首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
From analysis of the large RNase T1-resistant oligonucleotides of Kirsten sarcoma virus (Ki-SV), a physical map of the virus genome was deduced. Kirsten murine leukemia virus (Ki-MuLV) sequences were detected in T1 oligonucleotides closest to the 3' end of the viral RNA and extended approximately 1,000 nucleotides into the genome. The rat genetic sequences started at this point and extended all the way to the very 5' end of the RNA molecules, where a small stretch of Ki-MuLV sequence was detected. By comparison of the fingerprints of Ki-SV RNA and the RNA of the endogenous rat src genetic sequences, it was found that more than 50% of the T1 oligonucleotides were similar between Ki-SV and the endogenous rat src RNA, suggesting an identical primary nucleotide sequence in over 50% of the viral genomes. The results indicate that Ki-SV arose by recombination between the 5' and 3' ends of Ki-MuLV and a large portion of the homologous sequences of the endogenous rat src RNA.  相似文献   

2.
The sequence relations between Kirsten murine sarcoma virus (Ki-SV), Harvey murine sarcoma virus (Ha-SV), and a rat endogenous 30S RNA were studied by electron microscope heteroduplex analysis. The sequence relationships between the sarcoma viruses and their respective parental murine leukemia viruses (Kirsten and Moloney murine leukemia viruses), as well as between the two murine leukemia viruses, were also studied. The only observed nonhomology feature of the Kirsten murine leukemia virus/Moloney murine leukemia virus heteroduplexes was a substitution loop with two arms of equal length extending from 1.80 +/- 0.18 kilobases (kb) to 2.65 +/- 0.27 kb from the 3' end of the RNA. It is believed that this feature lies in the env gene region of the viral genomes. The Ha-SV and Moloney murine leukemia virus genomes (respective lengths, 6.0 and 9.0 kb) were homologous in a 1.0 +/- 0.05-kb region at the 3' end and possibly over a 200-nucleotide region at the 5' ends; otherwise, they were nonhomologous. Ha-SV and Ki-SV (length, 7.5 kb) were homologous in the first 4.36 +/- 0.37-kb region from the 3' end and in a 0.70 +/- 0.15-kb region at the 5' end. In between, there was a nonhomology region, possibly containing a short (0.23-kb) region of partial or total homology. The heteroduplex analysis between rat endogenous 30S RNA and Ki-SV shows that there are mixed regions of sequence homology and nonhomology at both the 5' and 3' ends. However, there is a large (4-kb) region of homology between Ki-SV and the rat 30S RNA in the center of the genomes, with only a small nonhomology hairpin feature. These studies help to define the regions of homology between the Ha-SV and Ki-SV genomes with each other and with the rat endogenous 30S RNA. These regions may be related to the sarcoma genicity of the viruses. In particular, the 0.7-kb region of homology of Ha-SV with Ki-SV at the 5' ends may be related to the formation of a 21,000-dalton phosphoprotein in cells transformed by either virus.  相似文献   

3.
We have isolated eight rat lymphocyte-myeloma hybrid cell lines producing monoclonal antibodies that react with the 21,000-dalton transforming protein (p21) encoded by the v-ras gene of Harvey murine sarcoma virus (Ha-MuSV). These antibodies specifically immunoprecipitate both phosphorylated and non-phosphorylated forms of p21 from lysates of cells transformed by Ha-MuSV. All eight react with the products of closely related ras genes expressed in cells transformed by two additional sarcoma viruses (rat sarcoma virus and BALB sarcoma virus) or by a cellular Harvey-ras gene placed under the control of a viral promoter. Three of the antibodies also react strongly with the p21 encoded by the v-ras gene of Kirsten MuSV. These same three antibodies immunoprecipitate the predominant p21 species synthesized normally in a variety of rodent cell lines, including the p21 produced at high levels in 416B murine hemopoietic cells. This suggests that an endogenous gene closely related to Kirsten-ras is expressed in these cells. The monoclonal antibodies have been used to confirm two properties associated with p21; localization at the inner surface of the membrane of Ha-MuSV-transformed cells, assayed by immunofluorescence microscopy, and binding of guanine nucleotides.  相似文献   

4.
Functional organization of the Harvey murine sarcoma virus genome.   总被引:27,自引:11,他引:16       下载免费PDF全文
The comparative infectivity of Harvey murine sarcoma virus (Ha-MuSV) DNA for NIH 3T3 cells was determined for supercoiled Ha-MuSV DNA molecularly cloned in lambda phage and pBR322 at its unique EcoRI site (which is located near the middle of the 6-kilobase pair [kbp] unintegrated linear viral DNA) and for two cloned subgenomic fragments: one was 3.8 kbp and lacked about 1 kbp from each side of the EcoRI site, and the second did not contain the 3 kbp of the unintegrated linear viral DNA located on the 3' side of the EcoRI site. Each subgenomic DNA induced foci of transformed cells, but with a lower relative efficiency then genomic DNA. Transfection with intact vector Ha-MuSV DNA yielded results similar to those obtained after separation of Ha-MuSV DNA from vector DNA. Cells lines were then derived from individual foci transformed with each type of viral DNA. Focus-forming virus was recovered from transformed cells after superinfection with a helper-independent virus, but the efficiency varied by several orders of magnitude. For several transformed lines, the efficiency of recovery of focus-forming virus was correlated with the structure of the Ha-MuSV DNA in the cells before superinfection. When 32P-labeled Ha-MuSV DNA probes specific for sequences on either the 3' or 5' side of the EcoRI site were used to analyze the viral RNA in the transformed cell lines, all lines were found to hybridize with the 5' probe, but some lines did not hybridize with the 3' probe. The transformed lines contained high levels of the Ha-MuSV-coded p21 or its associated GDP-binding activity. We conclude that the transforming region and the sequences that code for the viral p21 protein are both located within the 2 kilobases closest to the 5' end of the Ha-MuSV genome.  相似文献   

5.
The genetic complexities of several ribodeoxyviruses were measured by quantitative analysis of unique RNase T1-resistant oligonucleotides from 60-70S viral RNAs. Moloney murine leukemia virus was found to have an RNA complexity of 3.5 x 10(6) daltons, whereas Moloney murine sarcoma virus had a significantly smaller genome size of 2.3 x 10(6). Reticuleondotheliosis and visna virus RNAs had complexities of 3.9 x 10(6), respectively. Analysis of RNase A-resistant oligonucleotides of Rous sarcoma virus RNA gave a complexity of 3.6 x 10(6), similar to that previously obtained with RNase T1-resistant oligonucleotides. Since each of these viruses was found to have a unique sequence genomic complexity near the molecular weight of a single 30-40S viral RNA subunit, it was concluded that ribodeoxyvirus genomes are at least largely polyploid.  相似文献   

6.
The viral RNA of the Harvey strain of murine sarcoma virus (Ha-SV), which does not encode for any known viral structural polypeptides, has been translated in a nuclease-digested, cell-free system. The major protein product of the in vitro translation reaction has a molecular weight of 21,000 and is initiated faithfully with [35S]formylmethionine from formyl-[35S]methionyl-tRNAFMET. This polypeptide is clearly distinct from the RNA of the Moloney strain of type C helper virus used to pseudotype the Ha-SV. The intensity of the 21,000-dalton polypeptide on gels correlates well to the concentration of Ha-SV RNA in different viral RNA preparations. These experiments indicate that a polypeptide marker for Ha-SV is now available for the first time. The possibility that this protein is the product of the rat portion of the Ha-SV genome is discussed.  相似文献   

7.
The large RNase T1-resistant oligonucleotides of the nondefective (nd) Rous sarcoma virus (RSV): Prague RSV of subgroup B (PR-B), PR-C and B77 of subgroup C; of their transformation-defective (td0 deletion mutants: td PR-B, td PR-C, and td B77; and of replication-defective (rd) RSV(-) were completely or partially mapped on the 30 to 40S viral RNAs. The location of a given oligonucleotide relative to the poly(A) terminus of the viral RNAs was directly deduced from the smallest size of the poly(A)-tagged RNA fragment from which it could be isolated. Identification of distinct oligonucleotides was based on their location in the electrophoretic/chromatographic fingerprint pattern and on analysis of their RNase A-resistant fragments. The following results were obtained. (i) The number of large oligonucleotides per poly(A)-tagged ffagment increased with increasing size of the fragment. This implies that the genetic map is linear and that a given RNase T1-resistant oligonucleotides has, relative to the poly(A) end, the same location on all 30 to 40S RNA subunits of a given 60 to 70S viral RNA complex, (ii) Three sarcoma-specific oligonucleotides were identified in the RNAs of Pr-B, PR-C and B77 by comparison with the RNAs of the corresponding td viruses...  相似文献   

8.
The viral RNAs of various mammalian retroviruses contain highly conserved sequences close to their 3' ends. This was demonstrated by interviral molecular hybridization between fractionated viral complementary DNA (cDNA) and RNA. cDNA near the 3' end (cDNA(3')) from a rat virus (RPL strain) was fractionated by size and mixed with mouse virus RNA (Rauscher leukemia virus). No hybridization occurred with total cDNA (cDNA(total)), in agreement with previous results, but a cross-reacting sequence was found with the fractionated cDNA(3'). The sequences between 50 to 400 nucleotides from the 3' terminus of heteropolymeric RNA were most hybridizable. The rat viral cDNA(3') hybridized with mouse virus RNA more extensively than with RNA of remotely related retroviruses. The related viral sequence of the rodent viruses (mouse and rat) showed as much divergence in heteroduplex thermal denaturation profiles as did the unique sequence DNA of these two rodents. This suggests that over a period of time, rodent viruses have preserved a sequence with changes correlated to phylogenetic distance of hosts. The cross-reacting sequence of replication-competent retroviruses was conserved even in the genome of the replication-defective sarcoma virus and was also located in these genomes near the 3' end of 30S RNA. A fraction of RD114 cDNA(3'), corresponding to the conserved region, cross-hybridized extensively with RNA of a baboon endogenous virus (M7). Fractions of similar size prepared from cDNA(3') of MPMV, a primate type D virus, hybridized with M7 RNA to a lesser extent. Hybridization was not observed between Mason-Pfizer monkey virus and M7 if total cDNA's were incubated with viral RNAs. The degree of cross-reaction of the shared sequence appeared to be influenced by viral ancestral relatedness and host cell phylogenetic relationships. Thus, the strikingly high extent of cross-reaction at the conserved region between rodent viruses and simian sarcoma virus and between baboon virus and RD114 virus may reflect ancestral relatedness of the viruses. Slight cross-reaction at the site between type B and C viruses of rodents (mouse mammary tumor virus and RPL virus, 58-2T) or type C and D viruses of primates (M7, RD114, and Mason-Pfizer monkey virus) may have arisen at the conserved region through a mechanism that depends more on the phylogenetic relatedness of the host cells than on the viral type or origin. Determining the sequence of the conserved region may help elucidate this mechanism. The conserved sequences in retroviruses described here may be an important functional unit for the life cycle of many retroviruses.  相似文献   

9.
We have used DNA bound to cellulose to isolate and translate in vitro herpes simplex virus type 1 (HSV-1) mRNA's encoded by HindIII fragment L (mapping between 0.592 and 0.647), and 8.450-base-pair (8.45-kb) portion of the long unique region of the viral genome. Readily detectable, late mRNA's 2.7 and 1.9 kb in size encoding 69,000- and 58,000-dalton polypeptides, respectively, were isolated. A very minor late mRNA family composed of two colinear forms, one 2.6 kb and one 2.8 kb, was isolated and found to encode only an 85,000-dalton polypeptide. A major early mRNA, 1.8 kb in size encoding a 64,000-dalton polypeptide, was also isolated. High-resolution mapping of these mRNA's by using S1 nuclease and exonuclease VII digestion of hybrids between them and 5' and 3' end-labeled DNA fragments from the region indicated that the major early mRNA contained no detectable splices, and about half of its 3' end was complementary to the 3' region of the very minor 2.6- to 2.8-kb mRNA's encoded on the opposite strand. These mRNA's also contained no detectable splices. The major late 2.7-kb mRNA was found to be a family made up of members with no detectable splices and members with variable-length (100 to 300 bases) segments spliced out very near (ca. 50 to 100 bases) the 5' end.  相似文献   

10.
Detailed restriction endonuclease maps were developed for Harvey murine sarcoma virus (Ha-MuSV) DNA (clone H-1), molecularly closed at its unique EcoRI site in pBR322, for three nonoverlapping subgenomic HindIII clones which together span the entire H-1 clone and for a molecularly cloned DNA copy of a portion of rat 30S RNA (which represents the majority of the rat genetic sequences in Ha-MuSV). Molecular hybridization of the 30S clone to small restriction fragments of clone H-1 revealed a 0.9-to-1.0-kilobase pair region in the 5' half of the Ha-MuSV genome not homologous to the 30S clone, although the 30S clone did contain related sequences in Ha-MuSV on both sides of this nonhomologous region. By using cloned sequences from a segment of the Ha-MuSV nonhomology region as a probe for hybridization to Southern blots of DNA from rat, mouse, bat, and chicken cells, one to three bands were detected in DNA of each species. By contrast, the 30S clone DNA was highly related to many sequences in rat DNA, partially related to fewer mouse DNA sequences, and homologous only to one to three bands in bat and chicken DNA. Earlier work had shown that the 5' half of the Ha-MuSV genome coded for transformation and for the viral p21 protein (Chang et al., J. Virol. 35: 76--92, 1980; Wei et al., Proc. Natl. Acad. Sci. U.S.A., in press). We used two subgenomic HindIII clones whose shared HindIII site mapped within the 5' region of clone H-1 nonhomologous to the 30S clone to test whether the nonhomologous segment might encode the transforming and p21 functions. Although neither of the subgenomic HindIII fragments by themselves induced transformation, ligation of these two nontransforming DNAs to each other did restore p21-mediated transformation. A conclusion consistent with these results is that a region in the 5' half of the Ha-MuSV genome evolutionarily distinct from and not present in rat 30S RNA is essential for transformation and for p21 encoding.  相似文献   

11.
Properties and Location of Poly(A) in Rous Sarcoma Virus RNA   总被引:40,自引:26,他引:14       下载免费PDF全文
The poly(A) sequence of 30 to 40S Rous sarcoma virus RNA, prepared by digestion of the RNA with RNase T(1), showed a rather homogenous electrophoretic distribution in formamide-polyacrylamide gels. Its size was estimated to be about 200 AMP residues. The poly(A) appears to be located at or near the 3' end of the 30 to 40S RNA because: (i) it contained one adenosine per 180 AMP residues, and because (ii) incubation of 30 to 40S RNA with bacterial RNase H in the presence of poly(dT) removed its poly(A) without significantly affecting its hydrodynamic or electrophoretic properties in denaturing solvents. The viral 60 to 70S RNA complex was found to consist of 30 to 40S subunits both with (65%) and without (approximately 30%) poly(A). The heteropolymeric sequences of these two species of 30 to 40S subunits have the same RNase T(1)-resistant oligonucleotide composition. Some, perhaps all, RNase T(1)-resistant oligonucleotides of 30 to 40S Rous sarcoma virus RNA appear to have a unique location relative to the poly(A) sequence, because the complexity of poly(A)-tagged fragments of 30 to 40S RNA decreased with decreasing size of the fragment. Two RNase T(1)-resistant oligonucleotides which distinguish sarcoma virus Prague B RNA from that of a transformation-defective deletion mutant of the same virus appear to be associated with an 11S poly(A)-tagged fragment of Prague B RNA. Thus RNA sequences concerned with cell transformation seem to be located within 5 to 10% of the 3' terminus of Prague B RNA.  相似文献   

12.
RNA and protein of the defective avian acute leukemia virus CMII, which causes myelocytomas in chickens, and of CMII-associated helper virus (CMIIAV) were investigated. The RNA of CMII measured 6 kilobases (kb) and that of CMIIAV measured 8.5 kb. By comparing more than 20 mapped oligonucleotides of CMII RNA with mapped and nonmapped oligonucleotides of acute leukemia viruses MC29 and MH2 and with mapped oligonucleotides of CMIIAV and other nondefective avian tumor viruses, three segments were distinguished in the oligonucleotide map of CMII RNA: (i) a 5' group-specific segment of 1.5 kb which was conserved among CMII, MC29, and MH2 and also homologous with gag-related oligonucleotides of CMIIAV and other helper viruses (hence, group specific); (ii) an internal segment of 2 kb which was conserved specifically among CMII, MC29, and MH2 and whose presence in CMII lends new support to the view that this class of genetic elements is essential for oncogenicity, because it was absent from an otherwise isogenic, nontransforming helper, CMIIAV; and (iii) a 3' group-specific segment of 2.5 kb which shared 13 of 14 oligonucleotides with CMIIAV and included env oligonucleotides of other nondefective viruses of the avian tumor virus group (hence, group specific). This segment and analogous map segments of MC29 and MH2 were not conserved at the level of shared oligonucleotides. CMII-transformed cells contained a nonstructural, gag gene-related protein of 90,000 daltons, distinguished by its size from 110,000-daltom MC29 and 100,000-dalton MH2 counterparts. The gag relatedness and similarity to the 110,000-dalton MC29 counterpart indicated that the 90,000-dalton CMII protein is translated from the 5' and internal segments of CMII RNA. The existence of conserved 5' and internal RNA segments and conserved nonstructural protein products in CMII, MC29, and MH2 indicates that these viruses belong to a related group, termed here the MC29 group. Viruses of the MC29 group differ from one another mainly in their 3' RNA segments and in minor variations of their conserved RNA segments as well as by strain-specific size markers of their gag-related proteins. Because (i) the conserved 5' gag-related and internal RNA segments and their gag-related, nonvirion protein products correlate with the conserved oncogenic spectra of the MC29 group of viruses and because (ii) the internal RNA sequences and nonvirion proteins are not found in nondefective viruses, we propose that the conserved RNA and protein elements are necessary for oncogenicity and probably are the onc gene products of the MC29 group of viruses.  相似文献   

13.
The transforming protein coded for by the onc gene (v-rasHa) of Harvey murine sarcoma virus (Ha-MuSV) is the 21,000-dalton protein (p21) which is the immediate agent responsible for the virus-induced malignant transformation of normal cells. The p21 proteins of Ha-MuSV and the closely related Kirsten murine sarcoma virus are heavily phosphorylated in vivo. In the partially purified Ha-MuSV p21, the protein shows a guanine nucleotide-binding activity and, in addition, a very unique autophosphorylating activity at a threonine residue using as phosphoryl donor GTP but not ATP. In the present study, we compared the tryptic peptide maps of the Ha-MuSV p21 phosphorylated in vivo and in vitro. The results show that the major phosphorylation site is identical. Since the GTP-specific phosphorylation is very unique and distinct from all other known protein kinases, the present observation suggests that the in vitro enzymatic activity is responsible for the p21 phosphorylation in vivo. We have analyzed the amino acid sequence surrounding the major phosphorylation site of the Ha-MuSV p21 by automated Edman degradations of the tryptic phosphopeptides. Threonine residue 59 from the initiator methionine residue 1 of the p21 protein is the phosphorylated amino acid residue, and the surrounding amino acid sequence is NH2...-Thr-Cys-Leu-Leu-Asp-Ile-Leu-Asp-Thr-Thr(P)-Gly-Gln-Glu-Glu-Tyr-...COOH. The p21 proteins of both the Ha-MuSV and the closely related Kirsten murine sarcoma virus share the same phosphopeptide. The amino acid sequence of the phosphorylation site is distinct from all other known protein kinases.  相似文献   

14.
Extrachromosomal DNA obtained from mink cells acutely infected with the Snyder-Theilen (ST) strain of feline sarcoma virus (feline leukemia virus) [FeSV(FeLV)] was fractionated electrophoretically, and samples enriched for FeLV and FeSV linear intermediates were digested with EcoRI and cloned in lambda phage. Hybrid phages were isolated containing either FeSV or FeLV DNA "inserts" and were characterized by restriction enzyme analysis, R-looping with purified 26 to 32S viral RNA, and heteroduplex formation. The recombinant phages (designated lambda FeSV and lambda FeLV) contain all of the genetic information represented in FeSV and FeLV RNA genomes but lack one extended terminally redundant sequence of 750 bases which appears once at each end of parental linear DNA intermediates. Restriction enzyme and heteroduplex analyses confirmed that sequences unique to FeSV (src sequences) are located at the center of the FeSV genome and are approximately 1.5 kilobase pairs in length. With respect to the 5'-3' orientation of genes in viral RNA, the order of genes in the FeSV genome is 5'-gag-src-env-c region-3'; only 0.9 kilobase pairs of gag and 0.6 kilobase pairs of env-derived FeLV sequences are represented in ST FeSV. Heteroduplex analyses between lambda FeSV or lambda FeLV DNA and Moloney murine sarcoma virus DNA (strain m1) were performed under conditions of reduced stringency to demonstrate limited regions of base pair homology. Two such regions were identified: the first occurs at the extreme 5' end of the leukemia and both sarcoma viral genomes, whereas the second corresponds to a 5' segment of leukemia virus "env" sequences conserved in both sarcoma viruses. The latter sequences are localized at the 3' end of FeSV src and at the 5' end of murine sarcoma virus src and could possibly correspond to regions of helper virus genomes that are required for retroviral transforming functions.  相似文献   

15.
The rat-derived Harvey murine sarcoma virus (Ha-MuSV) contains a transduced ras oncogene activated by two missense mutations and flanked by rat retroviruslike VL30 sequences. Ha-MuSV induces focal transformation of mouse NIH 3T3 cells in vitro and tumors (fibrosarcomas and splenic erythroleukemias) in newborn mice. We have used these two assays to study the contribution of coding and noncoding viral sequences to the biological activity of Ha-MuSV. A good correlation was found between the in vitro and in vivo assays. In several different isogenic Ha-MuSV variants, those with a rasH gene that had one or both of the Ha-MuSV missense mutations were much more active biologically than the corresponding proto-oncogene. A Ha-MuSV variant that encoded the proto-oncogene protein induced lymphoid leukemias (with thymomas), with a relatively long latent period, rather than the fibrosarcomas and erythroleukemias characteristic of Ha-MuSV with one or both missense mutations. A VL30-derived segment with enhancer activity was identified downstream from v-rasH. A mutant Ha-MuSV from which this 3' noncoding segment was deleted expressed lower levels of the wild-type viral protein, displayed impaired transforming activity in vitro, and induced lymphoid leukemias (with thymomas). 5' noncoding rat c-rasH sequences were found to increase the biological activity of the virus when substituted for the corresponding segment of v-rasH. We conclude that (i) the biological activity of Ha-MuSV can be influence significantly by noncoding sequences located outside the long terminal repeat as well as by coding sequences, (ii) VL30 sequences positively regulate the expression of v-rasH, (iii) relatively low biological levels of ras, whether resulting from low-level expression of wild type v-rasH or high-levels of ras proto-oncogene protein, induce a type of tumor that differs from tumors induced by high biological levels of ras, and (iv) the in vivo pathogenicity of the Ha-MuSV variants correlated with their transforming activity on NIH 3T3 cells.  相似文献   

16.
The src genes of six different strains of avian sarcoma virus (ASV) were compared with those of a series of newly isolated sarcoma viruses, termed "recovery avian sarcoma viruses" (rASV's). The rASV's were isolated recently from chicken and quail tumors induced by transformation-defective (td) deletion mutants of Schmidt-Ruppin Rous sarcoma virus. The RNase T1-resistant oligonucleotide maps were constructed for the RNA genomes of different strains of ASV and td mutants. The src-specific sequences, characterized by RNase T1-resistant oligonucleotides ranging from 9 to 19 nucleotides long, were defined as those mapping between approximately 600 and 2,800 nucleotides from the 3' polyadenylate end of individual sarcoma viral RNAs, and missing in the corresponding td viral RNAs. Our results revealed that 12 src-specific oligonucleotides were highly conserved among several strains of ASV, including the rASV's, whereas certain strains of ASV were found to contain one to three characteristic src-specific oligonucleotides. We previously presented evidence supporting the idea that most of the src-specific sequences present in rASV RNAs are derived from cellular genetic information. Our present data indicate that the src genes of rASV's are closely related to other known ASVs. We conclude that the src genes of different strains of ASV and the cellular sarc sequences are of common origin, although some divergence has occurred among different viral src genes and related cellular sequences.  相似文献   

17.
The site of recombination of a mink cell focus-inducing strain (Mo-MuLV83) derived from an ecotropic Moloney murine leukemia virus (Mo-MuLV) was mapped by fingerprint analysis of the large RNase T1-resistant oligonucleotides, employing a two-dimensional gel electrophoresis method. Mo-MuLV83, in contrast to the ecotropic Mo-MuLV, demonstrated a broadened host range, i.e., growth not only on mouse cells but also on mink cells, and recombination involved the env gene function. The genomic RNA of these two viruses shared 42 out of a total of 51 to 53 large T1 oligonucleotides (81%) and possessed a similar subunit size of 36S. Most of these T1 oligonucleotides were mapped in their relative order to the 3' polyadenylic acid end of the viral RNA molecules. There were 10 common oligonucleotides immediately next to the 3' termini. A cluster of 7 (in Mo-MuLV83) or 10 (in Mo-MuLV) unique T1 oligonucleotides were mapped next to the common sequences at the 3' end, and they all appeared concomitantly in a polyadenylic acid-containing RNA fraction with a sedimentation coefficient slightly larger than 18S. Therefore, the env gene of Mo-MuLV was situated at a location approximately 2,000 to 4,000 nucleotides from the 3' end of the genomic RNA, and the gene order of Mo-MuLV appeared to be similar to that of the more rigorously determined avian oncornaviruses. cDNA(SFFV) specific for the xenotropic sequences in the spleen focus-forming virus RNA hybridized to the cluster of unique oligonucleotides of Mo-MuLV83 RNA. This suggests that the loci of recombination involve the homologous env gene region of a xenotropic virus.  相似文献   

18.
Two murine sarcoma viruses, the Kirsten and the Harvey, were isolated by passage of mouse type C leukemia viruses through rats. These sarcoma viruses have genomes containing portions of their parental type C mouse leukemia virus genomes, in stable association with specific rat cellular sequences that we find to be quite likely not those of a rat type C leukemia virus. To determine if these murine sarcoma viruses provide a model relevant to the events occurring in spontaneous tumors, we have hybridized DNA and RNA prepared from rat tumors and normal rat tissues to [3H]DNA prepared from the Kirsten murine sarcoma virus. We have also hybridized these rat tissue nucleic acids to [3H]DNA prepared from a respresentative endogenous rat type C leukemia virus, the WFU (Wistar-Furth). Sarcoma-viral rat cellular sequences and endogenous rat leukemia viral sequences were detected in the DNA of both tumor and normal tissues, with no evidence of either gene amplification or additional sequences being present in tumor DNA. Sarcoma-viral rat cellular sequences and endogenous rat leukemia viral sequences were detected at elevated concentrations in the RNA of many rat tumors and in specific groups of normal tissues.  相似文献   

19.
We purified the p19 proteins from the Prague C strain of Rous sarcoma virus, avian myeloblastosis virus, B77 sarcoma virus, myeloblastosis-associated virus-2(0), and PR-E 95-C virus and measured their binding affinities for 60S viral RNA by the nitrocellulose filter binding technique. The apparent association constants of the p19 proteins from Rous sarcoma virus Prague C, avian myeloblastosis virus, and B77 sarcoma virus for homologous and heterologous 60S RNAs were similar (1.5 x 10(11) to 2.6 x 10(11) liters/mol), whereas those of myeloblastosis-associated virus-2(0) and PR-E 95-C virus were 10-fold lower. The sizes and relative amounts of the virus-specific polyadenylic acid-containing RNAs in the cytoplasms of cells infected with Rous sarcoma virus Prague C, myeloblastosis-associated virus-2(0), and PR-E 95-C virus were determined by fractionating the RNAs on agarose gels containing methylmercury hydroxide, transferring them to diazobenzyloxymethyl paper and hybridizing them to a 70-nucleotide complementary DNA probe. In cells infected with Rous sarcoma virus Prague C we detected 3.4 x 10(6)-, 1.9 x 10(6)-, and 1.1 x 10(6)-dalton RNAs, in PR-E 95-C virus-infected cells we detected 3.4 x 10(6)-, 1.9 x 10(6)- and 0.7 x 10(6)-dalton RNAs, and in cells infected with myeloblastosis-associated virus-2(0) we detected 3 x 10(6)- and 1.3 x 10(6)-dalton RNAs. Each of these RNA species contained RNA sequences derived from the 5' terminus of genome-length RNA, as evidenced by hybridization with the 5' 70-nucleotide complementary DNA. The ratios of subgenomic mRNA's to genome-length RNAs in cells infected with myeloblastosis-associated virus-2(0) and PR-E 95-C virus were three- to five-fold higher than the ratio in cells infected with Rous sarcoma virus Prague C. These results suggest that more processing of viral RNA in infected cells is correlated with lower binding affinities of the p19 protein for viral RNA, and they are consistent with the hypothesis that the p19 protein controls processing of viral RNA in cells.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号