATCC 14579 spores was investigated. Spores sporulated at 37 °C were the most heat-resistant. However, spores sporulated at 20 °C were more resistant to the initiation of germination and inactivation by high pressure. Spores were more sensitive to pressure at higher treatment temperatures. At 25 °C, there was an optimum pressure (250 MPa) for the initiation of germination for the three suspensions; at higher temperatures an increase of pressure up to 690 MPa caused progressively more germination. Resistance to the germinability and inactivation by high pressure of the spore population was distributed heterogeneously. Semilogarithmic curves of the ungerminated and survival fraction of B. cereus spores were concave. The resistant fraction of the spore population was lower at higher treatment temperatures. At 60 °C after 30 s of treatment at 690 MPa almost 5 log cycles of the population of B. cereus sporulated at 20 °C was germinated, and more than 7 log cycles of the population of B. cereus sporulated at 30 and 37 °C. The same treatment inactivated 4, 6 and 7 log cycles of the population of B. cereus sporulated at 20, 30 and 37 °C, respectively.  相似文献   

5.
The germination of spores of Bacillus stearothermophilus was studied in nutrient broth in relation to the water activity ( a w) of the medium, the nature of the a w controlling solutes glycerol, sucrose, KCl, and NaCl, and temperature. Quantitation of germination was based on the change of the phase-bright spore to phase-dark. Activation of spores was by exposure to 100°C/10 min in a medium of the same composition as that used for germination.
Of the four solutes used, sucrose proved most inhibitory to germination, especially in the upper part of the temperature range 38-75°C, glycerol was the most favourable whereas KCl and NaCl, whose effect was almost identical, occupied an intermediate place. The glycerol effect became more pronounced as the a w of the medium decreased towards 0.960, becoming inhibitory thereafter.
The solute effect on spore germination followed a pattern that related to the class of solute, i.e. electrolyte or non-electrolyte, and its cell penetration characteristics.
Solute penetration during heat activation and germination was considered as the major germination factor and was associated with the osmoregulation mechanism within the spore proposed recently as the basis of spore dormancy and resistance.  相似文献   

6.
In this study, we determined the effects of incubation temperature and prior heat treatment on the lag-phase kinetics of individual spores of nonproteolytic Clostridium botulinum Eklund 17B. The times to germination (tgerm), one mature cell (tC1), and two mature cells (tC2) were measured for individual unheated spores incubated at 8, 10, 15, or 22°C and used to calculate the tgerm, the outgrowth time (tC1tgerm), and the first doubling time (tC2tC1). Measurements were also made at 22°C of spores that had previously been heated at 80°C for 20 s. For unheated spores, outgrowth made a greater contribution to the duration and variability of the lag phase than germination. Decreasing incubation temperature affected germination less than outgrowth; thus, the proportion of lag associated with germination was less at lower incubation temperatures. Heat treatment at 80°C for 20 s increased the median germination time of surviving spores 16-fold and greatly increased the variability of spore germination times. The shape of the lag-time (tC1) and outgrowth (tC1tgerm) distributions were the same for unheated spores, but heat treatment altered the shape of the lag-time distribution, so it was no longer homogeneous with the outgrowth distribution. Although heat treatment mainly extended germination, there is also evidence of damage to systems required for outgrowth. However, this damage was quickly repaired and was not evident by the time the cells started to double. The results presented here combined with previous findings show that the stage of lag most affected, and the extent of any effect in terms of duration or variability, differs with both historical treatment and the growth conditions.Clostridium botulinum is a group of four physiologically and phylogenetically distinct anaerobic spore-forming bacteria (known as groups I, II, III, and IV) that produce the highly toxic botulinum neurotoxin (12). The severity of the intoxication, botulism, ensures considerable effort is directed at preventing the growth of this pathogen in food. Nonproteolytic (group II) C. botulinum is one of the two groups most frequently associated with food-borne botulism. It forms heat-resistant spores and can germinate, grow, and produce toxin at 3°C (8); thus, nonproteolytic C. botulinum is a particular concern in mild heat-treated chilled foods (16, 17).Spores formed by pathogens such as C. botulinum are a significant food safety issue since they are able to resist many of the processes, such as cooking, used to kill vegetative cells. Understanding the transformation from a dormant spore to active vegetative cells is an important part of quantifying the risk associated with such organisms. Considerable effort has been targeted at measuring and relating the kinetic responses of populations of C. botulinum to environmental conditions and such data have been used to create predictive models, for example, ComBase (www.combase.cc). Such approaches have made a considerable contribution to ensuring food safety but problems with using population based predictions may arise when an initial inoculum is very small or additional information beyond point values is required. Spores typically contaminate foods at low concentrations so that growth of C. botulinum, when it occurs, is likely to initiate from just a few spores. In these circumstances the distribution of times to growth in packs will reflect the heterogeneity of times to growth from the contaminating individual spores. There is an intrinsic variability between individual spores within a population, and the relationship between population lag and individual lag is complex. Consequently, individual lag times cannot be predicted from population measurements (3). Knowledge of the underlying distribution would allow greater refinement of risk assessments.The lag period between a spore being exposed to conditions suitable for growth and the start of exponential growth will reflect the combined times of germination, emergence, elongation, and first cell division. Currently, very little is known about the variability and duration of these stages and any relationships between them. Measuring the kinetics of spore germination is usually achieved by measuring a population to identify time to percent completion. Such germination curves represent the summation of responses by individual spores. Some authors have measured the biovariability associated with individual spores, but most studies have examined only germination (4-7, 11, 22) and not subsequent outgrowth. More recently, we have used phase-contrast microscopy and image analysis to follow individual spores of nonproteolytic C. botulinum from dormancy, through germination and emergence, to cell division (21, 23). These experiments showed there is very little, or no, relationship between the time spent in each stage by individual spores. We have now extended this work to determine distributions of times for different stages in lag phase as affected by heat treatment and incubation temperature.  相似文献   

7.
Knowledge of the distribution of growth times from individual spores and quantification of this biovariability are important if predictions of growth in food are to be improved, particularly when, as for Clostridium botulinum, growth is likely to initiate from low numbers of spores. In this study we made a novel attempt to determine the distributions of times associated with the various stages of germination and subsequent growth from spores and the relationships between these stages. The time to germination (tgerm), time to emergence (temerg), and times to reach the lengths of one (tC1) and two (tC2) mature cells were quantified for individual spores of nonproteolytic C. botulinum Eklund 17B using phase-contrast microscopy and image analysis. The times to detection for wells inoculated with individual spores were recorded using a Bioscreen C automated turbidity reader and were compatible with the data obtained microscopically. The distributions of times to events during germination and subsequent growth showed considerable variability, and all stages contributed to the overall variability in the lag time. The times for germination (tgerm), emergence (temergtgerm), cell maturation (tC1temerg), and doubling (tC2tC1) were not found to be correlated. Consequently, it was not possible to predict the total duration of the lag phase from information for just one of the stages, such as germination. As the variability in postgermination stages is relatively large, the first spore to germinate will not necessarily be the first spore to produce actively dividing cells and start neurotoxin production. This information can make a substantial contribution to improved predictive modeling and better quantitative microbiological risk assessment.  相似文献   

8.
In this study we determined the effect of NaCl concentration during sporulation (0 or 3.0% [wt/vol] added NaCl) and subsequent growth (0 or 2.0% [wt/vol] added NaCl) on the distributions of times associated with various stages of the lag phase of individual spores of nonproteolytic Clostridium botulinum strain Eklund 17B. The effects of NaCl on the probability of germination and the probability of subsequent growth were also determined. Spore populations exhibited considerable heterogeneity at all stages of lag phase for each condition tested. Germination time did not correlate strongly with the times for later stages in the lag phase, such as outgrowth and doubling time. Addition of NaCl to either the sporulation or growth media increased the mean times for, and variability of, all the measured stages of the lag phase (germination, emergence, time to one mature cell, and time to first doubling). There was a synergistic interaction between the inhibitory effects of NaCl in the sporulation medium and the inhibitory effects of NaCl in the subsequent growth medium on the total lag time and each of its stages. Addition of NaCl to either the sporulation medium or the growth medium reduced both the probability of germination and the probability of a germinated spore developing into a mature cell, but the interaction was not synergistic. Spores formed in medium with added NaCl were not better adapted to subsequent growth in suboptimal osmotic conditions than spores formed in medium with no added NaCl were. Knowledge of the distribution of lag times for individual spores and quantification of the biovariability within lag time distributions may provide insight into the underlying mechanisms and can be used to improve predictions of growth in food and to refine risk assessments.  相似文献   

9.
In this study we determined the effect of NaCl concentration during sporulation (0 or 3.0% [wt/vol] added NaCl) and subsequent growth (0 or 2.0% [wt/vol] added NaCl) on the distributions of times associated with various stages of the lag phase of individual spores of nonproteolytic Clostridium botulinum strain Eklund 17B. The effects of NaCl on the probability of germination and the probability of subsequent growth were also determined. Spore populations exhibited considerable heterogeneity at all stages of lag phase for each condition tested. Germination time did not correlate strongly with the times for later stages in the lag phase, such as outgrowth and doubling time. Addition of NaCl to either the sporulation or growth media increased the mean times for, and variability of, all the measured stages of the lag phase (germination, emergence, time to one mature cell, and time to first doubling). There was a synergistic interaction between the inhibitory effects of NaCl in the sporulation medium and the inhibitory effects of NaCl in the subsequent growth medium on the total lag time and each of its stages. Addition of NaCl to either the sporulation medium or the growth medium reduced both the probability of germination and the probability of a germinated spore developing into a mature cell, but the interaction was not synergistic. Spores formed in medium with added NaCl were not better adapted to subsequent growth in suboptimal osmotic conditions than spores formed in medium with no added NaCl were. Knowledge of the distribution of lag times for individual spores and quantification of the biovariability within lag time distributions may provide insight into the underlying mechanisms and can be used to improve predictions of growth in food and to refine risk assessments.  相似文献   

10.
Abstract: Spore germination of Culcita macrocarpa C. Presl and Woodwardia radicans (L.) Sm. from nine populations at the northern limit of their distribution, in the northwest Iberian Peninsula, was investigated. In a first experiment, population type and temperature (10, 15, 20, and 25 °C) were both found to affect germination percentage and germination time significantly in both species. There were also significant interactions between the two factors with respect to the percentage germination of C. macrocarpa and the germination time of W. radicans. In C. macrocarpa there was an outstanding increase in germination time at 15 °C and, above all, at 10 °C, whereas in W. radicans the most remarkable result was the existence of two populations with especially low germination percentages. In a second experiment, germination of 20 individuals from each population of W. radicans was compared with similar inter-population differentiation. Although its variability possibly has a genetic basis, these species are able to germinate successfully, and it seems probable that the season in which it occurs depends more on spore release than on thermal conditions in the populations. The effect of temperature on germination in both species does not explain their coastal distribution. Temperature is probably more important in limiting other stages of the life cycle.  相似文献   

11.
A study was conducted to quantify the ability of entrapped, monoxenically produced spores of an arbuscular mycorrhizal fungus to germinate and reproduce the fungal life cycle after cryopreservation. No germination was obtained after incubation of entrapped spores in glycerol and mannitol and subsequent cryopreservation at −70 °C, regardless of the concentration of cryoprotectants and duration of incubation. Incubation for 1 d in 0.5 M sucrose, and for 1 and 2 d in 0.5 M trehalose, led to spore germination after cryopreservation at −70 °C. Lower cryopreservation temperatures were tested with entrapped spores incubated for 1 d in 0.5 M trehalose. The highest germination rate, estimated by the percentage of potentially infective beads (%PIB), was obtained at −100 °C. A %PIB of 95% (water agar medium) to 100% (Strullu–Romand medium) was obtained at this temperature. Thereafter, %PIB rapidly decreased at −140 and −180 °C. Heavy sporulation and high internal root colonization were obtained after re-association of the entrapped spores, incubated for 1 d in 0.5 M trehalose and subsequently cryopreserved at −100 °C, with transformed carrot roots. This demonstrates the ability of entrapped spores to reproduce the fungal life cycle following cold treatment.  相似文献   

12.
The mechanism(s) of chemical manipulation of the heat resistance of Clostridium perfringens type A spores was studied. Spores were converted to various ionic forms by base-exchange technique and these spores were heated at 95°C. Of the four ionic forms, i.e. Ca2+, Na+, H+ and native, only hydrogen spores appeared to have been rapidly inactivated at this temperature, when survivors were enumerated on the ordinary plating medium. However, the recovery of the survivors was improved when the plating medium was supplemented with lysozyme, and more dramatically when the heated spores were pretreated with alkali followed by plating in the medium containing lysozyme. In contrast to crucial damage to germination, in particular to spore lytic enzyme, no appreciable amount of DPA was released from the heat-damaged H-spores. These results suggest that a germination system is involved in the thermal inactivation of the ionic forms of spores, and that exchangeable cation load plays a role in protection from thermal damage of the germination system within the spore. An enhancement of thermal stability of spore lytic enzyme in the presence of a high concentration of NaCl was consistent with the hypothesis.  相似文献   

13.
Microsporum gypseum macroconidia germinated at 37 C possessed from one to eight nuclei per germinated spore compartment. The distribution of nuclei per spore compartment was the result of a random packaging of nuclei from the available nuclear population. Partial inhibition of germination by incubation at 25 C or at 37 C in the presence of 10(-4)m phenyl methyl sulfonyl-fluoride resulted in an enrichment of germinated spores containing high numbers of nuclei per compartment. The selection for higher nuclear numbers was statistically significant. Compartments possessing high numbers of nuclei appeared to be precommitted to spore germination since they were not sensitive to germination inhibition. The effect of incubation temperature variation on spore germination is discussed with respect to the organism's natural environment.  相似文献   

14.
The onset of macromolecular synthesis in activated spores of Bacillus cereus occurs under conditions in which the amino acids and nucleotides to be used for building proteins and nucleic acids must be derived only from stored pools and turnover of macromolecules of the spore. Upon addition of the factors required to initiate germination, (14)C-uracil is incorporated with a lag of 30 to 60 sec; (14)C-amino acids, with a lag of 3 to 4 min. The progression of protein synthesis during germination has been studied, and the results suggest three phases of development of the protein synthetic pattern of these germinating spores. The initial synthesis which occurs during the early part of germination is limited to only a few proteins. When the initiated spores are put in a medium containing a complete set of growth requirements and outgrowth ensues, the cells synthesize a large number of different proteins so that the distribution of radioactivity into different fractions appears to be a continuous function. At a later time during outgrowth, the distribution of synthetic rates among the different proteins becomes more representative of that found during vegetative growth.  相似文献   

15.
Summary Germination ofBacillus subtilis spores was initiated by L-Ala and competitively inhibited by D-Ala, suggesting the presence of an alanine receptor. The spores showed alanine racemase activity in the spore coat. To investigate the role of alanine racemase (L D) on germination, net racemase activity was determined using diphenylamine as a germination inhibitor and germination was measured using D-penicillamine as a racemase inhibitor. Apparent affinity of L-Ala to the germinant receptor was more than 1000 times higher than that to the racemase. Germination increased in the presence of D-penicillamine, when the concentration of L-Ala was low and that of spores was high. Racemase activity was optimal at 65°C at pH 9.0 and germination at 43°C at pH 7.2. Under unfavorable growth conditions such as high population of spores in limited nutrients, high temperature and high pH, spore alanine racemase converted the germinant actively to the inhibitor and this conversion may regulate germination for survival of the population.  相似文献   

16.
AIMS: To elucidate the factors that determine the rate of germination of Bacillus subtilis spores with very high pressure (VHP) and the mechanism of VHP germination. METHODS AND RESULTS: Spores of B. subtilis were germinated rapidly with a VHP of 500 MPa at 50 degrees C. This VHP germination did not require the spore's nutrient-germinant receptors, as found previously, and did not require diacylglycerylation of membrane proteins. However, the spore's pool of dipicolinic acid (DPA) was essential. Either of the two redundant enzymes that degrade the spore's peptidoglycan cortex, and thus allow completion of spore germination, was essential for completion of VHP germination. However, neither of these enzymes was needed for DPA release triggered by VHP treatment. Completion of spore germination as well as DPA release with VHP had an optimum temperature of approx. 60 degrees C, in contrast to an optimum temperature of 40 degrees C for germination with the moderately high pressure of 150 MPa. The rate of spore germination by VHP decreased approx. fourfold when the sporulation temperature increased from 23 degrees C to 44 degrees C, and decreased twofold when 1 mol l(-1) salt was present in sporulation. However, large variations in levels of unsaturated fatty acids in the spore's inner membranes did not affect rates of VHP germination. Complete germination of spores by VHP was not inhibited significantly by killing of spores with several oxidizing agents, and was not inhibited by ethanol, octanol or o-chlorophenol at concentrations that abolish nutrient germination. Completion of spore germination by VHP was also inhibited by Hg(2+), but this ion did not inhibit DPA release caused by VHP. In contrast, dodecylamine, a surfactant that can trigger spore germination, strongly inhibited DPA release caused by VHP treatment. CONCLUSIONS: VHP does not cause spore germination by acting upon the spore's nutrient-germinant receptors, but by directly causing DPA release. This DPA release then leads to subsequent completion of germination. VHP likely acts on the spore's inner membrane to cause DPA release, targeting either a membrane protein or the membrane itself. However, the precise identity of this target is not yet clear. SIGNIFICANCE AND IMPACT OF THE STUDY: There is significant interest in the use of VHP to eliminate or reduce levels of bacterial spores in foods. As at least partial spore germination by pressure is almost certainly essential for subsequent spore killing, knowledge of factors involved and the mechanism of VHP germination are crucial to the understanding of spore killing by VHP. This work provides new insight into factors that can affect the rate of B. subtilis spore germination by VHP, and into the mechanism of VHP germination itself.  相似文献   

17.
Phase intensity changes of individual germinating spores of Bacillus subtilis were determined by phase-contrast light microscopy and image analysis. Two germination phases were investigated. The length of the time period before a change in phase brightness was evident and the duration of the phase intensity change until a constant greylevel was maintained. The incubation temperature (37 and 20 °C) and heat activation (10 min at 65 °C) had a distinct effect on both phases. At 37 °C, spores of B. subtilis 604 started to show a decrease in brightness in l -alanine buffer after 3–39 min and needed 10–39 min to complete the phase change. At 20 °C, lag times of 10–100 min were observed and the spores needed 30–100 min to reach a constant greylevel. Heat activation and subsequently exposure to l -alanine buffer at 20 °C reduced the lag phase to 6–90 min and the phase change was finished after 30–60 min. Our results indicate enzymatic involvement before and during the phase intensity change of germinating spores.  相似文献   

18.
Aims:  To determine the germination and inactivation of Bacillus cereus spores lacking various germination proteins using moderately high pressure (MHP) and heat.
Methods:  The inactivation and germination of wild-type B. cereus spores in buffer by MHP (150 MPa) at various temperatures, as well as the MHP inactivation and germination of B. cereus spores lacking individual germinant receptors and monovalent cation antiporters, was determined.
Results:  Loss of individual germinant receptors had no large effects on spore inactivation or germination, although germination of receptor-deficient spores was generally slightly decreased. Loss of the GerN in particular the GerN and GerT antiporters also decreased spore germination by MHP, especially at 40 and 50°C.
Conclusions:  Both inactivation and germination of B. cereus spores by MHP increased with rise of temperature; however, mutant strains lacking individual germinant receptor had similar levels of germination as compared to wild-type spores. To evaluate the role of germinant receptors in MHP, a strain lacking a large number of germinant receptors is needed.
Significance and Impact of the Study:  The results of this work may lead to a better understanding of how MHP causes germination of spores of B. cereus .  相似文献   

19.
Spores from four Frankia strains were isolated and purified to homogeneity. The purified spores were biochemically and physiologically characterized and compared to vegetative cells. Frankia spores exhibited low levels of endogenous respiration that were at least ten-fold lower than the endogenous respiration rate of vegetative cells. The macromolecular content of purified spores and vegetative cells differed. One striking difference among the Frankia spores was their total DNA content. From DAPI staining experiments, only 9% of strain ACN1AG spore population contained DNA. With strains DC12 and EuI1c, 92% and 67% of their spore population contained DNA. The efficiency of spore germination was correlated to the percentage of the spore population containing DNA. These results suggest that the majority of strain ACN1AG spores were immature or nonviable. The presence of a solidifying agent inhibited the initial stages of spore germination, but had no effect once the process had been initiated. The optimal incubation temperature for spore germination was 25°C and 30°C for strains DC12 and EuI1c, respectively. A mild heat shock increased the efficiency of spore germination, while root extracts also stimulated spore germination. These results suggest that strains DC12 and EuI1c may be suitable strains for further germination and genetic studies.  相似文献   

20.
To elucidate the effect of cold storage on spore dormancy in the arbuscular mycorrhizal (AM) fungus Glomus intraradices, spores were cold stratified at 4 degrees C, for either 0, 3, 7, 14, 90 or 120 days, prior to germination tests at 25 degrees C. The results showed that cold stratification longer than 14 days significantly increased spore germination. Moreover, the longer cold storage periods clearly reduced spore mortality from 90% to 50% and considerably altered the hyphal growth pattern. Long polarized hyphae were only observed after cold stratification periods longer than 14 days, involving consequences for root infectivity. The results clearly show that environmental factors, e.g., coldness, can affect the physiology of AM fungal spores.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号