首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sinefungin, an antifungal and antiparasitic antibiotic, is produced efficiently from ammonium citrate by prototrophic strains of Streptomyces incarnatus. The regulation of the biosynthesis of this nucleoside, composed of adenosine and ornithine, was studied by using auxotrophic mutants and a resting-cell system. Mutants blocked in arginine synthesis were not able to produce sinefungin. A uridine-negative mutant produced sinefungin in the presence of ATP, but this production was strongly inhibited when amino acids of the urea cycle were added. The same mutant produced sinefungin from aspartic acid, and this production was enhanced by ornithine. Our results show that the ornithine part of the molecule originates from arginine, liberated by either anabolic or catabolic processes.  相似文献   

2.
Putrescine, the most abundant biogenic amine in wine, was proved to be produced by Oenococcus oeni strains in wine not only from ornithine but also from arginine. In this case, putrescine may originate from strains possessing the complete enzyme system to convert arginine to putrescine or by a metabiotic association, with an exchange of ornithine, between strains capable of metabolizing arginine to ornithine but unable to produce putrescine and strains capable of producing putrescine from ornithine but unable to degrade arginine. Putrescine production by this metabiotic association occurred once the malolactic fermentation was completed, whereas conversion of ornithine to putrescine by a single culture of the ornithine decarboxylating strain concurred with the degradation of malic acid. Moreover, in the former case, putrescine formation proceeded more slowly than in the latter. Metabiosis may play an important role in the accumulation of putrescine in wine, arginine being one of the major amino acids found in wine.  相似文献   

3.
Bacillus licheniformis has two pathways of arginine catabolism. In well-aerated cultures, the arginase route is present, and levels of catabolic ornithine carbamoyltransferase were low. An arginase pathway-deficient mutant, BL196, failed to grow on arginine as a nitrogen source under these conditions. In anaerobiosis, the wild type contained very low levels of arginase and ornithine transaminase. BL196 grew normally on glucose plus arginine in anaerobiosis and, like the wild type, had appreciable levels of catabolic transferase. Nitrate, like oxygen, repressed ornithine carbamoyltransferase and stimulated arginase synthesis. In aerobic cultures, arginase was repressed by glutamine in the presence of glucose, but not when the carbon-energy source was poor. In anaerobic cultures, ammonia repressed catabolic ornithine carbamoyltransferase, but glutamate and glutamine stimulated its synthesis. A second mutant, derived from BL196, retained the low arginase and ornithine transaminase levels of BL196 but produced high levels of deiminase pathway enzymes in the presence of oxygen.  相似文献   

4.
Cells of the unicellular cyanobacterium Synechocystis sp. strain PCC 6803 supplemented with micromolar concentrations of L-[(14)C]arginine took up, concentrated, and catabolized this amino acid. Metabolism of L-[(14)C]arginine generated a set of labeled amino acids that included argininosuccinate, citrulline, glutamate, glutamine, ornithine, and proline. Production of [(14)C]ornithine preceded that of [(14)C]citrulline, and the patterns of labeled amino acids were similar in cells incubated with L-[(14)C]ornithine, suggesting that the reaction of arginase, rendering ornithine and urea, is the main initial step in arginine catabolism. Ornithine followed two metabolic pathways: (i) conversion into citrulline, catalyzed by ornithine carbamoyltransferase, and then, with incorporation of aspartate, conversion into argininosuccinate, in a sort of urea cycle, and (ii) a sort of arginase pathway rendering glutamate (and glutamine) via Delta(1)pyrroline-5-carboxylate and proline. Consistently with the proposed metabolic scheme (i) an argF (ornithine carbamoyltransferase) insertional mutant was impaired in the production of [(14)C]citrulline from [(14)C]arginine; (ii) a proC (Delta(1)pyrroline-5-carboxylate reductase) insertional mutant was impaired in the production of [(14)C]proline, [(14)C]glutamate, and [(14)C]glutamine from [(14)C]arginine or [(14)C]ornithine; and (iii) a putA (proline oxidase) insertional mutant did not produce [(14)C]glutamate from L-[(14)C]arginine, L-[(14)C]ornithine, or L-[(14)C]proline. Mutation of two open reading frames (sll0228 and sll1077) putatively encoding proteins homologous to arginase indicated, however, that none of these proteins was responsible for the arginase activity detected in this cyanobacterium, and mutation of argD (N-acetylornithine aminotransferase) suggested that this transaminase is not important in the production of Delta(1)pyrroline-5-carboxylate from ornithine. The metabolic pathways proposed to explain [(14)C]arginine catabolism also provide a rationale for understanding how nitrogen is made available to the cell after mobilization of cyanophycin [multi-L-arginyl-poly(L-aspartic acid)], a reserve material unique to cyanobacteria.  相似文献   

5.
From an arginine auxotrophic strain, a mutant was isolated which is able to utilize d-arginine as a source of l-arginine and shows a high sensitivity to inhibition of growth by canavanine. Transport studies revealed a four- to five-fold increased uptake of arginine and ornithine in cells from the mutant strain. The kinetics of entry of arginine and ornithine evidenced elevated maximal influx values for the arginine- and ornithine-specific transport systems. A close parallel between arginine transport activity and arginine binding activity with one arginine-specific binding periplasmic protein in the mutant strongly suggests that such binding protein is a component of the arginine-specific permease. The affinity between arginine and the binder, isolated from the mutant cells, as well as the electrophoretic mobility of the protein, remain unchanged. The enhanced transport activity of arginine and ornithine with mutant cells is insensitive to repression by arginine or ornithine, whereas the biosynthesis of arginine-forming enzymes is normally repressible. When transport activity was examined in strains with mutations leading to derepression of arginine biosynthesis, the regulation of arginine transport was found to be normal. These studies support the conclusion that arginine transport and arginine biosynthesis, in Escherichia coli K-12, are not regulated in a concerted manner, although both systems may have components in common.  相似文献   

6.
The opportunistic fungal pathogen Aspergillus fumigatus produces siderophores for uptake and storage of iron, which is essential for its virulence. The main precursor of siderophore biosynthesis (SB), ornithine, can be produced from glutamate in the mitochondria or by cytosolic hydrolysis of ornithine-derived arginine. Here, we studied the impact of mitochondrial versus cytosolic ornithine biosynthesis on SB by comparison of the arginine auxotrophic mutants ΔargEF and ΔargB, which lack and possess mitochondrial ornithine production, respectively. Deficiency in argEF (encoding acetylglutamate kinase and acetylglutamyl-phosphate-reductase), but not argB (encoding ornithine transcarbamoyl transferase) decreased (i) the cellular ornithine content, (ii) extra- and intracellular SB, (iii) growth under harsh iron starvation, (iv) resistance to the ornithine decarboxylase inhibitor eflornithine, and (v) virulence in the Galleria mellonella larvae model. These lines of evidence indicate that SB is mainly fueled by mitochondrial rather than cytosolic ornithine production and underline the role of SB in virulence. Ornithine content and SB of ΔargB increased with declining arginine supplementation indicating feedback-inhibition of mitochondrial ornithine biosynthesis by arginine. In contrast to SB, the arginine and polyamine contents were only mildly affected in ΔargEF, indicating prioritization of the latter two ornithine-consuming pathways over SB. These data highlight the metabolic differences between the two arginine auxotrophic mutants ΔargEF and ΔargB and demonstrate that supplementation of an auxotrophic mutant does not restore the wild type metabolism at the molecular level, a fact to be considered when working with auxotrophic mutants. Moreover, cross pathway control-mediating CpcA was found to influence the ornithine pool as well as biosynthesis of siderophores and polyamines.  相似文献   

7.
Ornithine decarboxylase (ODC) catalyzes the first step in the polyamine biosynthetic pathway, a highly regulated pathway in which activity increases during rapid growth. Other enzymes also metabolize ornithine, and in hepatomas, rate of growth correlates with decreased activity of these other enzymes, which thus channels more ornithine to polyamine biosynthesis. Ornithine is produced from arginase cleavage of arginine, which also serves as the precursor for nitric oxide production. To study whether short-term coordination of ornithine and arginine metabolism exists in rat colon, ODC, ornithine aminotransferase (OAT), arginase, ornithine, arginine, and polyamine levels were measured after two stimuli (refeeding and/or deoxycholate exposure) known to synergistically induce ODC activity. Increased ODC activity was accompanied by increased putrescine levels, whereas OAT and arginase activity were reduced by either treatment, accompanied by an increase in both arginine and ornithine levels. These results indicate a rapid reciprocal change in ODC, OAT, and arginase activity in response to refeeding or deoxycholate. The accompanying increases in ornithine and arginine concentration are likely to contribute to increased flux through the polyamine and nitric oxide biosynthetic pathways in vivo.  相似文献   

8.
An arginine auxotrophic mutant was obtained from Streptomyces griseoflavus (bicozamycin-producing strain). The mutant grew on synthetic agar supplemented with either arginine, ornithine, citrulline or argininosuccinate, but produced massive aerial mycelium and bicozamycin only with citrulline. In liquid culture, citrulline also completely restored the ability of the mutant to produce bicozamycin. Culture with arginine or ornithine markedly changed intracellular pools of these ornithine-cycle amino acids, but did not affect the other amino acid pools. The ability to produce antibiotic (but not that to form aerial mycelium) was partially restored by certain mutations to ethionine resistance (Eth-1 and Eth-2). These mutations caused decreased or increased S-adenosylmethionine synthetase activity, but both resulted in a 4.5-8-fold increase in the intracellular S-adenosylmethionine pool. Exogenous addition of S-adenosylmethionine (0.5-3 mM) also partially restored the antibiotic-producing ability of the arginine auxotroph. No difference in the S-adenosylmethionine pool was observed in organisms grown with arginine and citrulline. It was suggested that citrulline and S-adenosylmethionine are somehow involved in the initiation of differentiation and secondary metabolism of S. griseoflavus.  相似文献   

9.
A procedure was developed for purification of ornithine transcarbamylase (OTCase) to near homogeneity from Bacillus subtilis 168. The purified native enzyme existed as a mixture of dimeric, tetrameric, and hexameric forms, but was converted to the dimer in the presence of 2-mercaptoethanol. The molecular weight of the subunit was 44,000. Some general kinetic properties of the enzyme were described. OTCase was repressed by arginine in growing B. subtilis cells, but the enzyme was induced by arginine at the end of exponential growth. Specific antibodies against the purified OTCase were used to show that the same enzyme was produced under all conditions. These results and studies of a mutant lacking OTCase demonstrated that B. subtilis produced only a single OTCase. OTCase was clearly required for arginine biosynthesis, but the physiological function of OTCase induction by arginine was obscure. OTCase was not induced by, or required for, growth on arginine as a carbon and nitrogen source. Absence of OTCase in a mutant did not alter the yield or arginine content of its spores in comparison to a strain containing OTCase.  相似文献   

10.
Escherichia coli strains capable of enhanced synthesis of arginine and urea were produced by derepression of the arginine regulon and simultaneous overexpression of the E. coli carAB and argI genes and the Bacillus subtilis rocF gene. Plasmids expressing carAB driven by their natural promoters were unstable. Therefore, E. coli carAB and argI genes with and without the B. subtilis rocF gene were constructed as a single operon under the regulation of the inducible promoter ptrc. Arginine operator sequences (Arg boxes) from argI were also cloned into the same plasmids for titration of the arginine repressor. Upon overexpression of these genes in E. coli strains, very high carbamyl phosphate synthetase, ornithine transcarbamylase, and arginase catalytic activities were achieved. The biosynthetic capacity of these engineered bacteria when overexpressing the arginine biosynthetic enzymes was 6- to 16-fold higher than that of controls but only if exogenous ornithine was present (ornithine was rate limiting). Overexpression of arginase in bacteria with a derepressed arginine biosynthetic pathway resulted in a 13- to 20-fold increase in urea production over that of controls with the parent vector alone; in this situation, the availability of carbamyl phosphate was rate limiting.  相似文献   

11.
We measured the metabolism of ornithine in Neurospora during the transition from minimal medium to arginine-supplemented medium. Within an hour after arginine supplementation, the amount of intracellular ornithine (95% of which had been stored in vesicles) dropped by 65%, even though the catabolism of arginine produces as much ornithine as had been produced on minimal medium. The arginine level in the cell rose 10-fold. Ornithine flux through the catabolic enzyme ornithine aminotransferase increased fivefold, but flux through the mitochondrial enzyme ornithine transcarbamylase (leading to arginine synthesis) was only 20% of the rate seen on minimal medium. During this transition to arginine catabolism, the enzymes of the arginine pathway operate as an ornithine cycle, but at a restricted rate. We suggest the hypothesis that high levels of arginine may inhibit the movement of ornithine into the vesicles and into the mitochondria.  相似文献   

12.
During growth on minimal medium, cells of Neurospora contain three pools of ornithine. Over 95% of the ornithine is in a metabolically inactive pool in vesicles, about 1% is in the cytosol, and about 3% is in the mitochondria. By using a ureaseless strain, we measured the rapid flux of ornithine across the membrane boundaries of these pools. High levels of ornithine and the catabolic enzyme ornithine aminotransferase coexist during growth on minimal medium but, due to the compartmentation of the ornithine, only 11% was catabolized. Most of the ornithine was used for the synthesis of arginine. Upon the addition of arginine to the medium, ornithine was produced catabolically via the enzyme arginasn early enzyme of ornithine synthesis. The biosynthesis of arginine itself, from ornithine and carbamyl phosphate, was halted after about three generations of growth on arginine via the repression of carbamyl phosphate synthetase A. The catabolism of arginine produced ornithine at a greater rate than it had been produced biosynthetically, but this ornithine was not stored; rather it was catabolized in turn to yield intermediates of the proline pathway. Thus, compartmentation, feedback inhibition, and genetic repression all play a role to minimize the simultaneous operation of anabolic and catabolic pathways for ornithine and arginine.  相似文献   

13.
Mutations in pyrA that abolish catalytic activity of carbamylphosphate synthetase cause auxotrophy for both arginine and a pyrimidine. Eight pyrA mutants auxotrophic only for arginine (AUX) were isolated by the mutagenized phage technique; three of these required arginine only at low temperature (20 degrees C). Explanations of the AUX phenotype based on bradytrophy were eliminated by the discovery that blocking the utilization of carbamylphosphate for pyrimidine biosynthesis by insertion of an additional mutation in pyrB (encoding aspartic transcarbamylase) did not reduce the requirement for arginine. In contrast, mutational blocks in the arginine biosynthetic pathway before N-acetylornithine (argB, argC, argG, or argH) did suppress the mutation in pyrA. This suggests that exogenous arginine permits growth of the AUX mutants by inhibiting the first step in the arginine pathway, thereby preventing accumulation of an intermediate that antagonizes mutant pyrA function. A mutation in argA (N-acetylornithinase) failed to suppress AUX, indicating that N-acetylornithine was the inhibitory intermediate. This intermediate had no effect on the catalytic or regulatory properties of carbamylphosphate synthetase from mutant cells grown under permissive conditions (37 degrees C). However, the regulatory properties of carbamylphosphate synthetase synthesized under restrictive conditions (20 degrees C) were demonstrably defective (insensitive to activation by ornithine); the enzyme synthesized under permissive conditions was activated by ornithine. A strain carrying an additional mutation (argC), which prevents the accumulation of N-acetylornithine, produced an ornithine-activatable enzyme at both growth temperatures. These results suggest that N-acetylornithine antagonizes the proper preconditioning or maturation of the mutant carbamylphosphate synthetase.  相似文献   

14.
Utilization of arginine by Klebsiella aerogenes.   总被引:9,自引:9,他引:0       下载免费PDF全文
Klebsiella aerogenes utilized arginine as the sole source of carbon or nitrogen for growth. Arginine was degraded to 2-ketoglutarate and not to succinate, since a citrate synthaseless mutant grows on arginine as the only nitrogen source. When glucose was the energy source, all four nitrogen atoms of arginine were utilized. Three of them apparently did not pass through ammonia but were transferred by transamination, since a mutant unable to produce glutamate by glutamate synthase or glutamate dehydrogenase utilized three of four nitrogen atoms of arginine. Urea was not involved as intermediate, since a unreaseless mutant did not accumulate urea and grew on arginine as efficiently as the wild-type strain. Ornithine appeared to be an intermediate, because cells grown either on glucose and arginine or arginine alone could convert arginine in the presence of hydroxylamine to ornithine. This indicates that an amidinotransferase is the initiating enzyme of arginine breakdown. In addition, the cells contained a transaminase specific for ornithine. In contrast to the hydroxylamine-dependent reaction, this activity could be demonstrated in extracts. The arginine-utilizing system (aut) is apparently controlled like the enzymes responsible for the degradation of histidine (hut) through induction, catabolite repression, and activation by glutamine synthetase.  相似文献   

15.
Summary A Neurospora mutant (aga) lacking arginase was selected by virtue of its inability to utilize arginine as a source of ornithine, using a strain in which ornithine was needed to satisfy a proline requirement. It mapped in linkage group VII (right arm), close to wc. The most important characteristic of the mutant was its extreme sensitivity to arginine. Inclusion of 1 mM arginine in the medium lead to a 40-fold increase in the arginine pool and a 90% inhibition of growth. This inhibition was relieved by the addition of ornithine or proline. The high arginine pool was associated with only a slight repression of two biosynthetic enzymes examined and with a five-fold induction of ornthine transaminase, the second enzyme of arginine catabolism. It is expected that the aga mutant will be of value in further work on the regulation of arginine biosynthesis in Neurospora.  相似文献   

16.
In Pseudomonas aeruginosa arginine can be degraded by the arginine "dihydrolase" system, consisting of arginine deiminase, catabolic ornithine carbamoyltransferase, and carbamate kinase. Mutants of P. aeruginosa strain PAO affected in the structural gene (arcB) of the catabolic ornithine carbamoyltransferase were isolated. Firt, and argF mutation (i.e., a block in the anabolic ornithine carbamoyltransferase) was suppressed specifically by a mutationally altered catabolic ornithine carbamoyltransferase capable of functioning in the anabolic direction. The suppressor locus arcB (Su) was mapped by transduction between hisII and argA. Second, mutants having lost suppressor activity were obtained. The Su- mutations were very closely linked to arcB (Su) and caused strongly reduced ornithine carbamoyltransferase activities in vitro. Under aerobic conditions, a mutant (PA0630) which had less than 1% of the wild-type catabolic ornithine carbamoyltransferase activity grew on arginine as the only carbon and nitrogen source, at the wild-type growth rate. When oxygen was limiting, strain PA0630 grown on arginine excreted citrulline in the stationary growth phase. These observations suggest that during aerobic growth arginine is not degraded exclusively via the dihydrolase pathway.  相似文献   

17.
Summary The utilisation of acetylhistidine by histidine auxotrophs of E. coli K-12 was found to require a functioning acetylornithinase. The growth, on acetylhistidine-containing media, of his mutants possessing this enzyme was inhibited by arginine or its precursors acetylornithine, ornithine and citrulline. Mutants able to overcome this inhibition belonged to two classes: those (selected on acetylhistidine+acetylornithine or arginine) in which the arginine biosynthetic enzymes were repressible, as in the parent strains; and those (selected on acetylhistidine+acetylornithine, ornithine, citrulline or arginine) in which these enzymes were formed at high, non-repressible levels. The altered properties of the first class were shown genetically not to result from mutation in the argR or argECBH regions; the data are consistent with the second class carrying mutations at the argR locus.It is supposed that arginine, ornithine or citrulline, by repressing the formation of acetylornithinase, diminish the rate at which acetylhistidine can be utilised (although an acetylhistidine uptake system under arginine control would equally explain the results); non-repressible mutants would escape this effect. The kinetic properties, in crude extracts, of acetylornithinase from the parent strains and from members of each mutant class, with acetylornithine and acetylhistidine as substrates, were investigated. It was tentatively concluded that, in accord with the genetic results, the first class do not possess an acetylornithinase altered to make it function better with acetylhistidine as substrate. It is suggested that arginine may affect acetylhistidine utilisation by affecting its uptake in a manner not shared with ornithine or citrulline, as well as by repressing proteins of the arginine system, and that this arginine-specific effect is inoperative in the first class of mutants. The nature of the changes leading to ability to grow on acetylhistidine+acetylornithine remains unknown. Possible applications of these findings to the selection of hitherto undiscovered but potentially informative mutant types are discussed.  相似文献   

18.
Biogenic amine production by Lactobacillus   总被引:3,自引:0,他引:3  
AIMS: The aim of this work was to demonstrate that strains of Lactobacillus may be able to produce putrescine and agmatine from one of the major amino acids present in fruit juices and wine, arginine, and from amino acid-derived ornithine. METHODS AND RESULTS: Biogenic amines were determined by HPLC. Their production in the culture medium was similar under both microaerophilic and anaerobic conditions. The presence of Mn2+ had a minimal influence on the results, whereas the addition of pyridoxal phosphate increased amine production 10-fold. Lactobacillus hilgardii X1B, isolated from wine, was able to degrade arginine by two pathways: arginine deiminase and arginine decarboxylase. The isolate was able to produce putrescine from ornithine and from agmatine. Lactobacillus plantarum strains N4 and N8, isolated from orange, utilized arginine via the arginine deiminase system. Only the N4 strain was able to produce putrescine from ornithine. CONCLUSION: It has been demonstrated that Lact. hilgardii X1B is able to produce the most important biogenic amine found in wine, putrescine, and also agmatine from arginine and ornithine, and that Lactobacillus plantarum, considered to be an innocuous spoilage micro-organism in fruit juices, is able to produce amines. SIGNIFICANCE AND IMPACT OF THE STUDY: The results have significance in relation to food poisoning caused by beverages that have been contaminated with biogenic amines.  相似文献   

19.
Citrullinogenesis is demonstrated when murine bone marrow cells are incubated with dialyzed secondary mixed leukocyte culture supernatant. The identity of citrulline in bone marrow cell supernatants has been established by gas chromatographic mass spectrometric analysis. It is shown that, in our model, citrulline synthesis proceeds directly from arginine without intermediate ornithine production, ruling out the involvement of ornithine transcarbamylase (EC 2.1.3.3.). Moreover, none of the other enzymatic activities described for catalyzing citrullinogenesis, i.e. arginine deiminase or peptidyl arginine deiminase can be demonstrated. The generation of oxygen radicals is necessary for this enzymatic reaction. It is induced by a thermolabile protein produced during the antiallograft immune response with a molecular weight of about 150,000.  相似文献   

20.
The effects of lysine administration on arginine and ornithine liver levels were studied in normal and urease-treated rats. L-Arginine injections produced a rise in liver arginine with a parallel increase in liver ornithine. Pretreatment with L-lysine resulted in an elevation in liver arginine. Administration of lysine to urease treated rats induced a significant increase in liver arginine content with a parallel drop in ornithine/arginine ratio. A similar decrease in ornithine/arginine ratio due to lysine administration was observed in animals, in which arginine and ornithine levels had been raised by loading with arginine. The mechanism of the lysine effect is most likely by inhibition of liver arginase activity in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号