首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1. D-amino acid oxidase is inactivated by reaction with a low molar excess of dansyl chloride at pH 6.6, with complete inactivation accompanied by incorporation of 1.7 dansyl residues per mol of enzyme-bound flavin. The presence of benzoate, a potent competitive inhibitor, protects substantially against inactivation. Evidence is presented that the inactivation is due to dansylation of an active site histidine residue. Reactivation may be obtained by incubation with hydroxylamine. Diethylpyrocarbonate also inactivates the enzyme and modifies the labeling pattern with dansyl chloride. 2. Butanedione in the presence of borate reacts rapidly to inactivate D-amino acid oxidase. Reactivation is obtained spontaneously on removal of borate, implicating reaction of butanedione with an active site arginine residue. 3. Fluorodinitrobenzene appears to behave as an active site-directed reagent when mixed with D-amino acid oxidase at pH 7.4. Complete inactivation is obtained with incorporation of 2.0 dinitrophenyl residues per mol of enzyme-bound flavin. Again benzoate protects against inactivation; only one dinitrophenyl residue is incorporated in the presence of benzoate. The active site residue attacked by fluorodinitrobenzene has been identified as tyrosine.  相似文献   

2.
The phosphocarrier protein HPr of the bacterial phosphoenolpyruvate:sugar phosphotransferase system contains 1-phosphohistidine at residue 15. This residue and the active site residue Arg-17 are conserved in HPrs isolated from both Gram-positive and -negative bacteria. The pH- and temperature-dependent hydrolysis of the 1-phosphohistidinyl residue in P-HPr from Streptococcus faecalis has been investigated. The results show that the hydrolysis properties are very similar to those previously reported for P-HPr from Escherichia coli. It was postulated that the unusual hydrolysis properties were due to the presence of a carboxyl group at the active site, and it is now known that in HPr from Escherichia coli the C-terminal residue Glu-85 is present. The results in this paper suggest that a similar carboxyl group is present at the active site in HPr from Streptococcus faecalis.  相似文献   

3.
In order to investigate the nature of amino acid residues involved in the active in the active site of a ribonuclease from Aspergillus saitoi, the pH dependence of the rates of inactivation of RNase Ms by photooxidation and modification with diethylpyrocarbonate were studied. (1) RNase Ms was inactivated by illumination in the presence of methylene blue at various pH's. The pH dependence of the rate of photooxidative inactivation of RNase Ms indicated that at least one functional group having pKa 7.2 was involved in the active site. (2) Amino acid analyses of photooxidized RNase Ms at various stages of photooxidative inactivation at pH's 4.0 and 6.0 indicated that one histidine residue was related to the activity of RNase Ms, but that no tryptophan residue was involved in the active site. (3) 2',(3')-AMP prevented the photooxidative inactivation of RNase Ms. The results also indicated the presence of a histidine residue in the active site. (4) Modification of RNase Ms with diethylpyrocarbonate was studied at various pH's. The results indicated that a functional group having pKa 7.1 was involved in the active site of RNase Ms.  相似文献   

4.
Molecular dynamics simulations were performed on free RNase T1 and the 2'GMP-RNase T1 complex in vacuum and with water in the active site along with crystallographically identified waters, allowing analysis of both active site and overall structural and dynamics changes due to the presence of 2'GMP. Differences in the active site include a closing in the presence of 2'GMP, which is accompanied by a decrease in mobility of active site residues. The functional relevance of the active site fluctuations is discussed. 2'GMP alters the motion of Tyr-45, suggesting a role for that residue in providing a hydrophobic environment for the protein-nucleic acid interactions responsible for the specificity of RNase T1. The presence of 2'GMP causes a structural change of the C-terminus of the alpha-helix, indicating the transmission of structural changes from the active site through the protein matrix. Overall fluctuations of both the free and 2'GMP enzyme forms are in good agreement with X-ray temperature factors. The motion of Trp-59 is influenced by 2'GMP, indicating differences in enzyme dynamics away from the active site, with the calculated changes following those previously seen in time-resolved fluorescence experiments.  相似文献   

5.
Bussink AP  Vreede J  Aerts JM  Boot RG 《FEBS letters》2008,582(6):931-935
Mammals express two active chitinases, chitotriosidase and AMCase. Only AMCase displays an extremely acidic pH optimum, consistent with its observed presence in the gastro-intestinal tract. A structural model of AMCase reveals the presence of a conserved histidine residue in the active site. Mutational analyses and molecular dynamics simulations show that His187 is responsible for the acidic optimum and suggest pH dependent modulation of the reaction mechanism that is unique to AMCases. Concluding, His187 is a crucial structural component of the active site of AMCase and this unique feature may serve as a lead for the development of specific inhibitors.  相似文献   

6.
Acylpeptide hydrolase may be involved in N-terminal deacetylation of nascent polypeptide chains and of bioactive peptides. The activity of this enzyme from human erythrocytes is sensitive to anions such as chloride, nitrate, and fluoride. Furthermore, blocked amino acids act as competitive inhibitors of the enzyme. Acetyl leucine chloromethyl ketone has been employed to identify one active site residue as His-707. Diisopropylfluorophosphate has been used to identify a second active site residue as Ser-587. Chemical modification studies with a water-soluble carbodiimide implicate a carboxyl group in catalytic activity. These results and the sequence around these active site residues, especially near Ser-587, suggest that acylpeptide hydrolase contains a catalytic triad. The presence of a cysteine residue in the vicinity of the active site is suggested by the inactivation of the enzyme by sulfhydryl-modifying agents and also by a low amount of modification by the peptide chloromethyl ketone inhibitor. Ebelactone A, an inhibitor of the formyl aminopeptidase, the bacterial counterpart of eukaryotic acylpeptide hydrolase, was found to be an effective inhibitor of this enzyme. These findings suggest that acylpeptidase hydrolase is a member of a family of enzymes with extremely diverse functions.  相似文献   

7.
Y Worku  J P Luzio  A C Newby 《FEBS letters》1984,167(2):235-240
Inactivation of both cytosolic 5'-nucleotidase and ecto-5'-nucleotidase by diethylpyrocarbonate indicated the presence of an essential histidyl residue which in the cytosolic enzyme was conclusively located at the active site. Inactivation by thiol reagents indicated the presence of an essential cysteinyl residue in both enzymes. The data suggest that both 5'-nucleotidases belong to a group of histidine phosphatases which also includes glucose-6-phosphatase and acid phosphatase. A working hypothesis for the catalytic mechanism of these enzymes is proposed.  相似文献   

8.
Escherichia coli thioredoxin is a small disulfide-containing redox protein with the active site sequence Cys-Gly-Pro-Cys-Lys. Mutations were made in this region of the thioredoxin gene and the mutant proteins expressed in E. coli strains lacking thioredoxin. Mutant proteins with a 17-membered or 11-membered disulfide ring were inactive in vivo. However, purified thioredoxin with the active site sequence Cys-Gly-Arg-Pro-Cys-Lys is still able to serve as a substrate for thioredoxin reductase and a reducing agent in the ribonucleotide reductase reaction, although with greatly reduced catalytic efficiency. A smaller disulfide ring, with the active site sequence Cys-Ala-Cys, does not turn over at a sufficient rate to be an effective reducing agent. Strain in the small ring favors the formation of intermolecular disulfide bonds. Alteration of the invariant proline to a serine has little effect on redox activity. The function of this residue may be in maintaining the stability of the active site region rather than participation in redox activity or protein-protein interactions. Mutation of the positively charged lysine in the active site to a glutamate residue raises the Km values with interacting enzymes. Although it has been proposed that the positive residue at position 36 is conserved to maintain the thiolate anion on Cys-32 (Kallis & Holmgren, 1985), the presence of the negative charge at this position does not alter the pH dependence of activity or fluorescence behavior. The lysine is most likely conserved to facilitate thioredoxin-protein interactions.  相似文献   

9.
An active-site peptide from pepsin C   总被引:4,自引:4,他引:0  
Porcine pepsin C is inactivated rapidly and irreversibly by diazoacetyl-dl-norleucine methyl ester in the presence of cupric ions at pH values above 4.5. The inactivation is specific in that complete inactivation accompanies the incorporation of 1mol of inhibitor residue/mol of enzyme and evidence has been obtained to suggest that the reaction occurs with an active site residue. The site of reaction is the beta-carboxyl group of an aspartic acid residue in the sequence Ile-Val-Asp-Thr. This sequence is identical with the active-site sequence in pepsin and the significance of this in terms of the different activities of the two enzymes is discussed.  相似文献   

10.
The photosensitized oxidation of alkaline mesentericopeptidase in the presence of methylene blue results in a first-order rate of inactivation. The loss of enzymatic activity towards casein and N-acetyl-L-tyrosine ethyl ester closely correlates with the destruction of one histidyl residue. A pK value of 6.8 is determined from the sigmoid pH-dependence of the photoinactivation rate. This suggests the involvement of a normal titrating imidazole group in the active site of mesentericopeptidase. The competitive inhibitor Na-benzoyl-L-arginine protects the enzyme from photoinactivation. A conclusion is made that the active site histidyl residue is modified. Circular dichroism spectra show no change in the protein conformation during the photodynamic treatment.  相似文献   

11.
Alkaline phosphatase from Megalobatrachus japonicus was inactivated by diethyl pyrocarbonate (DEP). The inactivation followed pseudo-first-order kinetics with a second-order rate constant of 176 M(-1) x min(-1) at pH 6.2 and 25 degrees C. The loss of enzyme activity was accompanied with an increase in absorbance at 242 nm and the inactivated enzyme was re-activated by hydroxylamine, indicating the modification of histidine residues. This conclusion was also confirmed by the pH profiles of inactivation, which showed the involvement of a residue with pK(a) of 6.6. The presence of glycerol 3-phosphate, AMP and phosphate protected the enzyme against inactivation. The results revealed that the histidine residues modified by DEP were located at the active site. Spectrophotometric quantification of modified residues showed that modification of two histidine residues per active site led to complete inactivation, but kinetic stoichiometry indicated that one molecule of modifier reacted with one active site during inactivation, probably suggesting that two essential histidine residues per active site are necessary for complete activity whereas modification of a single histidine residue per active site is enough to result in inactivation.  相似文献   

12.
Ehrlich ascites carcinoma (EAC) cell glyceraldehyde-3-phosphate dehydrogenase (GA3PD) (EC. 1.2.1.12) was completely inactivated by diethyl pyrocarbonate (DEPC), a fairly specific reagent for histidine residues in the pH range of 6.0-7.5. The rate of inactivation was dependent on pH and followed pseudo-first order reaction kinetics. The difference spectrum of the inactivated and native enzymes showed an increase in the absorption maximum at 242 nm, indicating the modification of histidine residues. Statistical analysis of the residual enzyme activity and the extent of modification indicated modification of one essential histidine residue to be responsible for loss of the catalytic activity of EAC cell GA3PD. DEPC inactivation was protected by substrates, D-glyceraldehyde-3-phosphate and NAD, indicating the presence of essential histidine residue at the substrate-binding region of the active site. Double inhibition studies also provide evidence for the presence of histidine residue at the active site.  相似文献   

13.
BACKGROUND: Sulfatases constitute a family of enzymes with a highly conserved active site region including a Calpha-formylglycine that is posttranslationally generated by the oxidation of a conserved cysteine or serine residue. The crystal structures of two human arylsulfatases, ASA and ASB, along with ASA mutants and their complexes led to different proposals for the catalytic mechanism in the hydrolysis of sulfate esters. RESULTS: The crystal structure of a bacterial sulfatase from Pseudomonas aeruginosa (PAS) has been determined at 1.3 A. Fold and active site region are strikingly similar to those of the known human sulfatases. The structure allows a precise determination of the active site region, unequivocally showing the presence of a Calpha-formylglycine hydrate as the key catalytic residue. Furthermore, the cation located in the active site is unambiguously characterized as calcium by both its B value and the geometry of its coordination sphere. The active site contains a noncovalently bonded sulfate that occupies the same position as the one in para-nitrocatecholsulfate in previously studied ASA complexes. CONCLUSIONS: The structure of PAS shows that the resting state of the key catalytic residue in sulfatases is a formylglycine hydrate. These structural data establish a mechanism for sulfate ester cleavage involving an aldehyde hydrate as the functional group that initiates the reaction through a nucleophilic attack on the sulfur atom in the substrate. The alcohol is eliminated from a reaction intermediate containing pentacoordinated sulfur. Subsequent elimination of the sulfate regenerates the aldehyde, which is again hydrated. The metal cation involved in stabilizing the charge and anchoring the substrate during catalysis is established as calcium.  相似文献   

14.
用化学修饰法及其修饰动力学对米曲霉GX0011β-果糖基转移酶的活性中心结构进行了研究。结果表明:NBS、PMSF、EDC能显著抑制酶的活性,底物对这些抑制有明显的保护作用,且残留酶活与修饰剂的浓度相关,抑制均符合拟一级动力学规律,进一步动力学分析,初步认定该酶活性中心包括至少一个丝氨酸(或苏氨酸)、一个色氨酸和一个天冬氨酸(或谷氨酸)残基。pCMB、TNBS能显著抑制酶的活性,但底物对抑制无明显保护作用,推断半胱氨酸和赖氨酸残基可能与维系酶活性中心构象有关,但不是酶活性中心基团。DEPC、AA和NAI对酶的活性抑制作用不明显,排除了组氨酸、精氨酸和酪氨酸残基是该酶活性中心必需基团的可能。  相似文献   

15.
Type I sulfatases require an unusual co- or post-translational modification for their activity in hydrolyzing sulfate esters. In eukaryotic sulfatases, an active site cysteine residue is oxidized to the aldehyde-containing C(alpha)-formylglycine residue by the formylglycine-generating enzyme (FGE). The machinery responsible for sulfatase activation is poorly understood in prokaryotes. Here we describe the identification of a prokaryotic FGE from Mycobacterium tuberculosis. In addition, we solved the crystal structure of the Streptomyces coelicolor FGE homolog to 2.1 A resolution. The prokaryotic homolog exhibits remarkable structural similarity to human FGE, including the position of catalytic cysteine residues. Both biochemical and structural data indicate the presence of an oxidized cysteine modification in the active site that may be relevant to catalysis. In addition, we generated a mutant M. tuberculosis strain lacking FGE. Although global sulfatase activity was reduced in the mutant, a significant amount of residual sulfatase activity suggests the presence of FGE-independent sulfatases in this organism.  相似文献   

16.
Glucose-6-phosphate dehydrogenase purified from Saccharomyces cerevisiae is rapidly inactivated by diethylpyrocarbonate at pH 6.8 and 30 degrees C with a concomitant increase in absorbance at 242 nm. The second-order rate constant for inactivation was calculated to be 487.8 M-1 min-1. The pH dependence of inactivation suggests the involvement of an amino acid residue having a pKa of 6.77. These results indicate that the inactivation is due to the modification of a histidine residue(s). In the presence of substrate, glucose-6-phosphate or NADP+, the rate of inactivation is decreased, indicating that the essential histidine residue(s) is located at the active site, possibly at the region of overlap of substrates at the binding site.  相似文献   

17.
Fructose diphosphate aldolase of Mycobacterium smegmatis is found to be a class I type aldolase and possesses functional similarities with rabbit muscle aldolase with respect to the amino acid residues at the catalytic site. The presence of a lysine residue at the active site is indicated by the formation of a Schiff-base with the substrate. The lower degree of inactivation compared to rabbit muscle aldolase on treatment with carboxypeptidase-A suggests the absence of an essential terminal tyrosine residue. Participation of histidine residues in enzyme catalysis is suggested by the photoinactivation of the enzyme in presence of methylene blue. Finally, thiol groups do not seem to have a direct role in catalysis.  相似文献   

18.
Colitose is a dideoxysugar found in the O-antigen of the lipopolysaccharide that coats the outer membrane of some Gram-negative bacteria. Four enzymes are required for its production starting from D-mannose-1-phosphate and GTP. The focus of this investigation is GDP-4-keto-6-deoxy-D-mannose 3-dehydratase or ColD, which catalyzes the removal of the C3'-hydroxyl group from GDP-4-keto-6-deoxymannose. The enzyme is pyridoxal 5'-phosphate-dependent, but unlike most of these proteins, the conserved lysine residue that covalently holds the cofactor in the active site is replaced with a histidine residue. Here we describe the three-dimensional structure of ColD, determined to 1.7A resolution, whereby the active site histidine has been replaced with an asparagine residue. For this investigation, crystals of the site-directed mutant protein were grown in the presence of GDP-4-amino-4,6-dideoxy-D-mannose (GDP-perosamine). The electron density map clearly reveals the presence of the sugar analog trapped in the active site as an external aldimine. The active site is positioned between the two subunits of the dimer. Whereas the pyrophosphoryl groups of the ligand are anchored to the protein via Arg-219 and Arg-331, the hydroxyl groups of the hexose only lie within hydrogen bonding distance to ordered water molecules. Interestingly, the hexose moiety of the ligand adopts a boat rather than the typically observed chair conformation. Activity assays demonstrate that this mutant protein cannot catalyze the dehydration step. Additionally, we report data revealing that wild-type ColD is able to catalyze the production of GDP-4-keto-3,6-dideoxymannose using GDP-perosamine instead of GDP-4-keto-6-deoxymannose as a substrate.  相似文献   

19.
The interaction of synthetic ATP analogs, containing active groups in the triphosphate moiety and in the 8-position of the nucleotide molecule, with highly purified Na, K-ATPase from the medullar layer of porcine kidney was studied. It was found that 11 out of 17 ATP analogs studied irreversibly inhibit the ATPase activity of the enzyme. The pH optimum of the enzyme inactivation by adenosine-5'-(beta-chloroethylphosphate) and adenosine-5'-(p-fluorosulfonylphenylphosphate) beside the pronounced protective effect of ATP suggests possible covalent blocking of histidine and dicarboxylic amino acid residues in the enzyme active center. The irreversible inhibition of the enzyme by "oxo-ATP" containing aldehyde groups in the modified ribose residue in the presence of sodium borohydride suggests a possible presence of the lysine residue epsilon-amino group in the ATP binding site of the enzyme. Na, K-ATPase was found to possess an inorganic phosphate binding site, which is specifically blocked by chloromethylphosphonic acid. the accessibility of this site for modification depends on ATP, NA+ and K+.  相似文献   

20.
Aldose-ketose isomerization by xylose isomerase requires bivalent cations such as Mg2+, Mn2+, or Co2+. The active site of the enzyme from Actinoplanes missouriensis contains two metal ions that are involved in substrate binding and in catalyzing a hydride shift between the C1 and C2 substrate atoms. Glu 186 is a conserved residue located near the active site but not in contact with the substrate and not with a metal ligand. The E186D and E186Q mutant enzymes were prepared. Both are active, and their metal specificity is different from that of the wild type. The E186Q enzyme is most active with Mn2+ and has a drastically shifted pH optimum. The X-ray analysis of E186Q was performed in the presence of xylose and either Mn2+ or Mg2+. The Mn2+ structure is essentially identical to that of the wild type. In the presence of Mg2+, the carboxylate group of residue Asp 255, which is part of metal site 2 and a metal ligand, turns toward Gln 186 and hydrogen bonds to its side-chain amide. Mg2+ is not bound at metal site 2, explaining the low activity of the mutant with this cation. Movements of Asp 255 also occur in the wild-type enzyme. We propose that they play a role in the O1 to O2 proton relay accompanying the hydride shift.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号