首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The 1C6 monoclonal antibody to the hyaluronic acid-binding region weakly stained a 65-kD component in immunoblots of the chondroitin sulfate proteoglycans of brain, and the 8A4 monoclonal antibody, which recognizes two epitopes in the polypeptide portion of link protein, produced strong staining of a 45-kD component present in the brain proteoglycans. These antibodies were utilized to examine the localization of hyaluronic acid-binding region and link protein epitopes in rat cerebellum. Like the chondroitin sulfate proteoglycans themselves and hyaluronic acid, hyaluronic acid-binding region and link protein immunoreactivity changed from a predominantly extracellular to an intracellular (cytoplasmic and intra-axonal) location during the first postnatal month of brain development. The cell types which showed staining of hyaluronic acid-binding region and link protein, such as granule cells and their axons (the parallel fibers), astrocytes, and certain myelinated fibers, were generally the same as those previously found to contain chondroitin sulfate proteoglycans and hyaluronic acid. Prominent staining of some cell nuclei was also observed. In agreement with earlier conclusions concerning the localization of hyaluronic acid and chondroitin sulfate proteoglycans, there was no intracellular staining of Purkinje cells or nerve endings or staining of certain other structures, such as oligodendroglia and synaptic vesicles. The similar localizations and coordinate developmental changes of chondroitin sulfate proteoglycans, hyaluronic acid, hyaluronic acid-binding region, and link protein add further support to previous evidence for the unusual cytoplasmic localization of these proteoglycans in mature brain. Our results also suggest that much of the chondroitin sulfate proteoglycan of brain may exist in the form of aggregates with hyaluronic acid.  相似文献   

2.
A panel of monoclonal antibodies prepared to the chondroitin sulfate proteoglycans of rat brain was used for their immunocytochemical localization and isolation of individual proteoglycan species by immunoaffinity chromatography. One of these proteoglycans (designated 1D1) consists of a major component with an average molecular size of 300 kDa in 7-day brain, containing a 245-kDa core glycoprotein and an average of three 22-kDa chondroitin sulfate chains. A 1D1 proteoglycan of approximately 180 kDa with a 150-kDa core glycoprotein is also present at 7 days, and by 2-3 weeks postnatal this becomes the major species, containing a single 32-kDa chondroitin 4-sulfate chain. The concentration of 1D1 decreases during development, from 20% of the total chondroitin sulfate proteoglycan protein (0.1 mg/g brain) at 7 days postnatal to 6% in adult brain. A 45-kDa protein which is recognized by the 8A4 monoclonal antibody to rat chondrosarcoma link protein copurifies with the 1D1 proteoglycan, which aggregates to a significant extent with hyaluronic acid. A chondroitin/keratan sulfate proteoglycan (designated 3H1) with a size of approximately 500 kDa was isolated from rat brain using monoclonal antibodies to the keratan sulfate chains. The core glycoprotein obtained after treatment of the 3H1 proteoglycan with chondroitinase ABC and endo-beta-galactosidase decreases in size from approximately 360 kDa at 7 days to approximately 280 kDa in adult brain. In 7-day brain, the proteoglycan contains three to five 25-kDa chondroitin 4-sulfate chains and three to six 8.4-kDa keratan sulfate chains, whereas the adult brain proteoglycan contains two to four chondroitin 4-sulfate chains and eight to nine keratan sulfate chains, with an average size of 10 kDa. The concentration of 3H1 increases during development from 3% of the total soluble proteoglycan protein at 7 days to 11% in adult brain, and there is a developmental decrease in the branching and/or sulfation of the keratan sulfate chains. A third monoclonal antibody (3F8) was used to isolate a approximately 500-kDa chondroitin sulfate proteoglycan comprising a 400-kDa core glycoprotein and an average of four 28-kDa chondroitin sulfate chains. In the 1D1 and 3F8 proteoglycans of 7-day brain, 20 and 33%, respectively, of the chondroitin sulfate is 6-sulfated, whereas chondroitin 4-sulfate accounts for greater than 96% of the glycosaminoglycan chains in the adult brain proteoglycans.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

3.
After chondroitinase digestion of bovine nasal and tracheal cartilage proteoglycans, subsequent treatment with trypsin or trypsin followed by chymotrypsin yielded two major types of polypeptide-glycosaminoglycan fragments which could be separated by Sepharose 6B chromatography. One fragment, located close to the hyaluronic acid-binding region of the protein core, had a high relative keratan sulfate content. This fragment contained about 60% of the total keratan sulfate, but less than 10% of the total chondroitin sulfate present in the original proteoglycan preparation. The weight average molecular weight of the keratan sulfate-enriched fragment was 122,000, as determined by sedimentation equilibrium centrifugation. The chemical and physical data indicate that this fragment contains an average of 10 to 15 keratan sulfate chains, if the average molecular weight of individual chains is assumed to be about 8,000, and about 5 chondroitin sulfate chains attached to a peptide of about 20,000 daltons. The other population of fragments was derived from the other end of the proteoglycan molecule, the chondroitin sulfate-enriched region, and contained mainly chondroitin sulfate chains. About 90% of the total chondroitin sulfate, but only 20 to 30% of the total keratan sulfate was recovered in these fragments. On the average, approximately 5 chondroitin sulfate chains and 1 keratan sulfate chain could be linked to the same peptide. Another 10 to 20% of the total keratan sulfate, originally found in or near the hyaluronic acid-binding region, was not separated from the chondroitin sulfate-enriched fragments. Hydroxylamine could be used to liberate a large molecular size, chondroitin sulfate-enriched fragment (Kav 0.54 on Sepharose 2B) from the proteoglycan aggregates. The remainder of the protein core, containing the keratan sulfate-enriched region, was bound to hyaluronic acid with the link proteins and recovered in the void volume on the Sepharose 2B column.  相似文献   

4.
5.
The hyaluronic acid-binding region was prepared by trypsin digestion of chondroitin sulfate proteoglycan aggregate from the Swarm rat chondrosarcoma, and biotinylated in the presence of hyaluronic acid and link protein. After isolation by gel filtration and HPLC in 4 M guanidine HCl, the biotinylated hyaluronic acid-binding region was used, in conjunction with avidin-peroxidase, as a specific probe for the light and electron microscopic localization of hyaluronic acid in developing and mature rat cerebellum. At 1 w postnatal, there is strong staining of extracellular hyaluronic acid in the presumptive white matter, in the internal granule cell layer, and as a dense band at the base of the molecular layer, surrounding the parallel fibers. This staining moves progressively towards the pial surface during the second postnatal week, and extracellular staining remains predominant through postnatal week three. In adult brain, there is no significant extracellular staining of hyaluronic acid, which is most apparent in the granule cell cytoplasm, and intra-axonally in parallel fibers and some myelinated axons. The white matter is also unstained in adult brain, and no staining was seen in Purkinje cell bodies or dendrites at any age. The localization of hyaluronic acid and its developmental changes are very similar to that previously found in immunocytochemical studies of the chondroitin sulfate proteoglycan in nervous tissue (Aquino, D. A., R. U. Margolis, and R. K. Margolis. 1984. J. Cell Biol. 99:1117-1129; Aquino, D. A., R. U. Margolis, and R. K. Margolis. J. Cell Biol. 99:1130-1139), and to recent results from studies using monoclonal antibodies to the hyaluronic acid-binding region and link protein. The presence of brain hyaluronic acid in the form of aggregates with chondroitin sulfate proteoglycans would be consistent with their similar localizations and coordinate developmental changes.  相似文献   

6.
Neuroglycan C (NGC), a brain-specific transmembrane proteoglycan, is thought to bear not only chondroitin sulfate but also N- and O-linked oligosaccharides on its core protein. In this study, we isolated and purified NGC from rat brains at various developmental stages by immunoaffinity column chromatography or by immunoprecipitation, and examined the structural characters of its carbohydrate moiety. The chondroitin sulfate disaccharide composition of NGC at postnatal day 10 was significantly different from those of two secreted chondroitin sulfate proteoglycans, neurocan and phosphacan, purified from the brain at the same developmental stage; higher levels of 4-sulfate unit and E unit, a disulfated disaccharide unit, and a lower level of 6-sulfate unit. The levels of both 6-sulfate and E units decreased with a compensatory increase of 4-sulfate unit with postnatal development of the brain. Lectin-blot analysis of the NGC core glycoprotein prepared by chondroitinase digestion confirmed that NGC actually bore both N- and O-linked carbohydrates, and also revealed that lectin-species reactive with NGC did not always recognize other brain-specific proteoglycans, neurocan and phosphacan, and vice versa, even though they were isolated from the brain at the same stage. The reactivity of NGC with lectins and with the HNK-1 antibody markedly changed as the brain matured. These findings indicate that the structure of the carbohydrate moiety of NGC is developmentally regulated, and differs from those of neurocan and phosphacan. The developmentally-regulated structural change of the carbohydrates on NGC may be partly implicated in the modulation of neuronal cell recognition during brain development.  相似文献   

7.
Neuroglycan C (NGC), a brain-specific transmembrane proteoglycan, is thought to bear not only chondroitin sulfate but also N- and O-linked oligosaccharides on its core protein. In this study, we isolated and purified NGC from rat brains at various developmental stages by immunoaffinity column chromatography or by immunoprecipitation, and examined the structural characters of its carbohydrate moiety. The chondroitin sulfate disaccharide composition of NGC at postnatal day 10 was significantly different from those of two secreted chondroitin sulfate proteoglycans, neurocan and phosphacan, purified from the brain at the same developmental stage; higher levels of 4-sulfate unit and E unit, a disulfated disaccharide unit, and a lower level of 6-sulfate unit. The levels of both 6-sulfate and E units decreased with a compensatory increase of 4-sulfate unit with postnatal development of the brain. Lectin-blot analysis of the NGC core glycoprotein prepared by chondroitinase digestion confirmed that NGC actually bore both N- and O-linked carbohydrates, and also revealed that lectin-species reactive with NGC did not always recognize other brain-specific proteoglycans, neurocan and phosphacan, and vice versa, even though they were isolated from the brain at the same stage. The reactivity of NGC with lectins and with the HNK-1 antibody markedly changed as the brain matured. These findings indicate that the structure of the carbohydrate moiety of NGC is developmentally regulated, and differs from those of neurocan and phosphacan. The developmentally-regulated structural change of the carbohydrates on NGC may be partly implicated in the modulation of neuronal cell recognition during brain development. Published in 2004. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

8.
Proteoglycan monomer (D1) and aggregate (A1) preparations were isolated from 4 M guanidinium chloride extracts of the Swarm rat chondrosarcoma. When EDTA, 6-aminohexanoic acid, and benzamidine were present in the solutions, the D1 preparation contained a single component (SO = 23 S), and the A1 preparation contained 30% monomer (SO = 23 S) and 70 percent aggregate (SO = 111 S). In the absence of EDTA, 6-aminohexanoic acid, and benzamidine, the A1 preparations contained only small proteoglycan fragments, indicating that extensive enzymatic degradation had occurred. The composition of the proteoglycan monomer was different from that of proteoglycan monomer preparations from normal hyaline cartilages in that it did not contain keratan sulfate and chondroitin 6-sulfate; only chondroitin 4-sulfate was found. The A1 preparation from the chondrosarcoma contained only one link protein, which was like the smaller (molecular weight of 40,000) of the two link proteins present in A1 preparations from bovine nasal cartilage. When the A1 preparation from the chondrosarcoma was treated with chondroitinase ABC and trypsin and the digest was chromatographed on Sepharose 2B, a complex was isolated which contained the link protein and the segments of the protein core from the hyaluronic acid-binding region of the proteoglycan molecules.  相似文献   

9.
Antibodies specifically reacting with the link proteins, the hyaluronic acid-binding region and chondroitin sulphate-peptides were used to design specific radioimmunoassay procedures. The sensitivity of the method used for the link protein was about 20 ng/ml, and the other two components could be determined at concentrations of about 2 ng/ml. The radioimmunoassay procedures were tested by using proteoglycan subfractions or fragments thereof. The procedures used to quantify link protein and hyaluronic acid-binding region showed no cross-interference. Fragments of trypsin-digested proteoglycan monomers still reacted in the radioimmunoassay for hyaluronic acid-binding region. Subfractions of proteoglycan monomers separated according to size had a gradually higher relative content of the hyaluronic acid-binding region compared with both chondroitin sulphate-peptides and uronic acid, when the molecules were smaller. The proteoglycans therefore may contain a variably large chondroitin sulphate-rich region, which has a constant substitution with polysaccharide side chains.  相似文献   

10.
Neurocan is one of the major chondroitin sulfate proteoglycans of perinatal rodent brain. HEK-293 cells producing neurocan recombinantly show changes in their behavior. The expression of full-length neurocan led to a detachment of the secreting cells and the formation of floating spheroids. This occurred in the continuous presence of 10% fetal bovine serum in the culture medium. Cells secreting fragments of neurocan-containing chondroitin sulfate chains and the C-terminal domain of the molecule showed a similar behavior, whereas cells expressing fragments of neurocan-containing chondroitin sulfate chains but lacking parts of the C-terminal domain did not show spheroid formation. Cells secreting the hyaluronan-binding N-terminal domain of neurocan showed an enhanced adhesiveness. When untransfected HEK-293 cells were plated on a surface conditioned by spheroid-forming cells, they also formed spheroids. This effect could be abolished by chondroitinase treatment of the conditioned surface. The observations indicate that the ability of the chondroitin sulfate proteoglycan neurocan to modulate the adhesive character of extracellular matrices is dependent on the structural integrity of the C-terminal domain of the core protein.  相似文献   

11.
Monoclonal antibodies have been raised against determinants present in cartilage proteoglycan. Characterization of the specificity of these antibodies indicated that they recognize determinants present in the keratan sulfate glycosaminoglycan chain and on chondroitin sulfate oligosaccharide stubs attached to the proteoglycan core protein after chondroitinase digestion of the proteoglycan (i.e., delta-unsaturated 4- and 6-sulfated and unsulfated chondroitin sulfate on the proteoglycan core). The antibody recognizing keratan sulfate has been used to demonstrate the presence of a keratan sulfate-rich proteoglycan subpopulation that increases with increasing age of animal compared with chondroitin sulfate-rich proteoglycans. Monoclonal antibodies recognizing determinants on chondroitinase-treated proteoglycan have been used in immunohistochemical localization studies determining the differential distribution of 4- and 6-sulfated and unsulfated proteoglycans in tissue sections of cartilage and other noncartilaginous tissues. Digestion with chondroitinase ABC or ACII can be used to differentiate between chondroitin sulfate and dermatan sulfate proteoglycan in different connective tissues. In addition, the presence of a 6-sulfated chondroitin sulfate proteoglycan that is associated with membranes surrounding nerve and muscle fiber bundles is described. Monoclonal antibodies were also raised against the link protein(s) of cartilage proteoglycan aggregate. They have been used in peptide map analyses of link protein and in demonstrating the presence of a high-mannose oligosaccharide chain of the link proteins. The presence of high-mannose oligosaccharide structures on the link protein(s) accounts for the microheterogeneity of the link proteins (link proteins 1, 2, or 3) that is observed on sodium dodecyl sulfate-polyacrylamide gels.  相似文献   

12.
A peptide with hyaluronic acid-binding properties was isolated from trypsin digests of bovine articular cartilage proteoglycan aggregate. This peptide originated from the N-terminus of the proteoglycan core protein, retained its function of forming complexes with hyaluronate and link protein and contained at least one keratan sulfate chain. Amino acid sequence data demonstrated that the first six amino acid residues of the N-terminus of bovine articular cartilage proteoglycan core protein differed from the same region from the rat chondrosarcoma proteoglycan. Further sequence data indicate areas of considerable sequence homology in the hyaluronic acid-binding regions of proteoglycans from the two species.  相似文献   

13.
A ternary complex of hyaluronic acid-binding region and link protein bound to hyaluronic acid was isolated from limit clostripain digests of proteoglycan aggregates isolated from the Swarm rat chondrosarcoma. Under these conditions, the hyaluronic acid-binding region has a molecular weight of ? 65,000 (HA-BR65). N-terminal amino acids in the complex were selectively l4C-carbamylated. The resulting derivatized HA-BR65 was isolated, and tryptic peptide maps were prepared and developed on two-dimensional TLC sheets. A single, labeled peptide was obtained which gave a Mr by ? 8,000 by SDS-PAGE. Chymotrypsin digestion of the ternary complex reduced the molecular weight of HA-BR65 to a polypeptide of ? 55,000 (HA-BR55) which still retains the same N-terminal tryptic peptide. Partial digestion of proteoglycan aggregates with clostripain generated a series of larger intermediates with the hyaluronic acid-binding region. Direct SDS-PAGE analysis revealed one major intermediate with Mr ? 109,000 (HA-BR109) as well as HA-BR65. After chondroitinase digestion, two additional prominent intermediates were observed on a SDS-PAGE gel at Mr ? 120,000 (HA-BR120) and ? 140,000 (HA-BR140). All the intermediates were recognized by a monoclonal antibody specific for the hyaluronic acid-binding region, and all of them contained the same N-terminal tryptic peptide. The results indicate that the N terminus of the core protein is at the hyaluronic acid-binding end of the proteoglycan and that the chondroitin sulfate chains are first present on the core protein in a region between 109,000 and 120,000 molecular weight away from the N terminus.  相似文献   

14.
Monoclonal antibodies produced against chondroitinase-treated human adult cartilage proteoglycans were selected for their ability to recognize epitopes on native proteoglycans. Binding analyses revealed that four of these monoclonal antibodies (BCD-4, BCD-7, EFG-4 and KPC-190) each recognized a different epitope on the same proteoglycan molecule which represents a subpopulation of a high buoyant density (D1) fraction of human articular cartilage proteoglycans (10, 30, 50 and 60% in fetal-newborn, 1.5 years old, 15 years old and 52-56 years old cartilages, respectively). Analysis of epitope specificities revealed that BCD-7 and EFG-4 monoclonal antibodies recognized epitopes on proteoglycan monomer which are associated with the protein structure in that they are sensitive to cleavage by Pronase, papain and alkali treatment and do not include keratan sulphate, chondroitin sulphate or oligosaccharides. The BCD-4 and KPC-190 epitopes also proved to be sensitive to Pronase or papain digestion or to alkali treatment, but keratanase or endo-beta-galactosidase also reduced the immunoreactivity of these epitopes. These observations indicate that the BCD-4 and KPC-190 epitopes represent peptides substituted with keratan sulphate or keratan sulphate-like structures. The BCD-4 epitope is, however, absent from a keratan sulphate-rich fragment of human adult proteoglycan, while the other three epitopes were detected in this fragment. None of these four epitopes were detected in the link proteins of human cartilage, in the hyaluronic acid-binding region of human newborn cartilage proteoglycan, in Swarm rat chondrosarcoma proteoglycan, in chicken limb bud proteoglycan monomer and in the small dermatan sulphate-proteoglycan of bovine costal cartilage. EFG-4 and KPC-190 epitopes were not detected in human fetal cartilage proteoglycans, although fetal molecules contained trace amounts of epitopes reactive with BCD-4 and BCD-7 antibodies.  相似文献   

15.
The rotary-shadowing technique for molecular electron microscopy was used to study cartilage proteoglycan structure. The high resolution of the method allowed demonstration of two distinct globular domains as well as a more strand-like portion in the core protein of large aggregating proteoglycans. Studies of proteoglycan aggregates and fragments showed that the globular domains represent the part of the proteoglycans that binds to the hyaluronic acid, i.e. the hyaluronic acid-binding region juxtapositioned to the keratan sulphate-attachment region. The strand-like portion represents the chondroitin sulphate-attachment region. Low-Mr proteoglycans from cartilage could be seen as a globule connected to one or two side-chain filaments of chondroitin sulphate.  相似文献   

16.
Antibodies have been made in rabbits against bovine corneal keratan sulfate proteoglycan. Antisera were titered by their ability to agglutinate sheep red blood cells that had been coated with the proteoglycan. Immune antisera, but not preimmune sera, agglutinate coated cells. Uncoated cells are not agglutinated by either serum. Immune agglutination is inhibited by prior incubation of antiserum with the intact corneal proteoglycan fraction or with 2-mercaptoethanol. Immune agglutination is also sharply reduced by the glycosaminoglycans, keratan sulfate-I (corneal type), and keratan sulfate-II (cartilage type). Desulfated keratan sulfate-I is somewhat less effective as an inhibitor than keratan sulfate-I. In contrast, chondroitin 4- and 6-sulfates, heparin, and hyaluronic acid do not interfere with immune agglutination. Analysis by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, followed by electroblot transfer of the proteins to nitrocellulose paper, incubation with antisera, and reaction with 125I-protein A suggest that the proteoglycan fraction contains high molecular weight antigenic components (Mr = approximately 300,000) whose mobility is sharply decreased by incubation with keratanase to that corresponding to molecular weights of approximately 55,000 and 40,000. No antigenic component appears sensitive to reduction by 2-mercaptoethanol. Chondroitinase ABC does not affect the mobility of proteins in the proteoglycan fraction. These results suggest that antibodies against corneal keratan sulfate proteoglycan may include some that react with the keratan sulfate chains, as well as those directed against the core protein. Keratan sulfate core proteins of two molecular weights may be present.  相似文献   

17.
The core protein of high buoyant density proteoglycans synthesized by chondrocytes in stage 24 chick limb bud mesenchymal cell cultures was cleaved with cyanogen bromide to produce 17 resolvable peptides on sodium dodecyl sulfate-polyacrylamide slab gels. Of these peptides, 10 appear to originate from the chondroitin sulfate-rich region, 2 appear to be derived from the keratan sulfate-rich region, and 5 seem to be derived from the hyaluronic acid-binding region. The peptides from the chondroitin sulfate-rich region are almost all large (200 to 64 kDa). In contrast, the peptides from the keratan sulfate-rich and hyaluronic acid-binding regions are relatively small (47 to 12 kDa). One peptide from the hyaluronic acid-binding region appears to contain mannose-rich N-linked oligosaccharides as inferred from its observed binding by concanavalin A. A different hyaluronic acid-binding region peptide and one of the keratan sulfate-rich peptides were shown to contain disulfide bonds and therefore may be involved in contributing to the tertiary structure of the hyaluronic acid-binding region. Based on these observations, a map of the chick chondrocyte proteoglycan core protein has been constructed.  相似文献   

18.
The precursor protein to the chick corneal keratan sulfate proteoglycan was identified by immunoprecipitation with antiserum to its core protein from lysates of [35S]methionine-pulsed corneas and corneal fibroblasts in cell culture. Antiserum to the keratan sulfate proteoglycan immunoprecipitated a doublet of Mr 52,000 and 50,000 and minor amounts of a Mr 40,000 protein from pulsed corneas. Pulse-chase experiments, which permitted the conversion of the precursor proteins to proteoglycans and digestion of the glycosaminoglycans on immunoprecipitated proteoglycans with keratanase or chondroitinase ABC, showed that the Mr 52,000-50,000 doublet was converted to a keratan sulfate proteoglycan and the Mr 40,000 protein was converted to a chondroitin sulfate proteoglycan. Chick corneal fibroblasts in cell culture primarily produced the smaller (Mr50,000) precursor protein, and in the presence of tunicamycin the precursor protein size was reduced to Mr35,000, which indicates that the core protein contains approximately five N-linked oligosaccharides. Pulse-chase experiments with corneal fibroblasts in culture showed that the precursor protein was processed and secreted into the medium. However, its sensitivity to endo-beta-galactosidase and resistance to keratanase indicate that the precursor protein was converted to a glycoprotein with large oligosaccharides and not to a proteoglycan. This suggests that, although the precursor protein for the proteoglycan is produced in cultured corneal fibroblasts, the sulfation enzymes for keratan sulfate may be absent.  相似文献   

19.
After chromatography on Sepharose CL-2B under associative conditions, high-buoyant-density human articular-cartilage proteoglycans were analysed biochemically and by radioimmunoassay with monoclonal antibodies to a core-protein-related epitope and to keratan sulphate. An examination of proteoglycans from individuals of different ages revealed the presence at 1 year of mainly a single polydisperse population containing chondroitin sulphate (uronic acid) and keratan sulphate. From 4 years onwards a smaller keratan sulphate-rich and chondroitin sulphate-deficient population appears in increasing amounts until 15 years. At the same time the larger population shows a progressive decrease in size from 1 year onward. By 23 years and after the proportion of keratan sulphate in the larger chondroitin sulphate-rich proteoglycan increases. Both adult proteoglycan populations are shown immunologically to aggregate with hyaluronic acid, with the smaller showing a greater degree of interaction. The larger population is richer in serine and glycine, and the smaller population contains more glutamic acid/glutamine, alanine, phenylalanine, lysine and arginine; its protein content is also higher. Whether the larger post-natal population represents a different gene product from the single polydisperse population found in the human fetus, which has a different amino acid composition, remains to be established. The smaller population, which represents approximately one-third the mass of the larger population in the adult, may represent a degradation product of the larger population, in which the hyaluronic acid-binding region and keratan sulphate-rich region are conserved.  相似文献   

20.
Antibodies were raised in rabbits by injection of cartilage proteoglycan monomers, isolated hyaluronic acid-binding region, polysaccharide-peptides prepared by trypsin digestion of proteoglycans and link-protein. The rabbits injected with the proteoglycan monomers made antibodies reacting with the intact proteoglycan. The antiserum contained antibodies specific for, and also reacting with, the isolated hyaluronic acid-binding region and the keratan sulphate-rich region. In addition there were probably antibodies reacting with other structures of the proteoglycan monomer. When isolated hyaluronic acid-binding region was used for immunization the antibodies obtained reacted specifically with the hyaluronic acid-binding region. The antibodies obtained from rabbits immunized with the polysaccharide-peptides reacted with the proteoglycan monomers and showed a reaction identical with that of the chondroitin sulphate-peptides isolated after trypsin digestion of proteoglycans. The antibodies prepared with the link-protein as the antigen reacted only with the link-protein and not with any preparation from the proteoglycan monomer. Neither did any of the antisera raised against the proteoglycan monomer or its substructures react with the link-protein. Separately it was shown that the peptide 'maps' prepared from trypsin digests of the link-protein and the hyaluronic acid-binding region were different. Therefore it appears that the link-protein is not structurally related to the proteoglycan or the hyaluronic acid-binding region. Digestion of proteoglycan monomers or isolated hyaluronic acid-binding region with trypsin did not destroy the antigenic sites of the hyaluronic acid-binding region. In contrast trypsin digests of previously reduced and alkylated preparations did not react with the anti-(hyaluronic acid-binding region). The trypsin digests, however, reacted with both the antibodies directed against the chondroitin sulphate-peptides and those against the keratan sulphate-peptides. Trypsin digestion of the link-proteins destroyed the antigenic site and the reactivity with the antibodies. By combining immunoassay of proteoglycan preparations before and after trypsin digestion it is feasible to quantitatively determine its substructures by using the antisera described above.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号