首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
3.
4.
5.
6.
The 5' untranslated region of the ferritin heavy-chain mRNA contains a stem-loop structure called an iron-responsive element (IRE), that is solely responsible for the iron-mediated control of ferritin translation. A 90-kilodalton protein, called the IRE binding protein (IRE-BP), binds to the IRE and acts as a translational repressor. IREs also explain the iron-dependent control of the degradation of the mRNA encoding the transferrin receptor. Scatchard analysis reveals that the IRE-BP exists in two states, each of which is able to specifically interact with the IRE. The higher-affinity state has a Kd of 10 to 30 pM, and the lower affinity state has a Kd of 2 to 5 nM. The reversible oxidation or reduction of a sulfhydryl is critical to this switching, and the reduced form is of the higher affinity while the oxidized form is of lower affinity. The in vivo rate of ferritin synthesis is correlated with the abundance of the high-affinity form of the IRE-BP. In lysates of cells treated with iron chelators, which decrease ferritin biosynthesis, a four- to fivefold increase in the binding activity is seen and this increase is entirely caused by an increase in high-affinity binding sites. In desferrioxamine-treated cells, the high-affinity form makes up about 50% of the total IRE-BP, whereas in hemin-treated cells, the high-affinity form makes up less than 1%. The total amount of IRE-BP in the cytosol of cells is the same regardless of the prior iron treatment of the cell. Furthermore, a mutated IRE is not able to interact with the IRE-BP in a high-affinity form but only at a single lower affinity Kd of 0.7 nM. Its interaction with the IRE-BP is insensitive to the sulfhydryl status of the protein.  相似文献   

7.
The intracellular iron level exerts a negative feedback on transferrin receptor (TfR) expression in cells requiring iron for their proliferation, in contrast to the positive feedback observed in monocytes-macrophages. It has been suggested recently that modulation of TfR and ferritin synthesis by iron is mediated through a cytoplasmic protein(s) (iron regulatory element-binding protein(s) (IRE-BP)), which interacts with ferritin and TfR mRNA at the level of hairpin structures (IRE), thus leading to inhibition of transferrin mRNA degradation and repression of ferritin mRNA translation. In the present study we have evaluated in parallel the level of TfR expression, ferritin, and IRE-BP in cultures of: (i) circulating human lymphocytes stimulated to proliferate by phytohemagglutinin (PHA) and (ii) circulating human monocytes maturing in vitro to macrophages. The cells were grown in either standard or iron-supplemented culture. TfR and ferritin expression was evaluated at both the protein and mRNA level. IRE-BP activity was measured by gel retardation assay in the absence or presence of beta-mercaptoethanol (spontaneous or total IRE-BP activity, respectively). Spontaneous IRE-BP activity, already present at low level in quiescent T lymphocytes, shows a gradual and marked increase in PHA-stimulated T cells from day 1 of culture onward. This increase is directly and strictly correlated with the initiation and gradual rise of TfR expression, which is in turn associated with a decrease of ferritin content. Both the rise of TfR and spontaneous IRE-BP activity are completely inhibited in iron-supplemented T cell cultures. In contrast, the total IRE-BP level is similar in both quiescent and PHA-stimulated lymphocytes, grown in cultures supplemented or not with iron salts. Monocytes maturing in vitro to macrophages show a sharp increase of spontaneous and, to a lesser extent, total IRE-BP; the addition of iron moderately stimulates the spontaneous IRE-BP activity but not the total one. Here again, the rise of spontaneous IRE-BP from very low to high activity is strictly related to the parallel increase of TfR expression and, suprisingly, also with a very pronounced rise of ferritin expression observed at both the mRNA and protein level. It is noteworthy the effect of beta-mercaptoethanol is cell specific, i.e. the ratio of total versus spontaneous IRE-BP activity is different in activated lymphocytes and maturing monocytes.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

8.
Iron responsive elements (IREs) are short stem-loop structures found in several mRNAs encoding proteins involved in cellular iron metabolism. Iron regulatory proteins (IRPs) control iron homeostasis through differential binding to the IREs, accommodating any sequence or structural variations that the IREs may present. Here we report the structure of IRP1 in complex with transferrin receptor 1 B (TfR B) IRE, and compare it to the complex with ferritin H (Ftn H) IRE. The two IREs are bound to IRP1 through nearly identical protein-RNA contacts, although their stem conformations are significantly different. These results support the view that binding of different IREs with IRP1 depends both on protein and RNA conformational plasticity, adapting to RNA variation while retaining conserved protein-RNA contacts.  相似文献   

9.
Excess capacity of the iron regulatory protein system   总被引:4,自引:0,他引:4  
Iron regulatory proteins (IRP1 and IRP2) are master regulators of cellular iron metabolism. IRPs bind to iron-responsive elements (IREs) present in the untranslated regions of mRNAs encoding proteins of iron storage, uptake, transport, and export. Because simultaneous knockout of IRP1 and IRP2 is embryonically lethal, it has not been possible to use dual knockouts to explore the consequences of loss of both IRP1 and IRP2 in mammalian cells. In this report, we describe the use of small interfering RNA to assess the relative contributions of IRP1 and IRP2 in epithelial cells. Stable cell lines were created in which either IRP1, IRP2, or both were knocked down. Knockdown of IRP1 decreased IRE binding activity but did not affect ferritin H and transferrin receptor 1 (TfR1) expression, whereas knockdown of IRP2 marginally affected IRE binding activity but caused an increase in ferritin H and a decrease in TfR1. Knockdown of both IRPs resulted in a greater reduction of IRE binding activity and more severe perturbation of ferritin H and TfR1 expression compared with single IRP knockdown. Even though the knockdown of IRP-1, IRP-2, or both was efficient, resulting in nondetectable protein and under 5% of wild type levels of mRNA, all stable knockdowns retained an ability to modulate ferritin H and TfR1 appropriately in response to iron challenge. However, further knockdown of IRPs accomplished by transient transfection of small interfering RNA in stable knockdown cells completely abolished the response of ferritin H and TfR1 to iron challenge, demonstrating an extensive excess capacity of the IRP system.  相似文献   

10.
11.
12.
Within the 5'-untranslated region of ferritin mRNAs, there is a conserved region of 28 nucleotides (nt) (the iron regulatory element (IRE)) that binds a protein (the IRE-binding protein (IRE-BP)) involved in the iron regulation of ferritin mRNA translation. We have examined the role of RNA secondary structure on the interaction of the IRE with the IRE-BP. First, the rat light ferritin IRE possesses a structure similar to that of the bullfrog heavy ferritin IRE (Wang, Y.-H., Sczekan, S. R., and Theil, E. C. (1990) Nucleic Acids Res. 18, 4463-4468). This includes an extended stem, interrupted at various points by bulge nucleotides and a 6-nt single-stranded loop (CAGUGU) at its top. Computer predictions and mapping results suggest the presence of a 3-nt (UGC) bulge 5 bases 5' of the loop in the rat IRE. Second, disruption of the base pairing in the upper stem alters IRE secondary structure and reduces the affinity with which the IRE-BP binds the IRE. Third, increasing the size of the loop or the distance between the UGC bulge and the loop reduces the IRE/IRE-BP interaction. Our results indicate that several aspects of IRE secondary structure are important for its high affinity binding to the IRE-BP.  相似文献   

13.
14.
Synthesis of proteins for iron homeostasis is regulated by specific, combinatorial mRNA/protein interactions between RNA stem-loop structures (iron-responsive elements, IREs) and iron-regulatory proteins (IRP1 and IRP2), controlling either mRNA translation or stability. The transferrin receptor 3'-untranslated region (TfR-3'-UTR) mRNA is unique in having five IREs, linked by AU-rich elements. A C-bulge in the stem of each TfR-IRE folds into an IRE that has low IRP2 binding, whereas a loop/bulge in the stem of the ferritin-IRE allows equivalent IRP1 and IRP2 binding. Effects of multiple IRE interactions with IRP1 and IRP2 were compared between the native TfR-3'-UTR sequence (5xIRE) and RNA with only 3 or 2 IREs. We show 1) equivalent IRP1 and IRP2 binding to multiple TfR-IRE RNAs; 2) increased IRP-dependent nuclease resistance of 5xIRE compared with lower IRE copy-number RNAs; 3) distorted TfR-IRE helix structure within the context of 5xIRE, detected by Cu-(phen)(2) binding/cleavage, that coincides with ferritin-IRE conformation and enhanced IRP2 binding; and 4) variable IRP1 and IRP2 expression in human cells and during development (IRP2-mRNA predominated). Changes in TfR-IRE structure conferred by the full length TfR-3'-UTR mRNA explain in part evolutionary conservation of multiple IRE-RNA, which allows TfR mRNA stabilization and receptor synthesis when IRP activity varies, and ensures iron uptake for cell growth.  相似文献   

15.
16.
Cellular iron uptake and storage are coordinately controlled by binding of iron-regulatory proteins (IRP), IRP1 and IRP2, to iron-responsive elements (IREs) within the mRNAs encoding transferrin receptor (TfR) and ferritin. Under conditions of iron starvation, both IRP1 and IRP2 bind with high affinity to cognate IREs, thus stabilizing TfR and inhibiting translation of ferritin mRNAs. The IRE/IRP regulatory system receives additional input by oxidative stress in the form of H(2)O(2) that leads to rapid activation of IRP1. Here we show that treating murine B6 fibroblasts with a pulse of 100 microm H(2)O(2) for 1 h is sufficient to alter critical parameters of iron homeostasis in a time-dependent manner. First, this stimulus inhibits ferritin synthesis for at least 8 h, leading to a significant (50%) reduction of cellular ferritin content. Second, treatment with H(2)O(2) induces a approximately 4-fold increase in TfR mRNA levels within 2-6 h, and subsequent accumulation of newly synthesized protein after 4 h. This is associated with a profound increase in the cell surface expression of TfR, enhanced binding to fluorescein-tagged transferrin, and stimulation of transferrin-mediated iron uptake into cells. Under these conditions, no significant alterations are observed in the levels of mitochondrial aconitase and the Divalent Metal Transporter DMT1, although both are encoded by two as yet lesser characterized IRE-containing mRNAs. Finally, H(2)O(2)-treated cells display an increased capacity to sequester (59)Fe in ferritin, despite a reduction in the ferritin pool, which results in a rearrangement of (59)Fe intracellular distribution. Our data suggest that H(2)O(2) regulates cellular iron acquisition and intracellular iron distribution by both IRP1-dependent and -independent mechanisms.  相似文献   

17.
18.
Iron homeostasis is tightly regulated, as cells work to conserve this essential but potentially toxic metal. The translation of many iron proteins is controlled by the binding of two cytoplasmic proteins, iron regulatory protein 1 and 2 (IRP1 and IRP2) to stem loop structures, known as iron-responsive elements (IREs), found in the untranslated regions of their mRNAs. In short, when iron is depleted, IRP1 or IRP2 bind IREs; this decreases the synthesis of proteins involved in iron storage and mitochondrial metabolism (e.g. ferritin and mitochondrial aconitase) and increases the synthesis of those involved in iron uptake (e.g. transferrin receptor). It is likely that more iron-containing proteins have IREs and that other IRPs may exist. One obvious place to search is in Complex I of the mitochondrial respiratory chain, which contains at least 6 iron-sulfur (Fe-S) subunits. Interestingly, in idiopathic Parkinson's disease, iron homeostasis is altered, and Complex I activity is diminished. These findings led us to investigate whether iron status affects the Fe-S subunits of Complex I. We found that the protein levels of the 75-kDa subunit of Complex I were modulated by levels of iron in the cell, whereas mRNA levels were minimally changed. Isolation of a clone of the 75-kDa Fe-S subunit with a more complete 5'-untranslated region sequence revealed a novel IRE-like stem loop sequence. RNA-protein gel shift assays demonstrated that a specific cytoplasmic protein bound the novel IRE and that the binding of the protein was affected by iron status. Western blot analysis and supershift assays showed that this cytosolic protein is neither IRP1 nor IRP2. In addition, ferritin IRE was able to compete for binding with this putative IRP. These results suggest that the 75-kDa Fe-S subunit of mitochondrial Complex I may be regulated by a novel IRE-IRP system.  相似文献   

19.
20.
Iron influx increases the translation of the Alzheimer amyloid precursor protein (APP) via an iron-responsive element (IRE) RNA stem loop in its 5′-untranslated region. Equal modulated interaction of the iron regulatory proteins (IRP1 and IRP2) with canonical IREs controls iron-dependent translation of the ferritin subunits. However, our immunoprecipitation RT-PCR and RNA binding experiments demonstrated that IRP1, but not IRP2, selectively bound the APP IRE in human neural cells. This selective IRP1 interaction pattern was evident in human brain and blood tissue from normal and Alzheimer disease patients. We computer-predicted an optimal novel RNA stem loop structure for the human, rhesus monkey, and mouse APP IREs with reference to the canonical ferritin IREs but also the IREs encoded by erythroid heme biosynthetic aminolevulinate synthase and Hif-2α mRNAs, which preferentially bind IRP1. Selective 2′-hydroxyl acylation analyzed by primer extension analysis was consistent with a 13-base single-stranded terminal loop and a conserved GC-rich stem. Biotinylated RNA probes deleted of the conserved CAGA motif in the terminal loop did not bind to IRP1 relative to wild type probes and could no longer base pair to form a predicted AGA triloop. An AGU pseudo-triloop is key for IRP1 binding to the canonical ferritin IREs. RNA probes encoding the APP IRE stem loop exhibited the same high affinity binding to rhIRP1 as occurs for the H-ferritin IRE (35 pm). Intracellular iron chelation increased binding of IRP1 to the APP IRE, decreasing intracellular APP expression in SH-SY5Y cells. Functionally, shRNA knockdown of IRP1 caused increased expression of neural APP consistent with IRP1-APP IRE-driven translation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号