首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
The biological role of the "general control of amino acid biosynthesis" has been investigated by analyzing growth and enzyme levels in wild-type, bradytrophic, and nonderepressing mutant strains of Saccharomyces cerevisiae. Amino acid limitation was achieved by using either bradytrophic mutations or external amino acid imbalance. In the wild-type strain noncoordinate derepression of enzymes subject to the general control has been found. Derepressing factors were in the order of 2 to 4 in bradytrophic mutant strains grown under limiting conditions and only in the order of 1.5 to 2 under the influence of external amino acid imbalance. Nonderepressing mutations led to slower growth rates under conditions of amino acid limitation, and no derepression of enzymes under the general control was observed. The amino acid pools were found to be very similar in the wild type and in nonderepressing mutant strains under all conditions tested. Our results indicate that the general control affects all branched amino acid biosynthetic pathways, namely, those of the aromatic amino acids and the aspartate family, the pathways for the basic amino acids lysine, histidine, and arginine, and also the pathways of serine and valine biosyntheses.  相似文献   

6.
In Saccharomyces cerevisiae, many amino acid biosynthetic pathways are coregulated by a complex general control system: starvation for a single amino acid results in the derepression of amino acid biosynthetic genes in multiple pathways. Derepression of these genes is mediated by positive (GCN) and negative (GCD) regulatory genes. In this paper we describe the isolation and characterization of a previously unreported negative regulatory gene, GCD3. A gcd3 mutation is recessive to wild type, confers resistance to multiple amino acid analogs, and results in overproduction and partially constitutive elevation of mRNA levels for amino acid biosynthetic genes. Furthermore, a gcd3 mutation can overcome the derepression-deficient phenotype of mutations in the positive regulatory GCN1, GCN2, and GCN3 genes. However, the gcd3 mutation cannot overcome the derepression-deficient phenotype of a gcn4 mutation, suggesting that GCD3 acts as a negative regulator of the important GCN4 gene. Northern blot analysis confirmed this conclusion, in that the steady-state levels of GCN4 mRNA are greatly increased in a gcd3 mutant. Thus, the negative regulatory gene GCD3 plays a central role in derepression of amino acid biosynthetic genes.  相似文献   

7.
RIM4 was previously found to be required for both the IME1- and IME2-dependent pathways of meiotic gene expression in Saccharomyces cerevisiae. We now demonstrate that RIM4 is also required for meiotic division and recombination. Furthermore, rim4Delta mutants show defects in premeiotic DNA synthesis, which can be suppressed by deletion of the SIC1 gene, which encodes a Cdk inhibitor. Expression of RIM4 is induced early in meiosis, and is dependent on IME1 but not IME2. Indeed, RIM4 itself is essential for the meiotic expression of IME2. These results suggest that RIM4 is epistatic to IME2, and is required for multiple steps during sporulation. In agreement with this interpretation, overexpression of RIM4 induces low levels of sporulation in rich medium.  相似文献   

8.
The ADE1 gene of the yeast Saccharomyces cerevisiae has been cloned by complementation of the ade1 mutation. The nucleotide sequence has been determined for the 918-bp coding region, 240-bp 5'-noncoding region and 292-bp 3'-noncoding region. The sequenced region includes a single large open reading frame coding for a protein of 306 amino acid (aa) residues. The promoter of the ADE1 gene contains a copy of the 5'-TGACTC hexanucleotide, a feature characteristic of promoters under general aa control. Subsequent search of other published purine biosynthesis gene sequences revealed that all of them also contain general aa control signals in their promoter regions. An expression plasmid containing the ADE1 coding region under control of the PHO5 promoter produced N-succinyl-5-aminoimidazole-4-carboxamide ribotide (SAICAR) synthetase in yeast cells at a level of 40% of total cellular protein. One-step purification resulted in an almost homogeneous preparation of SAICAR synthetase.  相似文献   

9.
10.
11.
12.
13.
14.
15.
16.
17.
Four new complementation groups of mutations which confer resistance to several amino acid analogs in Saccharomyces cerevisiae are described. These mutants were isolated on medium containing urea as the nitrogen source, in contrast to previous studies that had used medium containing proline. All four resistance to amino acid analog (raa) complementation groups appear to confer resistance by reducing amino acid analog and amino acid uptake. In some genetic backgrounds, raa leu2 and raa thr4 double mutants are inviable, even on rich medium. The raa4 mutation may affect multiple amino acid transport systems, since raa4 mutants are unable to use proline as a nitrogen source. raa4 is, however, unlinked to a previously described amino acid analog resistance and proline uptake mutant, aap1, or to the general amino acid permease mutant gap1. Both raa4 and gap1 prevent uptake of [3H]leucine in liquid cultures. The raa1, raa2, and raa3 mutants affect only a subset of the amino acid analogs and amino acids affected by raa4. The phenotypes of raa1, -2, and -3 mutants are readily observed on agar plates but are not seen in uptake and incorporation of amino acids measured in liquid media.  相似文献   

18.
Phosphate is the essential macronutrient required for the growth of all organisms. In Saccharomyces cerevisiae, phosphatases are up-regulated, and the level of lysophosphatidic acid (LPA) is drastically decreased under phosphate-starved conditions. The reduction in the LPA level is attributed to PHM8, a gene of unknown function. phm8Delta yeast showed a decreased LPA-hydrolyzing activity under phosphate-limiting conditions. Overexpression of PHM8 in yeast resulted in an increase in the LPA phosphatase activity in vivo. In vitro assays of the purified recombinant Phm8p revealed magnesium-dependent LPA phosphatase activity, with maximal activity at pH 6.5. The purified Phm8p did not hydrolyze any lipid phosphates other than LPA. In silico analysis suggest that Phm8p is a soluble protein with no transmembrane domain. Site-directed mutational studies revealed that aspartate residues in a DXDXT motif are important for the catalysis. These findings indicated that LPA plays a direct role in phosphate starvation. This is the first report of the identification and characterization of magnesium-dependent soluble LPA phosphatase.  相似文献   

19.
The SPS4 gene of Saccharomyces cerevisiae, a sporulation-specific gene identified previously in a differential hybridization screen of a genomic yeast DNA library, has been characterized further. The protein encoded by this gene was inferred from its nucleotide sequence to be 38,600 daltons with an isoelectric pH of 8.2. Consistent with this, two-dimensional polyacrylamide gel electrophoresis of the in vitro translation products of RNA purified by hybridization with the cloned SPS4 DNA indicated that the SPS4 gene product is a 39-kilodalton, basic protein. This protein was found to be identical in size and charge to a major, sporulation-specific protein identified in a two-dimensional polyacrylamide gel electrophoretic comparison of the in vitro translation products of total RNA from sporulating MATa/MAT alpha cells and asporogenous MAT alpha/MAT alpha cells. A MATa/MAT alpha strain homozygous for a partial deletion of the SPS4 gene appeared, however, to be unaffected in its ability to form viable ascospores.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号