首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Journal of Physiology》1998,92(5-6):369-373
Recent studies concerning management of soman-induced seizures are reviewed. While drugs classically used against epilepsy in hospital appear ineffective against soman, muscarinic receptor blockers are shown to be able to prevent or stop seizures within the first 5 min after their onset. Benzodiazepine could also be considered as an emergency treatment useful during the first 10 min of seizure. Comparatively NMDA antagonists appear to be able to terminate soman-induced seizures even if the treatment is delayed after 40 min of epileptic activity. Drugs with both antimuscarinic and anti-NMDA properties may represent the most adequate pharmacological treatment to treat soman intoxication. However, the results obtained until now with these drugs must be completed in relation with their possible efficacy after i.m. administration. Propositions for future studies are reviewed.  相似文献   

2.
Human serum butyrylcholinesterase (Hu BChE) was demonstrated previously to be an effective prophylaxis that can protect animals from organophosphate nerve agents. However, in most of those studies, the maximum dose used to challenge animals was low (<2x LD(50)), and the health of these animals was monitored for only up to 2 weeks. In this study, six cynomolgus monkeys received 75mg of Hu BChE followed by sequential doses (1.5, 2.0, 2.0x LD(50)) of soman 10h later for a total challenge of 5.5x LD(50). Four surviving animals that did not show any signs of soman intoxication were transferred to WRAIR for the continuous evaluation of long-term health effects for 14 months. Each month, blood was drawn from these monkeys and analyzed for serum chemistry and hematology parameters, blood acetylcholinesterase (AChE) and BChE levels. Based on the serum chemistry and hematology parameters measured, no toxic effects or any organ malfunctions were observed up to 14 months following Hu BuChE protection against exposure to 5.5x LD(50) of soman. In conclusion, Hu BChE pretreatment not only effectively protects monkeys from soman-induced toxicity of the immediate acute phase but also for a long-term outcome.  相似文献   

3.
The effects of hemicholinium-3 (HC-3) or 4-(1-naphthylvinyl)pyridine (4-NVP) alone and together with cholinolytics and/or cholinesterase inhibitors on brain acetylcholine (ACh) levels and survival were studied. Intracerebroventricular (ICVT) injection of 10 μg HC-3 280 min before euthanasia by microwave irradiation reduced rat cerebral ACh levels from 28.4 to 5.4 nmoles ACh/g wet tissue. In rats pretreated with HC-3 alone or with other pretreatment drugs prior to giving up to 2.7 LD50 of soman, iv, cerebral ACh levels increased very little, but in animals not receiving HC-3, brain ACh levels increased to 67.1 nmoles. Treatment of unpoisoned rats with 4-NVP resulted in a significant (26%) reduction in ACh. The inclusion of atropine with 4-NVP resulted in a further reduction in ACh. Pretreatment with 4-NVP caused sign-free doses of physostigmine to produce toxic signs in rabbits and did not enhance the efficacy of carbamate pretreatment against soman. Pretreatment of rabbits with pyridostigmine and atropine methyl nitrate (AMN) failed to provide any protection against soman, but when HC-3, ICVT, was included with those drugs, the protective ratio (PR) against soman was increased from 0.8 to 7.3. These data are consistent with the hypothesis that excess ACh is a primary lesion in organophosphorus anticholinesterase intoxication and that the central nervous system is quite sensitive to excesses of ACh.  相似文献   

4.
Quantitative azure B-RNA cytophotometry was used to monitor metabolic responses of individual neurons within the ventrobasal nuclear complex (VBC) and nucleus reticularis (NR) of the rat thalamus following administration of soman (0.5, 0.9 or 1.5 LD50, sc). A dose-dependent depression in brain acetylcholinesterase (AChE) was evidenced. With respect to thalamic RNA responses, a complex pattern of RNA alterations was evidenced, with these two regions generally exhibiting opposite patterns of dose-related RNA changes. With sub-lethal dosages of soman, RNA accumulation was evidenced in the acetylcholine (ACh) mediated excitatory VBC region and RNA depletion in the ACh mediated inhibitory NR neurons. With a lethal dose, an opposite RNA response pattern observed in both thalamic regions. It is postulated that the observed RNA response pattern with sub-lethal dosages of soman is what one would anticipate with cholinergic brainstem reticular formation activation. The absence of such a response with lethal doses strongly suggests some disruption of functional excitatory cholinergic activity and perhaps also an impairment of inhibitory cholinergic synaptic activity.  相似文献   

5.
Effects of various antidotal treatments on neuronal RNA contents and on soman induced RNA and acetylcholinesterase (AChE) depletion were monitored using quantitative cytochemical techniques. In rats treated only with antidotes, atropine depressed whereas pralidoxime (2-PAM) elevated RNA contents of both caudate and cerebrocortical (Layer V) neurons. Soman produced a virtually complete inhibition of AChE activity and a moderate decline in neuronal RNA contents. Atropine pretreatment partially restored neuronal RNA levels. Atropine+2-PAM prophylaxis eventuated in a complete restoration of RNA levels but no reactivation of AChE. Addition of physostigmine to the atropine +2-PAM treatment regimen resulted in appreciable AChE reactivation but reduced RNA levels. The overall data indicate that: (1) soman-induced neuronal RNA depletion can be completely reversed by antidotal pretreatment; (2) no precise relationship exists between the extents of antidote-induced restoration of RNA and AChE levels; and (3) 2-PAM exerts marked effects on the brain neuronal network which are unrelated to AChE reactivation. It is postulated that effects of soman and antidotes on neuronal RNA metabolism may signify alterations in acetylcholine (ACh) sensitivity and that pharmacologic manipulation of ACh responsiveness during organophosphate cholinesterase poisoning may be a mechanism for additional therapeutic intervention.  相似文献   

6.
The aim of this study was to compare changes in activity of acetylcholinesterase (AChE) in the brain and motor endplates of rat after administration of soman and tabun. We took brain and diaphragm from laboratory rats administered a median lethal dose (LD(50)) of soman or tabun. Enzyme activity of AChE was studied in selected structures of brain and in motor endplates in the diaphragm. Histochemical detection of AChE by Karnovski and Roots with simultaneous histochemical detection of alkaline phosphatase in case of brain sections was used. The highest activity of AChE in the control group was found in the striatum, amygdaloid nuclei, substantia nigra, superior colliculi, and motor nuclei of cranial nerves V, X a XII. LD(50) of both nerve agents dramatically decreased the activity of AChE in the structures studied--both brain and diaphragm. After intoxication by either agent, activity in above mentioned nuclei was characterized as low or focally moderate. Very low activity was seen in some structures (CA3 field of hippocampus, some nuclei of the tegmentum and cerebellar cortex). We found minimal differences in the histochemical picture of soman or tabun intoxication, apart from the striatum and the superior colliculi which showed stronger inhibition by tabun.  相似文献   

7.
用大鼠的在体膈肌局部索曼(Soman)中毒法,观察了乙酰胆碱酯酶(ACHE)在运动终板的再生和肌接头传递功能的恢复过程,以及肟类药物(HI-6)对两过程的促进作用。提出终板 AChE 活性与高频间接刺激(100次/秒)引起膈肌强直收缩幅度有一定的关系。中毒早期(30分钟以内)HI-6对索曼抑制的膈肌终板 AChE 有一定的重活化作用,并能相应地恢复肌接头的传递功能。  相似文献   

8.
The chemical warfare nerve agent (CWNA) soman irreversibly inhibits acetylcholinesterase (AChE) causing seizure, neuropathology and neurobehavioral deficits. Pyridostigmine bromide (PB), the currently approved pretreatment for soman, is a reversible AChE inhibitor that does not cross the blood–brain barrier (BBB) to protect against central nervous system damage. [−]-Huperzine A, a natural reversible AChE inhibitor, rapidly passes through the BBB and has numerous neuroprotective properties that are beneficial for protection against soman. However, [−]-Huperzine A is toxic at higher doses due to potent AChE inhibition which limits the utilization of its neuroprotective properties. [+]-Huperzine A, a synthetic stereoisomer of [−]-Huperzine A and a weak inhibitor of AChE, is non-toxic. In this study, we evaluated the efficacy of [+]-Huperzine A for protection against soman toxicity in guinea pigs. Pretreatments with [+]-Huperzine A, i.m., significantly increased the survival rate in a dose-dependent manner against 1.2× LD50 soman exposures. Behavioral signs of soman toxicity were significantly reduced in 20 and 40 mg/kg [+]-Huperzine A treated animals at 4 and 24 h compared to vehicle and PB controls. Electroencephalogram (EEG) power spectral analysis showed that [+]-Huperzine A significantly reduces soman-induced seizure compared to PB. [+]-Huperzine A (40 mg/kg) preserved higher blood and brain AChE activity compared to PB in soman exposed animals. These data suggest that [+]-Huperzine A protects against soman toxicity stronger than PB and warrant further development as a potent medical countermeasure against CWNA poisoning.  相似文献   

9.
The severity of poisoning following acetylcholinesterase (AChE) inhibition correlates weakly with total AChE activity. This may be partly due to the existence of functional and non-functional pools of AChE. AChE consists of several molecular forms. The aim of the present study was to investigate which of these forms will correlate best with neuromuscular transmission (NMT) remaining after partial inhibition of this enzyme. Following sublethal intoxication of rats with the irreversible AChE inhibitor soman, diaphragms were isolated after 0.5 or 3 h. It appeared that at 3 h after soman poisoning the percentage of G1 increased, while those of G4 and A12 decreased. NMT was inhibited more strongly than in preparations obtained from the 0.5 h rats with the same level of AChE inhibition, but with a normal ratio of molecular forms. NMT correlated positively with G4 as well as with A12, but inversely with G1. In vitro inhibition with the charged inhibitors DEMP and echothiophate resulted in higher levels of total AChE, relatively less G1 and more G4 and A12 than after incubation with soman, but led to less NMT. Treatment of soman-intoxicated rats with the reactivating compound HI-6 resulted in preferential reactivation of A12, persisting low levels of G1 and concurrent recovery of NMT as compared with saline-treated soman controls with equal total AChE activity. Apparently, in rat diaphragm G4 and A12 are the functional AChE forms.  相似文献   

10.
11.
In the present study we investigated the effect of seizures on rat performance in the Morris water maze task, as well as on choline acetyltransferase (ChAT) and acetylcholinesterase (AChE) activities in rat hippocampus. Wistar rats were treated with 0.9% saline (i.p., control group), lipoic acid (20 mg/kg, i.p., LA group), pilocarpine (400 mg/kg, i.p., pilocarpine group), and the association of LA (20 mg/kg, i.p.) plus pilocarpine (400 mg/kg, i.p.), 30 min before of administration of LA (LA plus pilocarpine group). After the treatments all groups were observed for 1 h. The effect of lipoic acid administration was observed on reference and working spatial memory of seized rats. The ChAT and AChE activities were measured using spectrophotometric methods and the results compared to values obtained from saline and pilocarpine-treated animals. Its activity was also determined after behavioral task. Results showed that pretreatment with lipoic acid did not alter reference memory when compared to saline-treated animals. In the working memory task, we observed a significant day’s effect with significant differences between control and pilocarpine-induced seizures and pretreated animals with lipoic acid. In LA plus pilocarpine group was observed a significantly increased in ChAT and AChE activities, when compared to pilocarpine group. Results showed that acute administration of lipoic acid alone did not alter hippocampal ChAT and AChE activities. Our findings suggest that seizures caused cognitive dysfunction and a decrease of ChAT and AChE activities that might be related, at least in part, to the neurological problems presented by epileptic patients. Lipoic acid can reverse cognitive dysfunction observed in seized rats as well as increase the ChAT and AChE activities in hippocampus of rats prior to pilocarpine-induced seizures, suggesting that this antioxidant could be used in clinic treatment of epilepsy.  相似文献   

12.
The generally accepted explanation for the effects of oximes in countering organophosphorus (OP) anticholinesterase is reactivation of the inhibited acetylcholinesterase (AChE). With soman, the inhibited AChE rapidly becomes resistant to oxime reactivation due to a phenomenon called aging. Thus, pretreatment with pyridostigmine (Py) or physostigmine (Ph) followed by atropine sulfate therapy is required to achieve significant protection against soman; the effectiveness of a pretreatment/therapy (P/T) regimen can be further increased against certain OPs (e.g. sarin and VX) by including an oxime in the therapy regimen. The P/T regimen is clouded by a controversy concerning the use of oximes in the treatment of carbamate intoxication, because 2-PAM has been reported to exacerbate intoxication by some carbamates and to have no effect on decarbamylation rates. To better understand the role of oxime therapy in the theory of pretreatment of OP intoxication we examined the effects of 2-PAM and HI-6 on the rate of decarbamylation of Py-inhibited erythrocyte AChE in vitro and in vivo, and studied the effects of atropine plus 2-PAM or HI-6 on Py toxicity. In decarbamylation experiments, Py-inhibited guinea pig erythrocytes were washed free of excess Py and incubated with vehicle or oxime (2 X 10(-4) M, pH 7.3 and 37 degrees C). Aliquots were assayed for AChE activity at various times during a 60 min incubation period. Rate constants were calculated and compared to determine whether the presence of oxime affected decarbamylation. The data from in vitro and in vivo experiments revealed that oximes accelerated the decarbamylation (p less than 0.05) of inhibited AChE. Lethality data for Py-treated guinea pigs showed that treatment with atropine (23 mumoles/kg, im) plus 2-PAM or HI-6 (145 mumoles/kg, im) at one min after injection of Py increased the protective ratio from 4.2 (atropine only) to 5.1 and 12.2, respectively. It is suggested that the enhanced therapeutic efficacy of atropine by oximes against Py intoxication is related to oxime-induced reactivation.  相似文献   

13.
Acetylcholinesterase (AChE) in the clonal NG108-15 cell line has been previously characterized. This cell line represents an in vitro system to study AChE regulation and effects of chemical compounds that may alter AChE activity. Recently, glycyl-L-glutamine (GLG) was demonstrated to function as a neurotrophic factor for maintenance of AChE content in cat denervated superior cervical ganglion cells. In the present study, regeneration of AChE activity in cultures of undifferentiated NG108-15 cells after soman inhibition was investigated in the presence and absence of GLG. Cells were treated with soman (5.5 × 10–6 M) for 15 min and then washed to remove excess soman. Culture medium containing either GLG (10–6, 10–5, or 10–4M) or glycyl-L-glutamic acid (10–6 M) was added to cultures after soman treatment and remained in the medium until cell harvest. Cells were physically detached at various times after soman treatment and specific AChE activity was determined. After soman, AChE activity dramatically decreased to less than 1% of untreated cellular activity at 1 hr. AChE activity gradully increased after 5 hr, while untreated cell AChE activity was regained 20 hr after soman. The t1/2 for AChE regeneration was approximately 10 hr. GLG did not increase the rate of AChE regeneration after soman inhibition. These results indicate that GLG is not a directly acting neurotrophic factor for AChE synthesis in NG108-15 cells after chemical AChE inactivation.Abbreviations AChE acetylcholinesterase - NG108-15 cell neuroblastoma-glioma 108-15 cell - DMEM Dulbecco's modified Eagles minimal essential medium - FBS fetal bovine serum - GLGA glycyl-L-glutamic acid - L-GA L-glutamic acid - GLG glycyl-L-glutamine - GD soman The opinions or assertions contained herein are the private views of the authors and are not to be construed as reflecting the view of the Department of the Army or the Department of the Army or the Department of Defense.  相似文献   

14.
Rats were trained to press a lever under a multiple fixed-ratio 25 fixed-interval 50-second (FR25 FI50-sec) schedule of food reinforcement. Soman, 70-90 micrograms/kg, s.c., suppressed response rates in both components, with a slightly greater effect in the FI schedule. The pattern of responding under the FI schedule, however, was maintained until lever-pressing was nearly completely suppressed. At the highest doses, soman occasionally caused tremors or mild tonic seizures with hindlimb abduction. The suppression of response rate was correlated with inhibition of acetylcholinesterase (AChE) in all brain regions examined: cortex, striatum, hippocampus, hypothalamus and brainstem. Cortical AChE was inhibited to the highest degree, while striatal AChE was most resistant to inhibition by soman.  相似文献   

15.
N-tert-butyl-alpha-phenylnitrone (PBN), a widely used nitrone-based free radical trap was recently shown to prevent acetylcholinesterase (AChE) inhibitors induced muscle fasciculations and brain seizures while being ineffective against glutamergic or cholinergic receptor agonist induced seizures. In the present study we compared the effects on AChE activity of four free radical spin traps PBN, alpha-(4-pyridil-1)-N-tert-butyl nitrone (POBN), N-tert-butyl-alpha-(2-sulfophenyl)-nitrone (S-PBN) and 5-diethoxyphosphoryl-5-methyl-1-pyrroline-N-oxide (DEPMPO). The kinetics of AChE inhibition were studied in vitro using a spectrophotometric kinetic assay with AChE from rat brain, diaphragm, electric eel and mouse brain. Spin trapping compounds S-PBN and DEPMPO, in concentrations up to 3 mM did not inhibit hydrolysis of ACh, while PBN and POBN inhibited hydrolysis of ACh in a reversible and concentration-dependent manner. Double reciprocal plots of the reaction velocity against varying ACh concentrations at each inhibitor concentration were linear and generally indicated mixed type inhibition. PBN was the most potent inhibitor of mouse AChE with Ki and Ki' of 0.58 and 2.99 mM, respectively, and the weakest inhibitor of electric eel AChE. In contrast, POBN showed the highest affinity for electric eel enzyme, with Ki and Ki' values of 1.065 and 3.15 mM, respectively. These findings suggest that the effect of PBN and POBN on AChE activity does not depend on trapping of damaging reactive oxygen and that in addition to their antioxidant action other pharmacological effects of these compounds should be considered when neuroprotective actions of PBN or POBN are investigated.  相似文献   

16.
Central cholinergic systems are involved in a plethora of brain functions and are severely and selectively damaged in neurodegenerative diseases such as Alzheimer's disease and dementia with Lewy bodies. Cholinergic dysfunction is treated with inhibitors of acetylcholinesterase (AChE) while the role of butyrylcholinesterase (BChE) for brain cholinergic function is unclear. We have used in vivo microdialysis to investigate the regulation of hippocampal acetylcholine (ACh) levels in mice that are devoid of AChE (AChE-/- mice). Extracellular ACh levels in the hippocampus were 60-fold elevated in AChE-/- mice compared with wild-type (AChE+/+) animals. In AChE-/- mice, calcium-free conditions reduced hippocampal ACh levels by 50%, and infusion of tetrodotoxin by more than 90%, indicating continuous ACh release. Infusion of a selective AChE inhibitor (BW284c51) caused a dose-dependent, up to 16-fold increase of extracellular ACh levels in AChE+/+ mice but did not change ACh levels in AChE-/- mice. In contrast, infusion of a selective inhibitor of BChE (bambuterol) caused up to fivefold elevation of ACh levels in AChE-/- mice, but was without effect in AChE+/+ animals. These results were corroborated with two other specific inhibitors of AChE and BChE, tolserine and bis-norcymserine, respectively. We conclude that lack of AChE causes dramatically increased levels of extracellular ACh in the brain. Importantly, in the absence of AChE, the levels of extracellular ACh in the brain are controlled by the activity of BChE. These results point to a potential usefulness of BChE inhibitors in the treatment of central cholinergic dysfunction in which brain AChE activity is typically reduced.  相似文献   

17.
The effects of the organophosphate acetylcholinesterase (AChE) inhibitor soman (31.2 micrograms/kg s.c.) on guinea-pig brain AChE, transmitter, and metabolite levels were investigated. Concentrations of acetylcholine (ACh) and choline (Ch), noradrenaline (NA), dopamine (DA), 5-hydroxytryptamine (5-HT), and their metabolites, and six putative amino acid transmitters were determined concurrently in six brain regions. The brain AChE activity was maximally inhibited by 90%. The ACh content was elevated in most brain areas by 15 min, remaining at this level throughout the study. This increase reached statistical significance in the cortex, hippocampus, and striatum. The Ch level was significantly elevated in most areas by 60-120 min. In all regions, levels of NA were reduced, and levels of DA were maintained, but those of its metabolites increased. 5-HT levels were unchanged, but those of its metabolites showed a small increase. Changes in levels of amino acids were restricted to those areas where ACh levels were significantly raised: Aspartate levels fell, whereas gamma-aminobutyric acid levels rose. These findings are consistent with an initial increase in ACh content, resulting in secondary changes in DA and 5-HT turnover and release of NA and excitatory and inhibitory amino acid transmitters. This study can be used as a basis to investigate the effect of toxic agents and their treatments on the different transmitter systems.  相似文献   

18.
Acetylcholinesterase (AChE, EC 3.1.1.7) is an important enzyme for cholinergic nerve transmission. The action of toxic organophosphates such as nerve agents is based on AChE inhibition. The death following acute nerve agent poisoning is due to central or peripheral respiratory/cardiac failure. Therefore, the changes in AChE activity following nerve agents acting predominantly on the central (sarin, soman) or peripheral (VX) level were studied. It is known that AChE activity in different structures exists in relative excess. Female Wistar rats intoxicated with sarin, soman, and VX in different doses (0.5-2.0xLD(50)) were divided into groups of survived and died animals. AChE activities in diaphragm, brain parts (pontomedullar area, frontal cortex, basal ganglia, in some cases other parts of the brain) were determined and the rest of activity (in %) was correlated with survival/death of animals. More precise elucidation of action of nerve agents and the assessment of minimal AChE activity in different organs compatible with the survival of organism poisoned with nerve agents were the aims of this study.  相似文献   

19.
: Acetylcholinesterase (AChE) in guinea pig iris was inhibited by methylisocyclopentylfluorophosphate (soman) administered topically or parenterally, and enzyme activity was correlated to pupillary diameter by infrared pupillography. After a single topical soman instillation into the conjunctival sac there was an almost linear relationship between the reduction in AChE activity and pupillary diameter. Topical administration of soman at 24-h intervals in doses capable of almost complete inhibition of AChE in iris was accompanied by a reduced miotic effect of this drug. This was indicated by a reduced rate of the soman-induced pupillary constriction, a less pronounced reduction in pupillary diameter, and a more rapid return of the pupillary diameter to normal size. The change in pupillary diameter occurred after three daily administrations and remained constant during 31 days of treatment. These observations were seen irrespective of inhibition of blood AChE. The decrease in response to repeated administration could not be explained by a reduced inhibitory effect of soman on AChE, by a more rapid de novo synthesis of AChE, or by a change in the number of the muscarinic receptors as determined by quinuclidinyl benzilate binding. When soman or DFP was administered subcutaneously in high doses a severe AChE inhibition was obtained in iris without any concomitant miosis.  相似文献   

20.
Acetylcholine (ACh) is a chemical transmitter serving to propagate an electrical perturbation across the synaptic junctions of animals. ACh and AChE have previously been demonstrated to occur in plants. In this work, we detected AChE at the interface between stele and cortex of the mesocotyl of Zea mays by measuring hydrolysis of acetylthiocholine and by liberation of labeled acetate from [1-14C]ACh. AChE activity was also detected in a crude membrane fraction. The hydrolytic activity is inhibited by neostigmine. Hydrolysis of ACh was also measured after injection of [1-14C]ACh into kernels of Zea mays and the radioactivity transported into the mesocotyl cortex. A gravity stimulus was then given by placing the plants in a horizontal position. Significantly more radioactivity was found in the lower cortex of horizontally placed seedlings. A working hypothesis is presented for the involvement of ACh and AChE in the tropic response of Z. mays seedlings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号