首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Throughout the process of pathogen-host co-evolution, viruses have developed a battery of distinct strategies to overcome biochemical and immunological defenses of the host. Thus, viruses have acquired the capacity to subvert host cell apoptosis, control inflammatory responses, and evade immune reactions. Since the elimination of infected cells via programmed cell death is one of the most ancestral defense mechanisms against infection, disabling host cell apoptosis might represent an almost obligate step in the viral life cycle. Conversely, viruses may take advantage of stimulating apoptosis, either to kill uninfected cells from the immune system, or to induce the breakdown of infected cells, thereby favoring viral dissemination. Several viral polypeptides are homologs of host-derived apoptosis-regulatory proteins, such as members of the Bcl-2 family. Moreover, viral factors with no homology to host proteins specifically target key components of the apoptotic machinery. Here, we summarize the current knowledge on the viral modulation of mitochondrial apoptosis, by focusing in particular on the mechanisms by which viral proteins control the host cell death apparatus.  相似文献   

2.
Viral infection constitutes an unwanted intrusion that needs to be eradicated by host cells. On one hand, one of the first protective barriers set up to prevent viral replication, spread or persistence involves the induction of apoptotic cell death that aims to limit the availability of the cellular components for viral amplification. On the other hand, while they completely depend on the host molecular machinery, viruses also need to evade the cellular responses that are meant to destroy them. The existence of numerous antiapoptotic products within the viral kingdom proves that apoptosis constitutes a major threat that should better be bypassed. Among the different strategies developed to deal with apoptosis, one is based on what viruses do best: backfiring the cell on itself. Several unrelated viruses have been described to take advantage of apoptosis induction by expressing proteins targeted by caspases, the key effectors of apoptotic cell death. Caspase cleavage of these proteins results in various consequences, from logical apoptosis inhibition to more surprising enhancement or attenuation of viral replication. The present review aims at discussing the characterization and relevance of this post-translational modification that adds a new complexity in the already intricate host–apoptosis–virus triangle.  相似文献   

3.
Apoptosis has the potential to function as a defence mechanism during viral infection. Identification of CMV mutants that cause the apoptotic death of infected cells confirmed that viral infection activates apoptotic pathways and that this process is counteracted by CMV to ensure efficient viral replication. The recent identification of CMV-encoded proteins that suppress cell death has greatly enhanced our understanding of the mechanisms used by this family of viruses to prevent apoptosis. CMV do not encode homologues of known death-suppressing proteins, suggesting that the CMV family has evolved novel, more sophisticated strategies for the inhibition of apoptosis. The identification and characterization of the human CMV (HCMV)-encoded antiapoptotic proteins UL36 (viral inhibitor of caspase-8 activation [vICA]) and UL37 (viral mitochondria-localized inhibitor of apoptosis [vMIA]) have confirmed that CMV target unique apoptotic control points. For example, vMIA inhibits apoptosis by binding Bax and sequestering it at the mitochondrial membrane as an inactive oligomer. This knowledge not only provides a more complete understanding of the CMV replication process but also allows the identification of previously unrecognized apoptotic checkpoints. Because HCMV is an important cause of birth defects and an increasingly important opportunistic pathogen, a firm grasp of the mechanisms by which it affects cellular apoptosis may provide avenues for the design of improved therapeutic strategies. Here, we review the recent progress made in understanding the role of CMV-encoded proteins in the inhibition of apoptosis.  相似文献   

4.
Positive-sense RNA ((+)RNA) viruses such as hepatitis C virus exploit host cells by subverting host proteins, remodelling subcellular membranes, co-opting and modulating protein and ribonucleoprotein complexes, and altering cellular metabolic pathways during infection. To facilitate RNA replication, (+)RNA viruses interact with numerous host molecules through protein-protein, RNA-protein and protein-lipid interactions. These interactions lead to the formation of viral replication complexes, which produce new viral RNA progeny in host cells. This Review presents the recent progress that has been made in understanding the role of co-opted host proteins and membranes during (+)RNA virus replication, and discusses common themes employed by different viruses.  相似文献   

5.
赵建元  丁寄葳  米泽云  周金明  魏涛  岑山 《遗传》2015,37(5):480-486
人免疫缺陷病毒(HIV-1)急性感染过程中,病毒的遗传多样性显著减少,往往只有一株或几株病毒可以建立有效感染,这种病毒被称为初始传播病毒(Transmitted/Founder virus)。病毒蛋白R(Vpr)是HIV-1的辅助蛋白之一,在病毒复制过程中起重要作用。研究初始传播病毒Vpr基因遗传变异与生物学特征对于阐明病毒建立感染的关键环节具有重要意义。文章利用流式细胞术分析了C亚型HIV-1初始传播病毒株与慢性感染株MJ4的 Vpr蛋白诱导细胞G2期阻滞和细胞凋亡的能力。结果显示,初始传播病毒ZM246和ZM247的Vpr诱导细胞G2期阻滞和细胞凋亡的能力显著高于慢性感染株MJ4 Vpr。氨基酸序列分析表明,初始传播病毒Vpr在第77、85和94位上存在高频突变。研究结果提示初始传播病毒可能在病毒感染早期,通过Vpr基因的遗传突变,提升病毒诱导细胞停滞G2期和细胞凋亡的能力,进而促进病毒在宿主体内的复制和传播。  相似文献   

6.
7.
Viruses are obligatory intracellular parasites and utilize host elements to support key viral processes, including penetration of the plasma membrane, initiation of infection, replication, and suppression of the host''s antiviral defenses. In this review, we focus on picornaviruses, a family of positive-strand RNA viruses, and discuss the mechanisms by which these viruses hijack the cellular machinery to form and operate membranous replication complexes. Studies aimed at revealing factors required for the establishment of viral replication structures identified several cellular-membrane-remodeling proteins and led to the development of models in which the virus used a preexisting cellular-membrane-shaping pathway “as is” for generating its replication organelles. However, as more data accumulate, this view is being increasingly questioned, and it is becoming clearer that viruses may utilize cellular factors in ways that are distinct from the normal functions of these proteins in uninfected cells. In addition, the proteincentric view is being supplemented by important new studies showing a previously unappreciated deep remodeling of lipid homeostasis, including extreme changes to phospholipid biosynthesis and cholesterol trafficking. The data on viral modifications of lipid biosynthetic pathways are still rudimentary, but it appears once again that the viruses may rewire existing pathways to generate novel functions. Despite remarkable progress, our understanding of how a handful of viral proteins can completely overrun the multilayered, complex mechanisms that control the membrane organization of a eukaryotic cell remains very limited.  相似文献   

8.
Positive-strand RNA [(+)RNA] viruses are responsible for numerous human, animal, and plant diseases. Because of the limiting coding capacity of (+)RNA viruses, their replication requires a complex orchestration of interactions between the viral genome, viral proteins and exploited host factors. To replicate their genomic RNAs, (+)RNA viruses induce membrane rearrangements that create membrane-linked RNA replication compartments. Along with substantial advances on the ultrastructure of the membrane-bound RNA replication compartments, recent results have shed light into the role that host factors play in rearranging these membranes. This review focuses on recent insights that have driven a new understanding of the role that the membrane-shaping host reticulon homology domain proteins (RHPs) play in facilitating the replication of various (+)RNA viruses.  相似文献   

9.
Interaction of hepatitis C virus proteins with host cell membranes and lipids   总被引:15,自引:0,他引:15  
For replication, viruses depend on specific components and energy supplies from the host cell. The main steps in the lifecycle of positive-strand RNA viruses depend on cellular membranes. Interest is increasing in studying the interactions between host cell membranes and viral proteins to understand how such viruses replicate their genome and produce infectious particles. These studies should also lead to a better knowledge of the different mechanisms underlying membrane-protein associations. The various molecular interactions of hepatitis C virus proteins with the membranes and lipids of the infected cell highlight how a virus can exploit the diversity of interactions that occur between proteins and membranes or lipid structures.  相似文献   

10.
Apoptosis is a type of controlled cell death that is essential for development and tissue homeostasis. It also serves as a robust host response against infection by many viruses. The capacity of neurotropic viruses to induce apoptosis strongly correlates with virulence. However, the precise function of apoptosis in viral infection is not well understood. Reovirus is a neurotropic virus that induces apoptosis in a variety of cell types, including central nervous system neurons, leading to fatal encephalitis in newborn mice. To determine the effect of apoptosis on reovirus replication in the host, we generated two otherwise isogenic viruses that differ in a single amino acid in viral capsid protein μ1 that segregates with apoptotic capacity. Apoptosis-proficient and apoptosis-deficient viruses were compared for replication, dissemination, tropism, and tissue injury in newborn mice and for the capacity to spread to uninfected littermates. Our results indicate that apoptotic capacity enhances reovirus replication in the brain and consequent neurovirulence but reduces transmission efficiency. The replication advantage of the apoptosis-proficient strain is limited to the brain and correlates with enhanced infectivity of neurons. These studies reveal a new cell type-specific determinant of reovirus virulence.  相似文献   

11.
Autophagy is a major intracellular pathway for degradation and recycling of long-lived proteins and cytoplasmic organelles that plays an essential role in maintenance of homeostasis in response to starvation and other cellular stresses. Autophagy is also important for a variety of other processes including restriction of intracellular pathogen replication. Our understanding of the fascinating relationship between viruses and the autophagy machinery is still in its infancy but it is clear that autophagy is a newly recognized facet of innate and adaptive immunity against viral infection. Although the autophagy pathway is emerging as a component of host defense, certain viruses have developed strategies to counteract these antiviral mechanisms, and others appear to have co-opted the autophagy machinery as proviral host factors favoring viral replication. The complex interplay between autophagy and viral infection will be discussed in this review.  相似文献   

12.
三基序蛋白家族(tripartite motif,TRIM)是参与不同细胞功能的一大类具有E3泛素连接酶活性的蛋白质,在宿主抗病毒免疫应答中发挥着重要的作用。TRIM家族蛋白可通过提高宿主固有免疫应答或直接降解病毒蛋白发挥抗病毒活性;部分病毒有时也可利用TRIM家族蛋白调控细胞因子表达促进自身感染。本文综述了TRIM家族蛋白在病毒复制中的作用及相关机制的研究进展,为研究病毒感染机制提供参考。  相似文献   

13.
Influenza virus ns1 protein induces apoptosis in cultured cells   总被引:26,自引:0,他引:26       下载免费PDF全文
The importance of influenza viruses as worldwide pathogens in humans, domestic animals, and poultry is well recognized. Discerning how influenza viruses interact with the host at a cellular level is crucial for a better understanding of viral pathogenesis. Influenza viruses induce apoptosis through mechanisms involving the interplay of cellular and viral factors that may depend on the cell type. However, it is unclear which viral genes induce apoptosis. In these studies, we show that the expression of the nonstructural (NS) gene of influenza A virus is sufficient to induce apoptosis in MDCK and HeLa cells. Further studies showed that the multimerization domain of the NS1 protein but not the effector domain is required for apoptosis. However, this mutation is not sufficient to inhibit apoptosis using whole virus.  相似文献   

14.
Like all viruses, influenza viruses (IAVs) use host translation machinery to decode viral mRNAs. IAVs ensure efficient translation of viral mRNAs through host shutoff, a process whereby viral proteins limit the accumulation of host proteins through subversion of their biogenesis. Despite its small genome, the virus deploys multiple host shutoff mechanisms at different stages of infection, thereby ensuring successful replication while limiting the communication of host antiviral responses. In this Gem, we review recent data on IAV host shutoff proteins, frame the outstanding questions in the field, and propose a temporally coordinated model of IAV host shutoff.  相似文献   

15.
The replication of viruses involves control of some aspects of host cell homeostasis by modification of target cell metabolism and regulation of the apoptotic machinery. It is not well known whether molecules involved in apoptotic pathways affect human immunodeficiency virus type 1 (HIV-1) replication and regulate viral yields. Using the susceptible Jurkat cell line, we studied the relationship of apoptosis-associated molecules with HIV-1 virus production using a sensitive real-time RT-PCR assay. Here, we found that expression of proapoptotic proteins, including Fas ligand (FasL), FADD, or p53 significantly increased HIV-1 virus production. In contrast, the expression of antiapoptotic molecules, such as FLIP, Bcl-XL, and XIAP, decreased HIV-1 virus production. Knockdown of Bax with siRNA and FADD with expression of its antisense mRNA also inhibited viral replication and the caspase-3 inhibitor, Z-DEVD, and decreased virus production. These data indicate that HIV-1 infection regulates the apoptosis process to facilitate viral replication and inhibition of apoptosis may inhibit HIV-1 replication and cytopathogenesis. We also discuss the effects of MAPK signaling pathways and apoptosis on HIV-1 replication.  相似文献   

16.
RNA viruses have rapidly evolving genomes which often allow cross-species transmission and frequently generate new virus variants with altered pathogenic properties. Therefore infections by RNA viruses are a major threat to human health. The infected host cell detects trace amounts of viral RNA and the last years have revealed common principles in the biochemical mechanisms leading to signal amplification that is required for mounting of a powerful antiviral response. Components of the RNA sensing and signaling machinery such as RIG-I-like proteins, MAVS and the inflammasome inducibly form large oligomers or even fibers that exhibit hallmarks of prions. Following a nucleation event triggered by detection of viral RNA, these energetically favorable and irreversible polymerization events trigger signaling cascades leading to the induction of antiviral and inflammatory responses, mediated by interferon and NF-κB pathways. Viruses have evolved sophisticated strategies to manipulate these host cell signaling pathways in order to ensure their replication. We will discuss at the examples of influenza and HTLV-1 viruses how a fascinating diversity of biochemical mechanisms is employed by viral proteins to control the NF-κB pathway at all levels.  相似文献   

17.
18.
Fundamental property of viruses is to rapidly adapt themselves under changing conditions of virus replication. Using HIV-1 derivatives that poorly replicate in macaque cells as model viruses, we studied here mechanisms for promoting viral replication in non-natural host cells. We found that the HIV-1s could evolve to grow better in both macaque and human cells by the continuous culture in macaque lymphocyte cell lines. Notably, only several mutations at defined sites of the Pol-integrase and/or the Env-gp120 reproducibly appeared in repeated adaptation experiments and were sufficient to cause the phenotypic change. Meanwhile, no amino acid changes to enhance viral replication in macaque cells were found in interaction sites for the known anti-retroviral proteins. These findings disclose a hitherto unappreciated evolutionary pathway to augment HIV-1 replication in primate cells, where tuning of viral interactions with positive rather than negative factors for replication can play a dominant role.  相似文献   

19.
The mechanisms of liver injury in hepatitis B virus (HBV) infection are defined to be due not to the direct cytopathic effects of viruses, but to the host immune response to viral proteins expressed by infected hepatocytes. We showed here that transfection of mammalian cells with a replicative HBV genome causes extensive cytopathic effects, leading to the death of infected cells. While either necrosis or apoptosis or both may contribute to the death of infected cells, results from flow cytometry suggest that apoptosis plays a major role in HBV-induced cell death. Data mining of the four HBV protein sequences reveals the presence of a Bcl-2 homology domain 3 (BH3) in HBSP, a spliced viral protein previously shown to be able to induce apoptosis and associated with HBV pathogenesis. HBSP is expressed at early stage of our cell-based HBV replication. When transfected into HepG2 cells, HBSP causes apoptosis in a caspase dependent manner. Taken together, our results suggested a direct involvement of HBV viral proteins in cellular apoptosis, which may contribute to liver pathogenesis.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号