首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Actin accelerates plasmin generation by tissue plasminogen activator.   总被引:2,自引:0,他引:2  
Actin has been found to bind to plasmin's kringle regions, thereby inhibiting its enzymatic activity in a noncompetitive manner. We, therefore, examined its effect upon the conversion of plasminogen to plasmin by tissue plasminogen activator. Actin stimulated plasmin generation from both Glu- and Lys-plasminogen, lowering the Km for activation of Glu-plasminogen into the low micromolar range. Accelerated plasmin generation did not occur in the presence of epsilon-amino caproic acid or if actin was exposed to acetic anhydride, an agent known to acetylate lysine residues. Actin binds to tissue plasminogen activator (t-Pa) (Kd = 0.55 microM), at least partially via lysine-binding sites. Actin's stimulation of plasmin generation from Glu-plasminogen was inhibited by the addition of aprotinin and was restored by the substitution of plasmin-treated actin, indicating the operation of a plasmin-dependent positive feedback mechanism. Native actin binds to Lys-plasminogen, and promotes its conversion to plasmin even in the presence of aprotinin, indicating that plasmin's cleavage of either actin or plasminogen leads to further plasmin generation. Plasmin-treated actin binds Glu-plasminogen and t-PA simultaneously, thereby raising the local concentration of t-PA and plasminogen. Together, but not separately, actin and t-PA prolong the thrombin time of plasma through the generation of plasmin and fibrinogen degradation products. Actin-stimulated plasmin generation may be responsible for some of the changes found in peripheral blood following tissue injury and sepsis.  相似文献   

2.
Plasminogen, the zymogen form of the fibrinolytic enzyme plasmin, is known to undergo plasmin-mediated modification in vitro. The modified form, Lys-plasminogen, is superior to the native Glu-plasminogen in fibrin binding and as a substrate for activation by tissue-type plasminogen activator (t-PA). The present study was undertaken to determine the existence and significance of the Glu- to Lys-plasminogen conversion during t-PA-mediated lysis of plasma clots in vitro. When human plasma was supplemented with exogenous Lys-plasminogen and clotted, a dose-dependent shortening of lysis time was observed. Formation of Lys-plasminogen in situ during fibrinolysis was determined using 131I-Glu-plasminogen-supplemented plasma. By the time of lysis, Lys-plasminogen had accumulated to about 20% of the initial concentration of Glu-plasminogen. Quantitation of activation of both Glu- and Lys-plasminogen as well as the conversion of Glu- to Lys-plasminogen in plasma supplemented with both 131I-Glu-plasminogen and 125I-Lys-plasminogen was accomplished by determining the flux of the isotopically labeled species along three pathways: Glu-plasminogen-->Glu-plasmin, Glu-plasminogen-->Lys-plasminogen, and Lys-plasminogen-->Lys-plasmin. After a brief lag, the Glu-plasminogen activation rate was constant until lysis was achieved, at which point activation ceased. The Lys-plasminogen activation rate also was essentially constant until lysis but was not characterized by a lag phase. The rate of conversion of Glu- to Lys-plasminogen was nonlinear and correlated directly with the rate of fibrinolysis. By the time lysis had occurred, Glu-plasminogen consumption had been distributed equally between direct activation to plasmin and conversion to Lys-plasminogen, and 45% of the plasmin which had been formed was derived from Lys-plasminogen. These results demonstrate both the formation and the subsequent activation of Lys-plasminogen during fibrinolysis. As a result of improved fibrin binding and activation of Lys-plasminogen compared to Glu-plasminogen, the formation of Lys-plasminogen within a clot constitutes a positive feedback mechanism that can further stimulate the activation of plasminogen by t-PA as fibrinolysis progresses.  相似文献   

3.
Kringles K1-3, K4 and K5 are studied for their effect on tissue plasminogen activator-induced fibrin clot lysis in the presence of Glu- and Lys-plasminogen. It is established that kringles K4 and K5 inhibit fibrinolysis of Glu-plasminogen, and K1-3--that of Lys-plasminogen. The role of plasminogen molecule kringles in the plasminogen interaction with fibrin polymer is discussed.  相似文献   

4.
The ability of the native form of plasminogen (Glu-plasminogen) to form complexes with fibrinogen and its fragments immobilized on CNBr-agarose was studied. It was found that unlike Lys-plasminogen, the native form of the proenzyme does not bind to fibrinogen agarose. Limited proteolysis of fibrinogen by plasmin involving alpha C-domains results in the appearance of Glu-plasminogen binding sites at fibrinogen surface. The X2 fragment of fibrinogen binds to about 0.5 moles of Glu-plasminogen at an equimolar ratio of the interacting proteins. Under these conditions, the amount of bound Glu-plasminogen does not increase as a result of subsequent hydrolysis of fibrinogen down to end products, fragments E and D. It was found that Glu-plasminogen interacts with both E- and D-fragments of fibrinogen. Similar to Lys-plasminogen, Glu-plasminogen exhibits a high affinity for the E-fragment. The maximal quantity of the bound protein under the given experimental conditions is 2 moles per mole of the immobilized E-fragment. The interaction of Glu-plasminogen with the E-fragment is mediated by the lysine-binding sites of the proenzyme with a high and low affinity [Kd = 1.8.10(-6) and 7.5.10(-5) M, respectively]. Glu-plasminogen, unlike Lys-plasminogen, shows a low affinity for the D-fragment (Kd = 2.10(-5) M). Glu-plasminogen cannot be adsorbed by arginine-binding sites at the DH fragment-agarose.  相似文献   

5.
Using a modified procedure for measuring the time of fibrin clot lysis, the kinetics of Glu- and Lys-plasminogen activation by the tissue activator was studied. Within the plasminogen concentration range of 0.4-100 nM the rate of activation of both protein forms obeys the Michaelis-Menten kinetics. At Lys-plasminogen concentration equimolar to that of fibrin, the rate of activation of the former decreases down to that of Glu-plasminogen activation. The kinetic constants for Glu- and Lys-plasminogen activation (Km) are equal to 0.055 and 0.013 microM; k = 0.19 and 0.21 s-1, respectively. The Km values for fibrin-bound Glu- and Lys-plasminogen are equal to 0.25 nM and 8 nM, respectively (k = 0.08 and 0.26 s-1, respectively). It is assumed that the tissue activator exhibits a higher affinity for the Glu-plasminogen--fibrin complex than for the Lys-plasminogen-fibrin complex.  相似文献   

6.
The interaction of Lys-plasminogen and its fragments with fibrinogen fragment E was studied by equilibrium affinity binding. A quantitative analysis of binding parameters revealed two types of binding sites responsible for Lys-plasminogen interaction with the immobilized fragment E, i.e., with a high (Kd = 1.5 x 10(-6) M) and low (Kd = 82 x 10(-6) M) affinity ones. Among plasminogen fragments, only miniplasminogen and KI-3 bound immobilized fragment E and were eluted by epsilon-aminocaproic acid. Hence, two lysine binding sites may be involved in the binding of Lys-plasminogen to fragment E; they are localized in the KI-3 and K5 kringle structures.  相似文献   

7.
Using affinity chromatography, the binding of Lys-plasminogen to fibrinogen, fibrin and the consecutively formed products of their proteolysis was studied. The optimal conditions for this binding were elaborated, and the quantitative parameters of Lys-plasminogen binding to fibrinogen-Sepharose were determined. It was found that the interaction of Lys-plasminogen with fibrinogen- and fibrin-Sepharose is provided for by the lysine-binding sites of the proenzyme molecule. After partial hydrolysis of fibrinogen by plasmin, the amount of adsorbed plasminogen increases and the type of binding changes; part of the proenzyme molecules bind in the presence of 0.003 M 6-aminohexanoic acid, i.e., when lysine-binding sites appear to be blocked. A comparative study of plasminogen binding to fibrinogen fragments was carried out. The resistance of the complexes formed to the effect of 6-aminohexanoic acid and arginine competing for the binding sites was determined. The data obtained testify to the appearance of additional plasminogen-binding sites in the fibrinogen molecule during proteolysis. These sites are complementary for both lysine-and arginine-binding sites of the plasminogen molecule and are localized in the peripheral domains of the fibrinogen molecule.  相似文献   

8.
The cell-binding domains of plasminogen and their function in plasma   总被引:6,自引:0,他引:6  
Plasminogen binding sites are expressed by a wide variety of cell types and serve to promote fibrinolysis and local proteolysis. In this study, the recognition specificity of cells for plasminogen has been examined, primarily using platelets as models. Analyses with plasminogen fragments implicated residues 79-337 (or 353), comprising the first three kringles of plasminogen, as a primary recognition site for plasminogen binding to both thrombin-stimulated and nonstimulated platelets. Other regions of plasminogen, namely residues 354-439 and 442-790, can also participate in the interaction, and these other regions contribute differentially to the binding of the ligand to stimulated and nonstimulated platelets. Binding to nucleated cells, with U937 cells serving as the prototype, is dependent upon a recognition specificity similar to that of unstimulated platelets. Binding of Glu-plasminogen, the native form of the molecule, to thrombin-stimulated platelets has been shown previously to require platelet fibrin. By comparing the interaction of Glu-plasminogen and its degradation product, Lys-plasminogen, with thrombin-stimulated platelets, it is concluded that the cell surface uniquely enhances the affinity of Glu-, but not Lys-plasminogen, for fibrin. Finally, we have demonstrated that cellular receptors and interactive sites within plasminogen are available in the plasma environment. Thus, the functions ascribed to cellular plasminogen receptors can occur within a physiologic setting.  相似文献   

9.
L A Miles  E F Plow 《Biochemistry》1986,25(22):6926-6933
An antibody population that reacted with the high-affinity lysine binding site of human plasminogen was elicited by immunizing rabbits with an elastase degradation product containing kringles 1-3 (EDP I). This antibody was immunopurified by affinity chromatography on plasminogen-Sepharose and elution with 0.2 M 6-aminohexanoic acid. The eluted antibodies bound [125I]EDP I, [125I]Glu-plasminogen, and [125I]Lys-plasminogen in radioimmunoassays, and binding of each ligand was at least 99% inhibited by 0.2 M 6-aminohexanoic acid. The concentrations for 50% inhibition of [125I]EDP I binding by tranexamic acid, 6-aminohexanoic acid, and lysine were 2.6, 46, and 1730 microM, respectively. Similar values were obtained with plasminogen and suggested that an unoccupied high-affinity lysine binding site was required for antibody recognition. The antiserum reacted exclusively with plasminogen derivatives containing the EDP I region (EDP I, Glu-plasminogen, Lys-plasminogen, and the plasmin heavy chain) and did not react with those lacking an EDP I region [miniplasminogen, the plasmin light chain or EDP II (kringle 4)] or with tissue plasminogen activator or prothrombin, which also contain kringles. By immunoblotting analyses, a chymotryptic degradation product of Mr 20,000 was derived from EDP I that retained reactivity with the antibody. The high-affinity lysine binding site was equally available to the antibody probe in Glu- and Lys-plasminogen and also appeared to be unoccupied in the plasmin-alpha 2-antiplasmin complex. alpha 2-Antiplasmin inhibited the binding of radiolabeled EDP I, Glu-plasminogen, or Lys-plasminogen by the antiserum, suggesting that the recognized site is involved in the noncovalent interaction of the inhibitor with plasminogen.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
Glu- and Lys-plasminogen interaction with native and desAABB-fibrin obtained from fibrinogen partially hydrolyzed by plasmin was studied. It was found that native fibrin adsorbs 6 times more Lys-plasminogen as compared to the native form of the proenzyme. The range of the Lys-plasminogen binding does not change, if part of the fibrinogen molecules hydrolyze down to X-fragments. At the same time, the appearance in the system of 1% Xi-fragments leads to a 6-fold increase in the Glu-plasminogen binding. The amount of adsorbed Glu-plasminogen reaches the level of Lys-plasminogen adsorption both in the native and partially hydrolyzed fibrin. It was found that kringle K 1-3 or 6-aminohexanoic acid at saturating for high-affinity lysine-binding sites concentrations do not influence the Glu-plasminogen binding to native fibrin but inhibit it when the partially purified form is used. It is assumed that the manyfold increase of the Glu-plasminogen binding to partially hydrolyzed fibrin is due to the alteration of the proenzyme conformation at the initial steps of fibrin hydrolysis during the formation of Xi fragments.  相似文献   

11.
Trinitrobenzyl alkylation of poly(D-lysine) provides a novel powerful stimulator of tissue-type plasminogen activator. Its stimulatory effect on plasminogen activation is far greater than that of the original poly(D-lysine), and even surpasses that of fibrin. Its effect on plasmin-catalysed modification of both tissue-type plasminogen activator (t-PA) and native (Glu-1-) plasminogen are also investigated. Cleavage of one-chain t-PA to its two-chain form is monitored by measuring the increase in amidolytic activity which accompanies this transformation. Presupposing apparent first-order reaction kinetics, a theory is developed by which the rate constant, kcat/Km = 1.0 X 10(6) M-1 X s-1 of plasmin cleavage of one-chain t-PA can be calculated. Plasmin-catalysed transformation of 125I-labelled Glu-1- to Lys-77-plasminogen is quantified following separation by polyacrylamide gel electrophoresis at pH 3.2. A rate constant, kcat/Km = 4.4 X 10(3) M-1 X s-1 is obtained for the reaction between plasmin and Glu-1-plasminogen in the presence of 1 mM trans-4-(aminomethyl)cyclohexane-1-carboxylic acid. Both of the above plasmin-catalysed reactions are strongly enhanced by trinitrobenzoylated poly(D-lysine). The mechanism of action of this stimulator is elucidated by studying its binding to both activator and plasmin(ogen), and by direct comparison of the results with measurements of plasminogen activation kinetics in the presence of the stimulator. Binding studies are performed exploiting the observation that an insoluble yellow complex is formed between plasminogen and modified poly(D-lysine). Protein-polymer interactions are also studied with solubilised components in an aqueous two-phase partition system containing dextran and poly(ethylene glycol). The rate enhancement of plasminogen activation is found to be closely correlated to the association of plasminogen to the stimulator. It is proposed that the stimulator effects of this simple polymer on the enzymatic activities of both plasminogen activator and plasmin are brought about by association of the proteinase and its substrate to a common matrix. Similarities between the action of the artificial and the natural stimulator (fibrin) are stressed. These properties of trinitrobenzoylated poly(D-lysine) makes it useful as a model for the study of the regulatory mechanism of the fibrinolytic process at the molecular level.  相似文献   

12.
V Fleury  E Anglés-Cano 《Biochemistry》1991,30(30):7630-7638
In the present study we have quantitatively characterized the interaction of purified human Glu- and Lys-plasminogen with intact and degraded fibrin by ligand-binding experiments using a radioisotopic dilution method and antibodies against human plasminogen. A fibrinogen monolayer was covalently linked to a solid support with polyglutaraldehyde and was treated with thrombin or with thrombin and then plasmin to respectively obtain intact and degraded fibrin surfaces. Under these conditions, a well-defined surface of fibrin is obtained (410 +/- 4 fmol/cm2) and, except for a 39-kDa fragment, most of the fibrin degradation products remain bound to the support. New binding sites for plasminogen were detected on the degraded surface of fibrin. These sites were identified as carboxy-terminal lysine residues both by inhibition of the binding by the lysine analogue 6-aminohexanoic acid and by carboxy-terminal end-group digestion with carboxypeptidase B. The binding curves exhibited a characteristic Langmuir adsorption isotherm saturation profile. The data were therefore analyzed accordingly, assuming a single-site binding model to simplify the analysis. Equilibrium dissociation constants (Kd) and the maximum number of binding sites (Bmax) were derived from linearized expression of the Langmuir isotherm equation. The Kd for the binding of Glu-plasminogen to intact fibrin was 0.99 +/- 0.17 microM and for degraded fibrin was 0.66 +/- 0.22 microM. The Kd for the binding of Lys-plasminogen to intact fibrin was 0.41 +/- 0.22 microM and for degraded fibrin was 0.51 +/- 0.12 microM.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
1. Possible interactions between fibrin(ogen) and heparin in the control of plasminogen activation were studied in model systems using the thrombolytic agents tissue-type plasminogen activator (t-PA), urokinase and streptokinase.plasminogen activator complex and the substrates Glu- and Lys-plasminogen. 2. Both t-PA and urokinase activities were promoted by heparin and by pentosan polysulphate, but not by chondroitin sulphate or hyaluronic acid. The effect was on Km. 3. In the presence of soluble fibrin (and its mimic, CNBr-digested fibrinogen) the effect of heparin on t-PA was attenuated, although not abolished. In studies using a monoclonal antibody and 6-aminohexanoic acid, it was found that heparin and fibrin did not seem to share a binding site on t-PA. 4. The activity of t-PA B-chain was unaffected by heparin, so the binding site is located on the A-chain of t-PA (and urokinase). 5. Fibrin potentiated the activity of heparin on urokinase. The activity of streptokinase.plasminogen was unaffected by heparin whether or not fibrin was present. 6. If these influences of heparin and fibrin also occur in vivo, then, in the presence of heparin, the relative fibrin enhancement of t-PA will be diminished and the likelihood of systemic activation by t-PA is increased.  相似文献   

14.
The kinetics of the activation of Glu- and Lys-plasminogen by single-chain urokinase (sc urokinase) derived from the transformed human kidney cell line TCL-598 have been studied and compared with two-chain urokinase (tc urokinase). Plasminogen activation was determined by the increase in fluorescence polarization of fluorescein-labeled aprotinin, a high affinity inhibitor of plasmin. This methodology allows plasmin generation by sc urokinase to be measured in functional isolation, with no interfering generation of tc urokinase, sc urokinase was found to activate plasminogen to plasmin with apparent Michaelis-Menten-type kinetics. The Km for Glu-plasminogen activation was 47.7 microM, with a catalytic constant of 2.91 min-1. Lys-plasminogen activation by sc urokinase was characterized by a Km of 11.7 microM and a kcat of 5.60 min-1. The Km values for the activation of Glu- and Lys-plasminogen by tc urokinase were found to be similar to those for activation by sc urokinase (36.8 and 9.0 microM, respectively), but the catalytic constants were higher at 36.0 and 118 min-1, respectively. Therefore, on the basis of the catalytic efficiency kcat/Km, sc urokinase seems to have 16-27-fold lower activity than tc urokinase. This activity of sc urokinase is in contrast to its lack of activity against a low molecular weight peptide substrate (less than 0.2% of the activity of sc urokinase). The activation of sc urokinase to tc urokinase by plasmin was also characterized (Km = 3.0 microM, kcat = 105 min-1). Using these data, it was possible to calculate the theoretical rate of plasminogen activation by sc urokinase in the absence of aprotinin, when tc urokinase is generated by the action of plasmin. The calculated rate was in good agreement with that determined experimentally using the chromogenic substrate D-Val-Leu-Lys-p-nitroanilide. These data demonstrate that sc urokinase has properties which distinguish it from conventional serine protease zymogens. The lack of activity against low molecular weight peptide substrates demonstrates the inaccessibility of the substrate-binding pocket. However, there is a moderate activity against plasminogen, suggesting that plasminogen may be acting as both an effector and a substrate for sc urokinase.  相似文献   

15.
Glu-plasminogen [native plasminogen (Glu-1-Asn-790)], Lys-plasminogen [plasmin-cleaved fragment of plasminogen (Lys-77-Asn-790)] and miniplasminogen [fragment of plasminogen (Val-440-Asn-790)] were all found to interact specifically with immobilized 6-aminohexyl ligands. The interactions apparently are mediated by a single weak lysine-binding site, termed the AH-site, as seen from the patterns of inhibition obtained from frontal-quantitative-affinity-chromatography experiments with 6-aminohexanoic acid and alpha-N-acetyl-L-lysine methyl ester as competing ligands. The AH-site, in contrast with the strong lysine-binding site of Glu-plasminogen and Lys-plasminogen, may prefer ligands not carrying a free carboxylate function and therefore may interact with lysine side chains of proteins. In Glu-plasminogen the AH-site is present, but is apparently only partially free to react. It is suggested that it participates in an intramolecular complex and that an equilibrium state between two Glu-plasminogen forms exists. It is further suggested that binding of the plasminogens to fibrin is mainly determined by the AH-site.  相似文献   

16.
Hydrolysis of plasminogen permits obtaining its nine fragments. The method of differential scanning microcalorimetry reveals seven domains in plasminogen, and the affinity chromatography--three lysin- and three arginyl-binding sites. The lysin-binding sites of domains (Kringles) K1 and K4 differ in ligand specificity. Benzamidine-binding sites of domain K5 and of plasmin light chain are simultaneously arginine-binding ones. The third arginyl-binding site differing from the benzamidine-binding one is found in fragment K1-3. In the plasminogen-fibrin interaction only lysin-binding sites of plasminogen take part; in the plasminogen fragments-fibrinogen fragments interaction both types of plasminogen sites participate. The heavy chain of plasmin interacts with the E-fragment of fibrinogen by the lysin-binding sites, and the light chain of plasmin interacts with D-fragment of fibrinogen by arginyl-binding sites. Sites complementary to arginyl binding sites of plasminogen are located on the DH-fragment and sites of interaction with lysin- and arginyl-binding sites--on the DL-fragment. The plasmin-fibrin interaction mediated by sites of the first four cringles is not associated with changes in the catalytic function of the active centre. Interaction of Lys-plasminogen with fibrin accelerates polymerization of the latter. The effect of Lys-plasminogen is conditioned by the lysin-binding sites. Glu-plasminogen has no effect on the polymerization process.  相似文献   

17.
Comparative physical and chemical data are described for the human NH2-terminal Glu-plasminogen and Lys-plasminogen forms in order to determine the exact relationship between these two types of the zymogen. The molecular weights of Glu-plasminogen and Lys-plasminogen were similar and were determined to be 83, 800 plus or minus 4, 500 and 82, 400 plus or minus 3, 300, respectively, by sedimentation equilibrium methods. The molecular weights were identical in dodecyl sulfate solutions, approximately 83, 000, by sedimentation equilibrium methods. The sedimentation coefficients, s-020, w of Glu-plasminogen and Lys-plasminogen were determined to be 5.0 S, and 4.4 S, respectively. These two plasminogen forms had different partial specific volumes, and calculations of the frictional coefficients from sedimentation coefficients and molecular weights indicated conformation differences. Glu-plasminogen appeared to be larger in size than Lys-plasminogen in acrylamide gel-dodecyl sulfate electrophoresis. The amino acid compositions of Glu-plasminogen and Lys-plasminogen, and their major isolated isoelectric forms, were found to be similar, but several amino acid residues (glutamic acid, alanine, isoleucine, phenylalanine, and lysine) were found to be significantly higher in the Glu-plasminogen forms. The derived plasmins from both the Glu- and Lys-plasminogens with an nh2-terminal Lys- heavy (A) chain were found to have identical molecular weights of 76, 500 plus or minus 2, 500, and sedimentation coefficients, s-020, w of 4.3 S.  相似文献   

18.
Fibrinogen-NDSK complex is a model of protofibril having some features of the fibrin polymer structure. This complex has been studied for its ability to stimulate the plasminogen activation by t-PA. The fibrinogen-NDSK complex have increased the rate of plasminogen activation by t-PA as compared to fibrinogen or NDSK taken separately. This acceleration had slow and fast phases. Lys-plasminogen was activated more effectively as compared to glu-plasminogen. The kinetic parameters of glu- and lys-plasminogen activation at fast phase were: Km--0.18 and 0.015 mu/M, Kkat--0.27 and 0.06 s-1, respectively. Fibrinogen X2--fragments, deprived of alpha C-domains and NH2-end peptides of bB-chains, formed complexes with NDSK, which however did not stimulate the plasminogen activation by t-PA. These findings have shown that the fibrinogen-NDSK complex is an effective stimulator of the plasminogen activation by t-PA. The activating ability of the complex may be due to structures formed in the course of fibrinogen and NDSK polymerization as a result of alpha C-domain interaction.  相似文献   

19.
Fibronectin immobilized onto polystyrene surface was found to bind plasminogen and tissue-type plasminogen activator (t-PA) but only slightly the urokinase type as determined using mono- and polyclonal antibodies against the activators. Of the defined fibronectin fragments tested, the Mr 120,000-140,000 fragment was found to bind both plasminogen and t-PA. Proteolytically modified plasminogen (Lys-plasminogen) bound considerably better than the native form (Glu-plasminogen). Experiments with 125I-plasminogen yielded Kd = 9.1 X 10(-8) M for the binding to immobilized fibronectin. The partially or completely inactive single-chain form of t-PA (pro-t-PA) bound considerably better than the activated two-chain form. Lysine at greater than 3 mM inhibited the binding of plasminogen. The interaction was independent of calcium ions. CaCl2 (greater than 0.5 mM) and NaCl (greater than 0.2 M) inhibited the binding of pro-t-PA and of t-PA. Fibronectin-bound t-PA retained its ability to activate plasminogen. The observed interactions may operate in directional proteolysis localizing plasminogen and plasminogen activator to degrade fibronectin-containing extracellular matrix including fibrin clots.  相似文献   

20.
We prepared heparin-inserted phospholipid liposomes as a functional model of heparan sulfate present on the vascular surface and examined tissue plasminogen activator (t-PA) catalyzed plasminogen activation on the liposome surface. Kinetic analyses showed a marked increase in the affinity of t-PA for Lys-plasminogen in the presence of heparin-inserted phosphatidylcholine (PC) liposomes. The catalytic efficiency (kcat/Km) of t-PA for the plasminogen activation on the surface of heparin-inserted PC liposomes was 5.4 times that on the surface of heparin-free PC liposomes. This stimulatory action of immobilized heparin was apparently affected by changing the phospholipid component of liposomes. Phosphatidylethanolamine or stearylamine, having a positively charged group, reduced the catalytic efficiency of t-PA by raising its Km value (10-fold), whereas negatively charged phospholipids, phosphatidylserine and phosphatidylinositol, did not affect the efficiency. t-PA and generated plasmin bound to the liposome surface heparin were protected from inhibition by plasminogen activator inhibitor type 1 and alpha 2-plasmin inhibitor, respectively. t-PA-induced clot lysis of euglobulin or whole plasma, which contained native (Glu-) plasminogen and the above inhibitors, was also accelerated by addition of heparin-inserted PC liposomes. These results suggest that the vascular surface heparin-like molecules may play an important role in modulating fibrinolytic events. The principles of conjugation of t-PA with a biologically active liposome will be applied to the construction of better thrombolytic agents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号