首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
The neuronal glutamate transporter, EAAC1 (excitatory amino acid carrier 1), undergoes rapid regulation after treatment with platelet-derived growth factor (PDGF) or phorbol ester in C6 glioma cells and neurons. A large intracellular pool of EAAC1 exists, from which transporters are redistributed to the cell surface in response to these signals. Here we show that PDGF had no effect on subcellular localization of the glial glutamate transporter, GLT-1, after transfection into C6 glioma cells. Chimeras consisting of domains from EAAC1 or GLT-1 were used to investigate structural motifs involved in PDGF-dependent redistribution of EAAC1. PDGF did not induce trafficking of an EAAC1 chimera containing the carboxyl-terminal domain of GLT-1; however, it did induce trafficking of a GLT-1 chimera containing the carboxyl-terminal domain of EAAC1. A truncated mutant of EAAC1 lacking 10 carboxyl-terminal amino acids was responsive to PDGF, whereas a mutant lacking 20 residues was not. Alanine substitution mutagenesis in this region revealed a short motif, (502)YVN(504), necessary for regulated trafficking. This motif was also involved in protein kinase C-dependent trafficking, as mutant transporters exhibited an attenuated response to phorbol ester. Interestingly, the presence of YVN in the homologous region of a nonresponsive chimera was not sufficient to confer regulated trafficking; however, the presence of a 12-amino acid motif starting at this Tyr residue was sufficient to confer responsiveness to PDGF. These studies identify a novel motif within the carboxyl terminus of EAAC1 which is required for regulated trafficking. The possibility that this motif targets EAAC1 to an intracellular, "regulated pool" is discussed.  相似文献   

2.
Many of the sodium‐dependent neurotransmitter transporters are rapidly (within minutes) regulated by protein kinase C (PKC), with changes in activity being correlated with changes in transporter trafficking to or from the plasma membrane. Our recent studies suggest that one of the classical subtypes of PKC, PKCα, may selectively mediate redistribution of the neuronal glutamate transporter, excitatory amino acid carrier (EAAC)1, and show that PKCα can be co‐immunoprecipitated with EAAC1. When the glial glutamate transporter GLT‐1a is transfected into C6 glioma cells, this transporter is internalized in response to activation of PKC, but the PKC subtype involved in this regulation is unknown. In the present study, expression of the phorbol ester‐activated subtypes of PKC was examined in C6 glioma transfected with GLT‐1. Of the classical subtypes, only PKCα was detected, and of the non‐classical subtypes, PKCδ and PKCε were detected. In this system, phorbol ester‐dependent internalization of GLT‐1 was blocked by a general inhibitor of PKCs (bisindolylmaleimide II) and by concentrations of Gö6976 that selectively block classical PKCs, but not by an inhibitor of PKCδ (rottlerin). PKCα immunoreactivity was found in GLT‐1 immunoprecipitates obtained from transfected C6 cells and from crude rat brain synaptosomes, a milieu that better mimics in vivo conditions. The amount of PKCα in both types of immunoprecipitate was modestly increased by phorbol ester, and this increase was blocked by a PKC antagonist. These studies suggest that PKCα may be required for the regulated redistribution of GLT‐1.  相似文献   

3.
Glial glutamate transporter GLT-1 mRNA was selectively induced in C6 glioma cells exposed to hypertonic stress (HS), while the expression of two other subtypes, GLAST and EAAC1, was suppressed. HS increased phosphorylation of the MAPK family, ERK, p38 MAPK, and JNK. Treatment with a PKC inhibitor showed that phosphorylation of both p38 MAPK and JNK is PKC-dependent but ERK phosphorylation is independent. Inhibition of either ERK or p38 MAPK did not abolish GLT-1 mRNA induction. Inhibition of PKC also had no effect. These findings indicate that the induction of GLT-1 mRNA by HS is independent of the MAPK pathways. This is the first report that the expression of glial glutamate transporters is osmotically regulated.  相似文献   

4.
Glutamate transporters (GLT-1, GLAST, EAAC1) limit the actions of excitatory amino acids. Because a disturbed transporter operation can cause or aggravate neurological diseases, transporters are of considerable neuropathological interest. Human samples, however, are seldom obtained fresh. Here, we used mice brains to study how fast glutamate transporters are degraded after death. Immunoblots showed that terminal GLT-1 epitopes (within residues 1–26 and 518–573) had mostly disappeared after 24 hr. GLAST termini (1–25 and 522–543) degraded slightly slower. In contrast, epitopes within central parts of GLT-1 (493–508) and the EAAC1 C-terminus (510–523) were readily detectable after 72 hr. The decline in immunoreactivity of the GLT-1 and GLAST termini was also seen in tissue sections, but proteolysis did not happen synchronously in all cells. At 24 hr, scattered cells remained strongly immunopositive, while the majority of cells were completely immunonegative. GLAST and GLT-1 co-localized in neocortical tissue, but at 12 hr, many GLAST-positive cells had lost the GLT-1 termini. The uneven disappearance of labeling was not observed with the antibodies to GLT-1 residues 493–508. The immunoreactivity to this epitope correlated better with the reported glutamate uptake activity. Thus, postmortem delay may affect epitopes differently, possibly causing erroneous conclusions about relative expression levels.  相似文献   

5.
Abstract: The effects of CNS axotomy on glutamate transporter and glutamate receptor expression were evaluated in adult rats following unilateral fimbria-fornix transections. The septum and hippocampus were collected at 3, 7, 14, and 30 days postlesion. Homogenates were immunoblotted by using antibodies directed against glutamate transporters (GLT-1, GLAST, and EAAC1) and glutamate receptors (GluR1, GluR2/3, GluR6/7, and NMDAR1), and they were assayed for glutamate transport by d -[3H]aspartate binding. GLT-1 was decreased at 7 and 14 days postlesion within the ipsilateral septum and at 7 days postlesion in the hippocampus. GLAST was decreased within the ipsilateral septum and hippocampus at 7 and 14 days postlesion. No postlesion alterations in EAAC1 immunoreactivity were observed. d -[3H]Aspartate binding was decreased at 7, 14, and 30 days postlesion within the ipsilateral septum and 14 days postlesion in the hippocampus. GluR2/3 expression was down-regulated at 30 days postlesion within the ipsilateral septum, whereas GluR1, GluR6/7, and NMDAR1 immunoreactivity was unchanged. In addition, no alterations in glutamate receptor expression were detected within hippocampal homogenates. This study demonstrates a selective down-regulation of primarily glial, and not neuronal, glutamate transporters and a delayed, subtype-specific down-regulation of septal GluR2/3 receptor expression after regional deafferentation within the CNS.  相似文献   

6.
Abstract: Low extracellular glutamate content is maintained primarily by high-affinity sodium-dependent glutamate transport. Three glutamate transporter proteins have been cloned: GLT-1 and GLAST are astroglial, whereas EAAC1 is neuronal. The effects of axotomy on glutamate transporter expression was evaluated in adult rats following unilateral fimbria-fornix and corticostriatal lesions. The hippocampus and striatum were collected at 3, 7, 14, and 30 days postlesion. Homogenates were immunoblotted using antibodies directed against GLT-1, GLAST, EAAC1, and glial fibrillary acidic protein and assayed for glutamate transport by d -[3H]aspartate binding. GLT-1 immunoreactivity was decreased within the ipsilateral hippocampus and striatum at 14 days postlesion. GLAST immunoreactivity was decreased within the ipsilateral hippocampus and striatum at 7 and 14 days postlesion. No alterations in EAAC1 immunoreactivity were observed. d -[3H]Aspartate binding was decreased at 14 days postlesion within the ipsilateral hippocampus and at 7 and 14 days postlesion within the ipsilateral striatum. By 30 days postlesion, glutamate transporters and d -[3H]aspartate binding returned to control levels. This study demonstrates the down-regulation of primarily glial, and not neuronal, glutamate transporters following regional disconnection.  相似文献   

7.
Excitatory amino acid transporters (EAATs) are membrane-bound proteins localized in glial and neuronal cells which transport glutamate (Glu) in a process essential for terminating its action and protecting neurons from excitotoxic damage. Since Pb-induced neurotoxicity has a glutamatergic component and astrocytes serve as a cellular Pb deposition site, it was of interest to investigate the response of main glutamate transporters to short-term lead exposure in the adult rat brain (25mg/kg b.w. of lead acetate, i.p. for 3 days). We examined the expression of mRNA and protein of GLAST, GLT-1 and EAAC1 in homogenates obtained from cerebellum, hippocampus and forebrain. Molecular evidence is provided which indicates that, of the two glial transporters, GLT-1 is more susceptible than GLAST to the neurotoxic effect arising from Pb. RT-PCR analysis revealed highly decreased expression of GLT-1 mRNA in forebrain and hippocampus. In contrast, GLAST was overexpressed in forebrain and in cerebellum. In the case of EAAC1, the enhanced expression of mRNA and protein of transporter was observed only in forebrain. The results demonstrate regional differences in the expression of glutamate transporters after short-term exposure to Pb. In forebrain, downregulation of GLT-1 is compensated by enhanced expression of GLAST, while in hippocampus, the expression of both is lowered. This observation suggests that under conditions of Pb toxicity in adult rat brain, the hippocampus is most vulnerable to the excitotoxic cell damage arising from impaired clearance of the released glutamate.  相似文献   

8.
Glutamate transporter-1 (GLT-1) is the main glutamate transporter in the central nervous system, and its concentration severely decreases in neurodegenerative diseases. The number of transporters in the plasma membrane reflects the balance between their insertion and removal, and it has been reported that the regulated endocytosis of GLT-1 depends on its ubiquitination triggered by protein kinase C (PKC) activation. Here, we identified serine 520 of GLT-1 as the primary target for PKC-dependent phosphorylation, although elimination of this serine did not impair either GLT-1 ubiquitination or endocytosis in response to phorbol esters. In fact, we present evidence indicating that the ubiquitin ligase Nedd4-2 mediates the PKC-dependent ubiquitination and down-regulation of GLT-1. Overexpression of Nedd4-2 increased the ubiquitination of the transporter and promoted its degradation. Moreover, phorbol myristate acetate enhanced Nedd4-2 phosphorylation and the formation of GLT-1·Nedd4-2 complexes, whereas siRNA knockdown of Nedd4-2 prevented ubiquitination, endocytosis, and the concomitant decrease in GLT-1 activity triggered by PKC activation. These results indicate that GLT-1 endocytosis is independent of its phosphorylation and that Nedd4-2 mediates PKC-dependent down-regulation of the transporter.  相似文献   

9.
The neuronal glutamate transporter, EAAC1, appears to both limit spillover between excitatory synapses and provide precursor for the synthesis of the inhibitory neurotransmitter, gamma-aminobutyric acid. There is evidence for a large intracellular pool of EAAC1 from which transporter is redistributed to the cell surface following activation of protein kinase C (PKC) or platelet-derived growth factor (PDGF) receptor by seemingly independent pathways. A variety of biotinylation strategies were employed to measure trafficking of EAAC1 to and from the plasma membrane and to examine the effects of phorbol ester and PDGF on these events. Biotinylation of cell surface protein under trafficking-permissive conditions (37 degrees C) resulted in a 2-fold increase in the amount of biotinylated EAAC1 within 15 min in C6 glioma and in primary neuronal cultures, suggesting that EAAC1 has a half-life of approximately 5-7 min for residence at the plasma membrane. Both phorbol ester and PDGF increased the amount of transporter labeled under these conditions. Using a reversible biotinylation strategy, a similarly rapid internalization of EAAC1 was observed in C6 glioma. Phorbol ester, but not PDGF, blocked this measure of internalization. Incubation at 18 degrees C, which blocks some forms of intracellular membrane trafficking, inhibited PKC- and PDGF-dependent redistribution of EAAC1 but had no effect on basal trafficking of EAAC1. These studies suggest that both PKC and PDGF accelerate delivery of EAAC1 to the cell surface and that PKC has an additional effect on endocytosis. The data also suggest that basal and regulated pools of EAAC1 exist in distinct compartments.  相似文献   

10.
Transient focal cerebral ischemia leads to extensive excitotoxic neuronal damage in rat cerebral cortex. Efficient reuptake of the released glutamate is essential for preventing glutamate receptor over-stimulation and neuronal death. Present study evaluated the expression of the glial (GLT-1 and GLAST) and neuronal (EAAC1) subtypes of glutamate transporters after transient middle cerebral artery occlusion (MCAO) induced focal cerebral ischemia in rats. Between 24h to 72h of reperfusion after transient MCAO, GLT-1 and EAAC1 protein levels decreased significantly (by 36% to 56%, p < 0.05) in the ipsilateral cortex compared with the contralateral cortex or sham control. GLT-1 and EAAC1 mRNA expression also decreased in the ipsilateral cortex of ischemic rats at both 24h and 72h of reperfusion, compared with the contralateral cortex or sham control. Glutamate transporter down-regulation may disrupt the normal clearance of the synaptically-released glutamate and may contribute to the ischemic neuronal death.  相似文献   

11.
Sodium-dependent glutamate uptake is essential for limiting excitotoxicity, and dysregulation of this process has been implicated in a wide array of neurological disorders. The majority of forebrain glutamate uptake is mediated by the astroglial glutamate transporter, GLT-1. We and others have shown that this transporter undergoes endocytosis and degradation in response to activation of protein kinase C (PKC), however, the mechanisms involved remain unclear. In the current study, transfected C6 glioma cells or primary cortical cultures were used to show that PKC activation results in incorporation of ubiquitin into GLT-1 immunoprecipitates. Mutation of all 11 lysine residues in the amino and carboxyl-terminal domains to arginine (11R) abolished this signal. Selective mutation of the seven lysine residues in the carboxyl terminus (C7K–R) did not eliminate ubiquitination, but it completely blocked PKC-dependent internalization and degradation. Two families of variants of GLT-1 were prepared with various lysine residues mutated to arginine. Analyses of these constructs indicated that redundant lysine residues in the carboxyl terminus were sufficient for the appearance of ubiquitinated product and degradation of GLT-1. Together these data define a novel mechanism by which the predominant forebrain glutamate transporter can be rapidly targeted for degradation.  相似文献   

12.
In the central nervous system (CNS), extracellular concentrations of amino acids (e.g., aspartate, glutamate) and divalent metals (e.g., zinc, copper, manganese) are primarily regulated by astrocytes. Adequate glutamate homeostasis and control over extracellular concentrations of these excitotoxic amino acids are essential for the normal functioning of the brain. Not only is glutamate of central importance for nitrogen metabolism but, along with aspartate, it is the primary mediator of excitatory pathways in the brain. Similarly, the maintenance of proper Mn levels is important for normal brain function. Brain glutamate is removed from the extracellular fluid mainly by astrocytes via high affinity astroglial Na+-dependent excitatory amino acid transporters, glutamate/aspartate transporter (GLAST) and glutamate transporter-1 (GLT-1). The effects of Mn on specific glutamate transporters have yet to be determined. As a first step in this process, we examined the effects of Mn on the transport of [D-2, 3-3H]D-aspartate, a non-metabolizable glutamate analog, in Chinese hamster ovary cells (CHO) transfected with two glutamate transporter subtypes, GLAST (EAAT1) or GLT-1 (EAAT2). Mn-mediated inhibition of glutamate transport in the CHO-K1 cell line DdB7 was pronounced in both the GLT-1 and GLAST transfected cells. This resulted in a statistically significant inhibition (p<0.05) of glutamate uptake compared with transfected control in the absence of Mn treatment. These studies suggest that Mn accumulation in the CNS might contribute to dysregulation of glutamate homeostasis.  相似文献   

13.
Many neurotransmitter transporters, including the GLT-1 and EAAC1 subtypes of the glutamate transporter, are regulated by protein kinase C (PKC) and these effects are associated with changes in cell surface expression. In the present study, the effects of PKC activation on the glutamate aspartate transporter (GLAST) subtype of glutamate transporter were examined in primary astrocyte cultures. Acute (30 min) exposure to the phorbol 12-myristate 13-acetate (PMA) increased (approximately 20%) transport activity but had the opposite effect on both total and cell surface immunoreactivity. Chronic treatment (6 or 24 h) with PMA had no effect on transport activity but caused an even larger decrease in total and cell surface immunoreactivity. This loss of immunoreactivity was observed using antibodies directed against three different cytoplasmic epitopes, and was blocked by the PKC antagonist, bisindolylmaleimide II. We provide biochemical and pharmacological evidence that the activity observed after treatment with PMA is mediated by GLAST. Two different flag-tagged variants of the human homolog of GLAST were introduced into astrocytes using lentiviral vectors. Although treatment with PMA caused a loss of transporter immunoreactivity, flag immunoreactivity did not change in amount or size. Together, these studies suggest that activation of PKC acutely up-regulates GLAST activity, but also results in modification of several different intracellular epitopes so that they are no longer recognized by anti-GLAST antibodies. We found that exposure of primary cultures of neurons/astrocytes to transient hypoxia/glucose deprivation also caused a loss of GLAST immunoreactivity that was attenuated by the PKC antagonist, bisindolylmaleimide II, suggesting that some acute insults previously thought to cause a loss of GLAST protein may mimic the phenomenon observed in the present study.  相似文献   

14.
15.
This study described the involvement of short-term PKA, PKC or PI3K phosphorylation-mediated processes in the regulation of activity and trafficking of the excitatory amino acid transporters EAAC1, GLAST and GLT-1 endogenously expressed in neuron-enriched cultures. Glutamate uptake was dose-dependently decreased by inhibitors of protein kinase A (PKA), [N-[2-(p-bromocinnamylamino)-ethyl]-5-(isoquinolinesulfonamide)] (H89) or phosphatidylinositol 3-kinase (PI3K) (wortmannin), but not altered after protein kinase C (PKC) inhibition (staurosporine) or activation phorbol-12-myristate-13-acetate (PMA). Biotinylation and immunoblotting results (% of controls) showed that EAAC1 membrane expression was significantly decreased by H89 (71.9+/-4.7%) and wortmannin (63.3+/-20.0%) and increased by PMA (137.7+/-15.5%). H89 and PMA induced a significant decrease of the cell surface fraction of GLAST (54.0+/-34.1% and 73.3+/-14.3%, respectively) whereas wortmannin significantly increased this fraction (119.8+/-9.3%). After treatment with H89, the GLT-1 membrane level showed a two-fold increase (179.4+/-19.7%). Conversely, PMA and wortmannin induced a significant decrease of the cell surface expression of GLT-1 (49.0+/-15.4% and 40.7+/-33.7%, respectively). Confocal microscopy revealed a wortmannin-induced clustering of EAAC1 in the intracellular compartment. These data suggest that trafficking of glutamate transporters can be differentially regulated by PKA-, PKC- and PI3K-dependent signaling pathways and could therefore control total glutamate uptake activity. These processes may represent rapid adaptive responses to changes in the cellular environment, which significantly contribute to regulation of EAA transmission and further prevent possible excitotoxic events.  相似文献   

16.
Injured motor neurons of the adult rat can survive, whereas similar axotomy causes gradual motor neuron death in the adult mouse. We report that the decreased expression of the neuronal glutamate transporter excitatory amino-acid carrier 1 (EAAC1) following nerve injury is associated with motor neuron death in the mouse. Glutamate transporters play a crucial role in prevention of neuronal death by suppressing glutamate toxicity. However, the possible functional role of EAAC1 in preventing neuron death has not been resolved as compared with glial glutamate transporters such as GLT-1. Here, we have revealed a unique 'rescue' function of EAAC1, which is independent of removal of extracellular glutamate. During apoptotic stimuli, a mitochondrial protein, holocytochrome c synthetase (HCCS), translocates to outside the mitochondria, binds to and suppresses the X-linked inhibitor of apoptosis protein (XIAP), leading to activation of caspase-3. The N-terminus of EAAC1 can bind to HCCS, which interferes with the HCCS-XIAP association, and thereby maintain XIAP activity. This unique anti-apoptotic mechanism of EAAC1 functions in rescuing PC12 cells and motor neurons from NGF deprivation and nerve injury, respectively.  相似文献   

17.
Glutamate transporters remove this neurotransmitter from the synapse in an electrogenic process. After sodium-coupled glutamate translocation, the cycle is completed by obligatory outward translocation of potassium. In the crystal structure of an archaeal homologue, two conserved residues form a beta-bridge, which points away from the binding pocket. In the neuronal glutamate transporter EAAC1, the equivalent residues are asparagine 366 and aspartate 368. Substitution mutants N366Q and D368E, but not N366D and D368N, show glutamate-induced inwardly rectifying steady-state currents, but their apparent substrate affinity is dramatically decreased. Such currents, which reflect electrogenic net uptake of substrate are not observed with the reciprocal double mutant N366D/D368N. Remarkably, the double mutant exhibits slow substrate-induced voltage-dependent capacitative transient currents. These currents apparently reflect the reversible sodium-coupled glutamate translocation step, because the interaction of the double mutant with potassium is largely impaired. Moreover, when the analogous double mutant in the glutamate transporter GLT-1 is reconstituted into liposomes, a slow exchange of radioactive and unlabeled acidic amino acids is observed. Our results suggest that it is the interaction of asparagine 366 and aspartate 368 that is important during the glutamate translocation step. On the other hand, the side chains of these residues themselves are required for the subsequent potassium relocation step.  相似文献   

18.
High affinity glutamate transporters regulate levels of extracellular glutamate in the central nervous system. Impaired glutamate transport has been implicated in the pathogenesis of amyotrophic lateral sclerosis (ALS). The glutamate transporter subtypes GluT-1 and EAAC1 have previously been mapped to human chromosomes 5p13 and 9p24, respectively. In the present study, the GLT-1 subtype was mapped to human chromosome 11p11.2–p13 by fluorescence in situ hybridization. The possible clinical implications of this finding are discussed.  相似文献   

19.
Neurotransmitter transporters are key elements in the termination of the synaptic actions of the neurotransmitters. They use the energy stored in the electrochemical ion gradients across the plasma membrane of neurons and glial cells for uphill transport of the transmitters into the cells surrounding the synapse. Therefore specific transporter inhibitors can potentially be used as novel drugs for neurological disease. Sodium-coupled neurotransmitter transporters belong to either of two distinct families. The glutamate transporters belong to the SLC1 family, whereas the transporters of the other neurotransmitters belong to the SLC6 family. An exciting and recent development is the emergence of the first high-resolution structures of archeal and bacterial members belonging to these two families. In this review the functional results on prototypes of the two families, the GABA transporter GAT-1 and the glutamate transporters GLT-1 and EAAC1, are described and discussed within the perspective provided by the novel structures.  相似文献   

20.
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by a selective loss of motor neurones accompanied by intense gliosis in lesioned areas of the brain and spinal cord. Glutamate-mediated excitotoxicity resulting from impaired astroglial uptake constitutes one of the current pathophysiological hypotheses explaining the progression of the disease. In this study, we examined the regulation of glutamate transporters by type 5 metabotropic glutamate receptor (mGluR5) in activated astrocytes derived from transgenic rats carrying an ALS-related mutated human superoxide dismutase 1 (hSOD1(G93A)) transgene. Cells from transgenic animals and wild-type littermates showed similar expression of glutamate-aspartate transporter and glutamate transporter 1 (GLT-1) after in vitro activation, whereas cells carrying the hSOD1 mutation showed a three-fold higher expression of functional mGluR5, as observed in the spinal cord of end-stage animals. In cells from wild-type animals, (S)-3,5-dihydroxyphenylglycine (DHPG) caused an immediate protein kinase C (PKC)-dependent up-regulation of aspartate uptake that reflected the activation of GLT-1. Although this effect was mimicked in both cultures by direct activation of PKC using phorbol myristate acetate, DHPG failed to up-regulate aspartate uptake in cells derived from the transgenic rats. The failure of activated mGluR5 to increase glutamate uptake in astrocytes derived from this animal model of ALS supports the theory of glutamate excitotoxicity in the pathogenesis of the disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号