首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
安娟  郑粉莉  李桂芳  王彬 《生态学报》2011,31(24):7579-7590
目前,土壤水分饱和和壤中流条件下,雨滴打击对养分流失的影响尚不清楚.通过3个近地表土壤水文条件(自由入渗、土壤水分饱和与壤中流)下,土槽上方架设与不架设尼龙纱网模拟降雨对比试验,研究雨滴打击对黑土坡面侵蚀过程及NO3-N、NH4-N与PO4-P随径流和侵蚀泥沙迁移的影响.结果表明,纱网覆盖消除雨滴打击后坡面侵蚀量和泥沙浓度分别减少59.4%-71.6%和57.3% -73.0%,不同水文条件下减少量的排序为:自由入渗>壤中流>土壤水分饱和.消除雨滴打击后养分随径流流失的减少仅在自由入渗条件下体现较明显,该水文条件下NO3-N、NH4-N与PO4-P流失分别减少33.3%、23.1%和40.7%;3种水文条件下,消除雨滴打击均明显减少养分随泥沙的流失,其中自由人渗条件下减少效果最明显,该水文条件下,NO3-N和NH4-N流失分别减少20.9% -54.9%和25.0% -62.3%,而PO4-P流失减少在74.6%以上.雨滴打击增大了NO3-N的淋失,但对NH4-N与PO4-P的淋失几乎无影响.消除雨滴打击后,自由人渗条件下养分的等效径流迁移深度减少26.7%-42.6%,而土壤水分饱和与壤中流条件下基本无变化.以上研究结果为有效防治坡面土壤侵蚀和农业非点源污染提供科学理论依据,尤其是在壤中流出现的地方.  相似文献   

2.
九龙江河口区养虾塘沉积物-水界面营养盐交换通量特征   总被引:5,自引:1,他引:5  
杨平  金宝石  谭立山  仝川 《生态学报》2017,37(1):192-203
通过对九龙江河口区陆基养虾塘水样和沉积物样品采集分析及结合室内模拟实验,探讨了虾塘在不同养殖阶段沉积物-水界面营养盐通量时间变化特征及其主要影响因素。虾塘沉积物向上覆水体释放NO_x~--N(NO_2~--N和NO_3~--N)、NH_4~+-N和PO_4~(3-)-P能力均呈现随养殖时间推移而降低的特征。沉积物在养殖中期和后期分别呈现对上覆水体NO_x~--N和PO_4~(3-)-P的吸收现象,但总体表现为释放(平均通量分别为(1.87±1.15)、(1.58±0.52)mg m~(-2)h~(-1)和(1.22±0.62)mg m~(-2)h~(-1))。沉积物-水界面溶解无机氮交换以NH_4~+-N为主(沉积物平均释放通量为(46.18±13.82)mg m~(-2)h~(-1))。沉积物间隙水与上覆水间的营养盐浓度差(梯度)及温度对上述交换通量的时间动态特征具有重要调控作用。研究结果表明养殖初期或中期沉积物较高的无机氮(尤其是NO_2~--N和NH_4~+-N)释放是养殖塘水质恶化的一个极具潜力的污染内源,可能会对虾的健康生长产生负面效应,控制沉积物无机氮释放是养虾塘养殖初期和中期重要的日常管理活动之一。  相似文献   

3.
Runoff quantity and quality from a 248 m2 extensive green roof and a control were compared in Connecticut using a paired watershed study. Weekly and individual rain storm samples of runoff and precipitation were analyzed for TKN, NO3 + NO2-N, NH3-N, TP, PO4-P, and total and dissolved Cu, Pb, Zn, Cd, Cr, and Hg. The green roof watershed retained 51.4% of precipitation during the study period based on area extrapolation. Overall, the green roof retained 34% more precipitation than predicted by the paired watershed calibration equation. TP and PO4-P mean concentrations in green roof runoff were higher than in precipitation but lower than in runoff from the control. The green roof was a sink for NH3-N, Zn, and Pb, but not for TP, PO4-P, and total Cu. It also reduced the mass export of TN, TKN, NO3 + NO2-N, Hg, and dissolved Cu primarily through a reduction in stormwater runoff. Greater than 90% of the total Cu, Hg, and Zn concentrations in the green roof runoff were in the dissolved form. The growing media and slow release fertilizer were probable sources of P and Cu in green roof runoff. Overall, the green roof was effective in reducing stormwater runoff and overall pollutant loading for most water quality contaminants.  相似文献   

4.
An investigation was untertaken to evaluate the nutrient status of the River Rhine (two stations) and eight of its tributaries (total of ten samplings). Determinations of the following inorganic substances were made: PO4 ?3-P; NO3 ?-N; NO2 ?-N; NH4 + -N and Cl?. In addition, pH and carbonate alkalinity were measured. Bioassays to obtain the algal growth potential (AGP) were carried out using periphyton from the River Rhine. A linear relationship could be established between NO3 ?-N and the AGP, while the AGP showed a non-linear dependence on the PO4 3?-P concentration. The critical N/P ratio for N or P limitation of the algal growth in bioassays was evaluated graphically and by calculation. The results of the two methods are in good agreement: N is the limiting factor at NO3 ?N/PO4 3?-P ratios less than 10, while P is limiting at ratios greater than 20. At values between 10 and 20 neither N nor P can be supposed with certainty to be limiting.  相似文献   

5.
Summary Recently matured leaf samples were collected, at 45, 60 and 75 days after planting, from potato (Solanum tuberosum L.) plants of cultivar Kufri sindhuri grown with varying levels of nitrogen (0, 60, 120, 180 and 240 kg N/ha) and phosphorus (0, 60, 120 and 180 kg P2O5/ha) on loam soil at Pantnagar. They were separated into petiole, midrib and leaf-lets and analysed for NO3-N content. Petiole samples were also analysed for PO4-P content. Nitrogen application increased the NO3-N content of all the leaf components. P application increased the PO4-P content in petiole. NO3-N content and PO4-P content in leaf tissues were positively correlated with final tuber yield. The association of NO3-N content of petiole with the final tuber yield was very consistant. Hence this proved to be the best indicator tissue for reflecting the nitrogen status of the plant, particularly at 45 days after planting. NO3-N content of midrib, at this stage, was also a good indication of nitrogen nutrition status of the plant. PO4-P content of petiole at 45 days after planting was a good indication of nutritional status of plant with respect to phosphorus. The critical concentration of NO3-N in petioles of 45 days old plants was in the range of 9100–9600 ppm. The corresponding range for midrib was 3000 to 3900 ppm. The critical concentration of PO4-P for petioles of 45 days old plants was 2250 ppm.Publication No 796 under journal series of the G.B. Pant University of Agriculture and Technology, Experiment Station, Pantnagar.Junior Agronomist, Indian Institute of Horticultural Research, Bangalore-6, India.Junior Agronomist, Indian Institute of Horticultural Research, Bangalore-6, India.  相似文献   

6.
Pithophora oedogonia (Mont.) Wittr. biomass in Surrey Lake, Indiana was greater in the littoral than in the pelagial region. Although mean soluble reactive phosphorus concentrations did not differ between the two areas, nitrate concentrations were almost six times higher in the cove than in the open water. Using laboratory cultures of Pithophora, the half saturation constant (Ks at 20° C relating filament growth to external concentrations of nitrate-nitrogen was determined to be 1.23 mg L?1 (=88 μM)and for phosphate-phosphorus, 0.1 mg L?1 (=3.22 μM). These values were used to calculate a NO3-N/PO4-P atomic ratio of 27.6. Comparison of this value with NO3-N/PO4-P ratios in Surrey Lake showed that nitrogen limiting conditions were prevalent in the open water section of the lake. Alkaline phosphatase and dark ammonia uptake analyses on field collected filaments from the shallow and deep water sections confirmed the hypothesis that nitrate is the major factor limiting growth of Pithophora in Surrey Lake.  相似文献   

7.
Ecosystem element cycles can be tightly linked by both abiotic and biotic processes. Evidence for multi-element limitation (i.e., colimitation) of a variety of ecosystem processes is growing rapidly, yet our ability to quantify patterns of coupled nutrient dynamics at the ecosystem level has been hindered by logistical and methodological constraints. Here we quantify coupled nitrogen and phosphorus uptake kinetics in three oligotrophic mountain streams by using novel experimental techniques that quantify colimitation dynamics across a range of nutrient concentrations and stoichiometries. We show that relative demand for NO3-N and PO4-P varied across streams, but that short term availability of one nutrient consistently resulted in elevated, but variable, uptake of the other nutrient at all sites. We used temporally offset, pulsed nutrient additions to parameterize dual-nutrient Michaelis–Menten uptake surface models that represent NO3-N and PO4-P uptake at any given concentration or dissolved NO3-N:PO4-P stoichiometry. Our results indicated that the uptake of N and P were strongly enhanced in the presence of the other nutrient. Surface models quantitatively reflect patterns of colimitation and multi-element demand in streams, and should allow for parameterization of more realistic stream network models that explicitly account for interactions among element cycles.  相似文献   

8.
Ecological treatment systems, which rely on renewable resources, have successfully treated municipal and industrial effluents with reduced costs compared to conventional methods, but their capacity to treat dairy wastewater is unknown. In order for ecological treatment systems to be practical for agriculture they must be able to treat a significant portion of a dairy's daily wastewater production. In this study, the impact of three strengths of dairy wastewater on effluent water quality was assessed. Three ratios of wastewater and city water—(1) one part wastewater:three parts city water, (2) one part wastewater:one part city water, and (3) two parts wastewater:one part city water—were each pumped into an ecological treatment system. Influent and effluent water samples were analyzed for PO4-P, TP, TN, NH4-N, NO3-N, total suspended solids (TSS), and carbonaceous biochemical oxygen demand (CBOD5). Influent dairy wastewater volumetric loading rates were much greater than those of municipal wastewater. Regardless of influent wastewater strength, concentrations of all measured variables were significantly reduced between the influent and effluent of the ecological treatment system. At the lowest wastewater strength, PO4-P was reduced 39%, TN 83%, and NH4-N 89%, while at the highest wastewater strength, PO4-P was reduced 41%, TN 79%, and NH4-N 70%. Increased wastewater strength required greater aerobic treatment volume to reduce concentrations of NH4-N and CBOD5.  相似文献   

9.
The removal of conifers through commercial timber harvesting has been successful in restoring aspen, however many aspen stands are located near streams, and there are concerns about potential aquatic ecosystem impairment. We examined the effects of management-scale conifer removal from aspen stands located adjacent to streams on water quality, solar radiation, canopy cover, temperature, aquatic macroinvertebrates, and soil moisture. This 8-year study (2003–2010) involved two projects located in Lassen National Forest. The Pine-Bogard Project consisted of three treatments adjacent to Pine and Bogard Creeks: (i) Phase 1 in January 2004, (ii) Phase 2 in August 2005, and (iii) Phase 3 in January 2008. The Bailey Project consisted of one treatment adjacent to Bailey Creek in September 2006. Treatments involved whole tree removal using track-laying harvesters and rubber tire skidders. More than 80% of all samples analyzed for NO3-N, NH4-N, and PO4-P at Pine, Bogard, and Bailey Creeks were below the detection limit, with the exception of naturally elevated PO4-P in Bogard Creek. All nutrient concentrations (NO3-N, NH4-N, PO4-P, K, and SO4-S) showed little variation within streams and across years. Turbidity and TSS exhibited annual variation, but there was no significant increase in the difference between upstream and downstream turbidity and TSS levels. There was a significant decrease in stream canopy cover and increase in the potential fraction of solar radiation reaching the streams in response to the Pine-Bogard Phase 3 and Bailey treatments; however, there was no corresponding increase in stream temperatures. Macroinvertebrate metrics indicated healthy aquatic ecosystem conditions throughout the course of the study. Lastly, the removal of vegetation significantly increased soil moisture in treated stands relative to untreated stands. These results indicate that, with careful planning and implementation of site-specific best management practices, conifer removal to restore aspen stands can be conducted without degrading aquatic ecosystems.  相似文献   

10.
The Modder River is a relatively small river in the central region of the Free State Province, South Africa and has a mean annual runoff of 184 × 106m3. Botshabelo is a city, which has developed in the catchment area of the river, and its sewage outflows are discharged into the Klein Modder, a tributary of the Modder River. This study was conducted in order to determine the influence of Botshabelo's sewage outflow on the water quality of the river. It was determined that the Modder and Klein Modder Rivers do not generally follow distinctive seasonal patterns in terms of chemical parameters, although NO3-N and PO4-P concentrations usually increase with increasing flow and conductivity decreases with increasing flow. Physical parameters such as turbidity, flow and temperature did however follow distinctive seasonal patterns from February 1996 to December 1997, as did phytoplankton growth. Low chlorophyll-a concentrations were exhibited in the winter and higher concentrations during spring. In the Klein Modder River, algal blooms occurred more frequently, and the algal biomass was higher than in the Modder River. This could be ascribed to the higher nutrient concentrations and lower flow velocities in the former. The inflow of the Klein Modder River into the Modder River caused on average, 112% increase in PO4-P, 171% increase in NO3-N, 50% increase in chlorophyll-a concentration, and 230% increase in E. coli counts.  相似文献   

11.
海水中藻菌共培养体系对碳氮磷的吸收转化   总被引:1,自引:0,他引:1  
张艳敏  王江涛  谭丽菊 《生态学报》2017,37(14):4843-4851
海洋环境中,细菌和微藻之间的物质交换是生源要素在自然界中迁移转化的重要方式。为进一步了解生源要素的生物地球化学循环,在实验室模拟条件下,研究了共培养体系中营养盐和有机物在细菌和微藻之间的转换。通过纯培养中肋骨条藻(Skeletonema costatum)、东海原甲藻(Prorocentrum donghaiense)、天然海水中的细菌以及藻菌混合培养,分析了营养盐和有机物随藻菌生物量的变化情况,并计算了溶解有机碳(DOC)和溶解有机氮(DON)的浓度比值[(DOC/DON)a]。结果发现,在共培养体系中,细菌对中肋骨条藻的生长有抑制作用,对东海原甲藻影响不明显;中肋骨条藻有利于细菌生长,东海原甲藻抑制细菌生长,这种不同可能与微藻的粒径有关。海洋细菌在2种藻的指数生长均期均会促进微藻吸收氨氮(NH_4-N),但在生长末期NH_4-N以释放为主。硝氮(NO_3-N)的浓度与藻的生长呈负相关,但在衰亡期NO_3-N略有增加,表明NO_3-N再生所需时间较长。细菌对硝氮的吸收量较少,但对其再生有贡献。细菌和中肋骨条藻对磷酸盐(PO_4-P)的吸收存在竞争,但与东海原甲藻的竞争关系不明显。不同培养体系中DOC浓度变化不同,在藻菌共培养体系中增加较快,纯藻培养体系中增加缓慢,在纯菌培养体系中缓慢减少。通过对DOC与DON浓度比值的分析,发现用判断颗粒有机碳(POC)来源的方法可以分析DOC的来源。  相似文献   

12.
This paper investigated the spatio-temporal variability of water quality parameters (transparency, salinity, dissolved oxygen, nutrients viz. NH3-N, NO2-N, NO3-N, PO43-P, total nitrogen, total phosphorous and chlorophyll-a) in Chilika lagoon during 2001–2003 in order to better understand its ecological characteristics. Marked spatial and seasonal variations were detected with respect to almost all parameters studied. Northern sector of the lagoon is more affected by the anthropogenic stress from the catchments than the southern sector. Addition of nitrogen and phosphorous compounds to the lagoon mainly occurred through the drainage from agricultural lands and river run off during the early months of paddy cultivating seasons. Phytoplankton productivity of the lagoon was nitrogen limited, as suggested by nitrogen to phosphorous ratio. Processes affecting the water quality of the lagoon system included agricultural drainage, sewage intrusion, macrophyte litter fall and exchange of water between lagoon and the sea (Bay of Bengal). Further in depth study pertaining to quantification of exogenous material input and their disposal is recommended to ensure proper management of the lagoon and its resources.  相似文献   

13.
为揭示大气湿沉降对胶州湾营养盐的输送通量及其生态效应,分别于2015年6—8月(夏季)、9—11月(秋季)采集胶州湾降水样品,测定了降水中不同形态N、P、Si的浓度。结果表明,降水中不同形态营养盐的浓度变化较大,且均与降水量呈负相关关系,其中NH4-N和NO3-N的浓度较高,溶解有机氮(DON)占溶解态总氮(DTN)含量的25.9%,而NO_2-N,PO_4-P和SiO_3-Si的浓度均很低。溶解无机氮(DIN)、DON、PO_4-P以及SiO_3-Si的湿沉降通量分别为141.7、61.87、0.35 mmol m~(-2)a~(-1)和0.12 mmol m~(-2)a~(-1)。受降水量和营养物质来源制约,各项营养盐湿沉降通量时间变化显著。农业活动导致的无机氮排放构成了胶州湾湿沉降DIN的主要来源。大气湿沉降DIN、DON、PO_4-P和SiO_3-Si分别占胶州湾总输入负荷的9.04%、10.24%、0.57%和0.17%,湿沉降输入的PO_4-P在夏、秋季分别可以支持0.575 mgC m~2d~(-1)和1.42 mg C m~2d~(-1)的新生产力;雨水中DIN/P比值高达1 617,突发性强降雨带来的营养盐输入会加剧表层水体的P限制和Si限制,对胶州湾浮游植物群落结构和粒级结构产生重要影响。大气湿沉降是胶州湾生源要素生物地球化学过程的重要一环,对营养物质收支的贡献及可能引发的生态效应不容忽视。  相似文献   

14.
From May 1979 on, the following parameters were measured at a station in the inlet of Königshafen near List (Island of Sylt): temperature, salinity, mesozooplankton (>76 µm), chlorophyll-a, seston dry weight, oxygen and phytoplankton-nutrients (NH4-N, NO2-N, NO3-N, PO4-P, SiO3-Si). A multiple regression analysis showed the interrelationships between the parameters measured. Tidal influences on zooplankton and seston dry weight could be observed. At low tide, the amount of zooplankton (not counting the harpacticoid copepods) declines and the number of harpacticoid copepods rises as does the seston dry weight too. The chlorophyll-a content is a function of the phytoplankton-nutrients. An increase in chlorophyll-a leads to a decrease in nitrogen and silicate concentrations. Phosphate, due possibly to a sewage inlet into the Königshafen, is not a limiting factor. The availability of nutrients is influenced by temperature, salinity and the tidal cycle. The amount of oxygen is dependent on water temperature and seston dry weight. High water temperatures and a high seston content lead to a decrease in oxygen concentrations.  相似文献   

15.
Abundance of Pithophora oedogonia akinetes displayed seasonal changes, being greatest in winter and lowest in summer. Akinete abundance showed significant (P < 0.001) negative correlations with photoperiod(r = -0.53) and water temperature (r= -0.75) during the period February 1978 through June 1979. Experiments in which akinete germination was studied in response to manipulations of nutrients (NO3-N and PO4-P), photoperiod and temperature indicated that temperature was the primary factor regulating the timing of the vernal flush of akinete germination observed in Surrey Lake.  相似文献   

16.
Sun  Bin  Tang  Chunyu  Yang  Na  He  Peimin 《Aquatic Ecology》2021,55(2):467-481

The interaction of various environmental triggers on phytoplankton communities of an artificial lagoon of Hangzhou Bay China, was studied during a Microcystis bloom in summer 2016. Forty-two phytoplankton genera (six phyla) were defined, with Bacillariophyta accounting for half of all phytoplankton genera. It was determined that Melosira, Chlorella, Cyclotella, Microcystis, Merismopedia, Anabaena and Selenastrum, which were identified and counted by an inverted microscope, were the dominant genera. In addition, a series of environmental indicators were analyzed, including salinity, seawater temperature, dissolved inorganic nitrogen, soluble reactive phosphorus (PO4-P), ammonium (NH4-N), nitrate nitrogen (NO3-N), nitrite (NO2-N), silicate (SiO4-Si), and chemical oxygen demand of the water samples, as well as zooplankton community. The results of variance partitioning by R language revealed that the most influential factor driving the change in the phytoplankton community was the environment (49.7%), and zooplankton grazing represented only 7.9%. The results of redundancy analysis indicated that the change and composition of the phytoplankton community correlated significantly with the interaction of salinity, PO4-P, transparency, seawater temperature, and the dominant zooplankton species. Notably, salinity and temperature fluctuation were the key factors inducing the rapid succession of the plankton community in artificial lagoons such as within the Jinshan City Beach (Shanghai, China).

  相似文献   

17.
Vegetation and soil indicators of nutrient condition were evaluated in 30 wetlands, 10 each in 3 Nutrient Ecoregions (NE) (VI-Corn Belt and Northern Great Plains, VII-Mostly Glaciated Dairy Region, IX-Temperate Forested Plains and Hills) of the Midwestern United States (U.S.) to identify robust indicators for assessment of wetland nutrient enrichment and eutrophication. Nutrient condition was characterized by surface water inorganic N (NH4-N, NO3-N) and P (PO4-P) concentrations measured seasonally for 1 year, plant available and total soil N and P, and aboveground biomass, leaf N and P and species composition of emergent vegetation measured at the end of the growing season. Aboveground biomass, nutrient uptake and species composition were positively related to surface water NH4-N (N) but not to PO4-P or NO3-N. Aboveground biomass and biomass of aggressive species, Typha spp. plus Phalaris arundinacea, increased asymptotically with surface water N whereas leaf P, senesced leaf N and senesced leaf P increased linearly with N. And, species richness declined with surface water N. Soil total P was positively related to surface water PO4-P but it was the only soil indicator related to wetland nutrient condition. Individual regressions for each NE generally were superior to a single regression for all NEs. In NE VI (Corn Belt), few indicators were related to surface water N because of the high degree of anthropogenic disturbance (85% of the landscape is cleared) as compared to NEs VII and IX (24–53% cleared). Of the indicators evaluated, stem height (r2 = 0.42 for all NEs, r2 = 0.56 for NE VII + IX) and percent biomass of aggressive species, Typha spp. plus Phalaris, (r2 = 0.46 for all NEs, r2 = 0.54 for NE VII + IX), were the best predictors of wetland nutrient enrichment. Vegetation-based indicators are a promising tool for assessment of wetland nutrient condition but they may not be effective in NEs where landscape disturbance is intense and widespread.  相似文献   

18.
K. R. Reddy 《Hydrobiologia》1981,85(3):201-207
A field study was conducted during the months of October, January, May, and July (1979–80) to examine the diel variations in dissolved O2 (DO), pH, dissolved CO2, bicarbonate and carbonate alkalinity, NH4-N, NO3-N, and PO4-P concentration, and conductivity (EC) of the water in six aquatic systems. Water in hyacinth (Eichhornia crassipes) ponds showed very little or no diel or seasonal variations in DO, pH, dissolved CO2, and bicarbonate alkalinity. Dissolved O2 concentration of the water under floating hyacinth cover was in the range of 0.2–3.0 µg/ml, while dissolved CO2 levels were in the range of 10–35 µg/ml. In the aquatic systems with no floating vegetation, i.e., elodea (Egeria densa) pond, cattail (Typha sp.) pond, control pond (filamentous algae and Chara spp.), and eutrophic lake (algae in Lake Apopka), DO and pH of the water increased during mid-day and decreased during the night. Dissolved O2 levels in these ponds were in the range of 5–20 µg/ml during mid-day and 2–8 µg/ml during the night, while pH of the water was in the range of 8–9.5 during mid-day and decreased to 7–8 during the night. An inverse relationship was observed between bicarbonate and carbonate alkalinity of the water in the aquatic systems with no floating vegetation while no carbonates were detected in the water with floating hyacinth plants. Ammonium N, NO3-N and PO4-P concentration of the water in these aquatic systems showed very little or no diel variations.Florida Agricultural Experiment Stations Journal Series No. 2788.  相似文献   

19.
Eutrophication of water by nutrient pollution remains an important environmental issue. The aim of this study was to evaluate the nutrient uptake capacity of an algal biofilm as a means to treat polluted water. In addition, the study investigated the nutrient removal process. The algal biofilm was able to remove 99% of phosphorus within 24 hours of P addition, with the PO4-P concentration in inflowing water ranging from 3 to 10 mg L?1. Different patterns of phosphorus and nitrogen removal were observed. Daily quantity of removed NO3-N ranged from 2 to 25% and was highly dependent on solar irradiance. Precipitation of phosphorus during the removal process was studied using X-ray diffraction analyses and was not confirmed in the biofilm. The biofilm system we constructed has a high efficiency for phosphorus removal and, therefore, has great potential for integration into wastewater treatment processes.  相似文献   

20.
Cladophora glomerata grown in continuous-flow culture was found to have optimal specific growth rate (μ) at, or near, 20°C. Specific growth rate increased linearly with increased duration of illumination per day up to 24h, and increased light intensity up to 6000 lx. Undissociated ammoniacal nitrogen (0·185 mg 1-1) reduced μ to 50% of that at 0·010 mg 1-1: 0·077–1·057 mg NO2-N1-1 and 7·2–15·2 mg NO3-N1-1 had no significant effect on μ. At 4·9 mg PO4-P1-1, μ was 48% of that at 1·9 mg1-1. The critical medium PO4-P concentration was less than 0·098 mg1-1. Specific growth rate was reduced to 50% of that in the based medium by 0·036 mg Cu1-1, 0·070 mg Zn1-1 and 1·03 mg Pb1-1. Results are discussed in the context of the natural distribution of the alga in the field situation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号