首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A model is developed to calculate the deposition of hygroscopic aerosols in the human tracheobronchial (TB) tree. The TB airflow pattern assumed is consistent with experimental observations and accounts for anatomical features such as the larynx and cartilaginous rings in large airways. Some original deposition efficiency formulae are presented for laminar and turbulent airstreams. Stepwise growth is simulated by changes in particle size and density at each TB generation. The dose distribution of NaCl aerosols is studied as a function of inhaled particle size and flow rate. Two NaCl growth rate curves are used which differ in the mode of aerosol-air mixing in the trachea. The initial rate of aerosol mixing in the human due to the laryngeal jet is shown to be an important factor affecting the deposition of hygroscopic aerosols. Total TB deposition of NaCl exceeds that for nonhygroscopic particles of the same inhaled aerodynamic size. Hygroscopic growth can also influence the regional TB distribution of dose when submicron NaCl particles grow rapidly enough to deposit by impaction and sedimentation.  相似文献   

2.
A newly developed computer model is used to predict the aqueous salt solution concentration, breathing pattern, and inhaled droplet size distribution parameters that will maximize pulmonary deposition of hygroscopic medicinal aerosols. The parameter values providing maximum pulmonary deposition include 1) a NaCl concentration in the aerosolized solution of 0.035 g/ml or higher if the subject can tolerate it, 2) as nearly a monodispersed inhaled aerosol size distribution as possible, 3) an aerosol mass median diameter of 2-3 micron, and 4) slow (7 breaths/min) uninterrupted breathing of 1.5-2 liters of aerosol/breath. With these values, the model predicts that pulmonary deposition can be increased by greater than 100% relative to the deposition achieved in conventional inhalation therapy with isotonic saline-based medications.  相似文献   

3.
Theoretical models of particle deposition in the respiratory tract predict high fractional deposition for particles of less than 0.1 micron, but there are few confirming experimental data for those predictions. We have measured the deposition fraction of a nonhygroscopic aerosol in the human respiratory tract. The aerosol had a count mean diameter of 0.044 micron SD of 1.93, as measured with an electrical aerosol analyzer, and was produced from a 0.01% solution of bis(2-ethylhexyl) sebacate using a condensation generator. Subjects inhaled the aerosol using a controlled respiratory pattern of 1 liter tidal volume, 12/min. Deposition was calculated as the difference in concentration between inhaled and exhaled aerosol of five size fractions corrected for system deposition and dead-space constants. Three deposition studies were done on each of five normal male volunteers. Means (+/- SE) for the five size fractions were 0.024 micron, 0.71 +/- 0.06; 0.043 micron, 0.62 +/- 0.06; 0.075 micron, 0.53 +/- 0.05; 0.13 micron, 0.44 +/- 0.04; and 0.24 micron, 0.37 +/- 0.06. These data demonstrate that deposition of inhaled particles in the 0.024- to 0.24-micron size range is high and increases with decreasing size. These observations agree with and validate predictions of mathematical models.  相似文献   

4.
Both the total and regional aerosol deposition were measured in six adult sheep before and after an induction of asymmetric airway obstructions, either by local instillation of carbachol solution (CS, 0.1%) distal to the right main bronchus or inhalation challenge of the right lung with carbachol aerosol (CA, 10 breaths). Total lung deposition was determined by monitoring inert monodisperse aerosols [1.0 micron mass median aerodynamic diam (MMAD)] breath-by-breath, at the mouth, by means of a laser aerosol photometer. Cumulative aerosol deposition over the first five breaths as a percent of the initial aerosol concentration (AD5) was used as a deposition index. Regional deposition pattern was determined by scintigraphic images of sulfur-colloid aerosol (1.5 microns MMAD) tagged with 99mTc. Radioactivity counts in the right (R) and left lung (L) were expressed as a percent of the whole lung count. Half-lung AD5 was then determined by multiplying AD5 by fractional radioaerosol depositions in R or L. Pulmonary airflow resistance (RL mean +/- SE), as determined by an esophageal balloon technique, increased by 111 +/- 28 and 250 +/- 96% after CA and CS, respectively (P less than 0.05). AD5 also increased in all the sheep tested by 29 +/- 3 and 52 +/- 8%, respectively, after CA and CS (P less than 0.05). Radioaerosol deposition pattern was even at base line (R/L = 51:49) but shifted toward the unchallenged L after CS (R/L = 40:60). Deposition pattern after CA was variable: a shift toward L in three, no change in one, and a shift toward the R lung in two sheep.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.

Objective

Aerosol delivery holds potential to release surfactant or perfluorocarbon (PFC) to the lungs of neonates with respiratory distress syndrome with minimal airway manipulation. Nevertheless, lung deposition in neonates tends to be very low due to extremely low lung volumes, narrow airways and high respiratory rates. In the present study, the feasibility of enhancing lung deposition by intracorporeal delivery of aerosols was investigated using a physical model of neonatal conducting airways.

Methods

The main characteristics of the surfactant and PFC aerosols produced by a nebulization system, including the distal air pressure and air flow rate, liquid flow rate and mass median aerodynamic diameter (MMAD), were measured at different driving pressures (4–7 bar). Then, a three-dimensional model of the upper conducting airways of a neonate was manufactured by rapid prototyping and a deposition study was conducted.

Results

The nebulization system produced relatively large amounts of aerosol ranging between 0.3±0.0 ml/min for surfactant at a driving pressure of 4 bar, and 2.0±0.1 ml/min for distilled water (H2Od) at 6 bar, with MMADs between 2.61±0.1 µm for PFD at 7 bar and 10.18±0.4 µm for FC-75 at 6 bar. The deposition study showed that for surfactant and H2Od aerosols, the highest percentage of the aerosolized mass (∼65%) was collected beyond the third generation of branching in the airway model. The use of this delivery system in combination with continuous positive airway pressure set at 5 cmH2O only increased total airway pressure by 1.59 cmH2O at the highest driving pressure (7 bar).

Conclusion

This aerosol generating system has the potential to deliver relatively large amounts of surfactant and PFC beyond the third generation of branching in a neonatal airway model with minimal alteration of pre-set respiratory support.  相似文献   

6.
Studies of aerosol particle deposition in the respiratory tract requires experimental inhalation of artificial model aerosols. The paper formulates some of the most important requirements for the properties of such aerosols. Several suitable fractions were prepared as part of a research project dealing with the use of microporous polymers for diagnostic purposes. 5 fractions of the polymer designated G-gel 60 with the particle size as stated by the manufacturer, ranging from 3 to 7 micron were evaluated using a 16-channel particle dispersity analyzer HIAC/ROYCO MT 3210 with the sensor 1200 and operated by a microprocessor, the equipment being coupled to an APPLE IIe computer. G-gel 60 particles introduced into the aerosol were characterized by the parameters CMAD, MMAD and sg both numerically and graphically. The measurement procedure was found to be very sensitive with respect to all fractions in evaluating the subtile differences between different lot numbers of the aerosol. G-gel 60 fractions characterized both numerically and graphically were compared with the known aerosols from paraffin oil and atmospheric air. The equipment MT 3210 enables prompt determination of the percentages of aerosol particles distribution by size class. The authors conclude that the procedure, both in its numerical and graphical versions, is particularly suitable for the diagnosis of aerosol particles deposition in the respiratory tract, offering a new application for HIAC/ROYCO in the field of medicine. In evaluating atmospheric aerosol in exhaled air, the number of particles was found to be below that in inhaled air, the difference being dependent on the choice of investigation methods. Percentual distribution of deposited particles following one minute ventilation proved to be at its maximum, as regards atmospheric aerosol, in the 0.30-0.50 micron range. The deposition curve was similar to already published curves, being characterized by an S-shaped pattern with maximum deposition in the greater size classes. An analysis of inhaled, exhaled and deposited aerosol suggested that deposited aerosol is more polydisperse and has particles of greater sizes than inhaled aerosol. Investigation of the effect of apnoe on deposition indicated that deposition increased as a function of apnoeic pause.  相似文献   

7.
The purpose of this study was to determine whether excessive airway secretions could serve as a barrier function against inhaled particulate matter. To increase airway secretions, six conscious sheep were treated with pilocarpine (0.8 mg/kg i.v.). Pilocarpine increased pulmonary resistance (RL) and total aerosol deposition within five breaths (AD5) as determined by the rebreathing of an inert monodisperse aerosol. When RL had returned to baseline, AD5 remained elevated [21 +/- 2% (SE), P < 0.05] and tracheal secretions were increased (237 +/- 77%, P < 0.05) above the values before pilocarpine administration. A carbachol aerosol dose-response curve was carried out at this time and compared with a control carbachol dose-response curve by calculating the dose of carbachol required to increase RL by 400% (PD400). Mean PD400 was increased postpilocarpine by 53 +/- 18 (P < 0.05) and 85 +/- 25% (P < 0.05) when normalized for increased aerosol deposition. Thus, pilocarpine decreased airway responsiveness to inhaled carbachol despite increasing aerosol deposition. The pilocarpine-induced airway hyporesponsiveness to inhaled carbachol is consistent with the hypothesis that excessive secretions have a protective role in the airways.  相似文献   

8.
The deposition of ultrafine aerosols in the respiratory tract presents a significant health risk due to the increased cellular-level response that these particles may invoke. However, the effects of geometric simplifications on local and regional nanoparticle depositions remain unknown for the oral airway and throughout the respiratory tract. The objective of this study is to assess the effects of geometric simplifications on diffusional transport and deposition characteristics of inhaled ultrafine aerosols in models of the extrathoracic oral airway. A realistic model of the oral airway with the nasopharynx (NP) included has been constructed based on computed tomography scans of a healthy adult in conjunction with measurements reported in the literature. Three other geometries with descending degrees of physical realism were then constructed with successive geometric simplifications of the realistic model. A validated low Reynolds number k-omega turbulence model was employed to simulate laminar, transitional, and fully turbulent flow regimes for the transport of 1-200 nm particles. Results of this study indicate that the geometric simplifications considered did not significantly affect the total deposition efficiency or maximum local deposition enhancement of nanoparticles. However, particle transport dynamics and the underlying flow characteristics such as separation, turbulence intensity, and secondary motions did show an observable sensitivity to the geometric complexity. The orientation of the upper trachea was shown to be a major factor determining local deposition downstream of the glottis and should be retained in future models of the respiratory tract. In contrast, retaining the NP produced negligible variations in airway dynamics and could be excluded for predominantly oral breathing conditions. Results of this study corroborate the use of existing diffusion correlations based on a circular oral airway model. In comparison to previous studies, an improved correlation for the deposition of nanoparticles was developed based on a wider range of particle sizes and flow rates, which captures the dependence of the Sherwood number on both Reynolds and Schmidt numbers.  相似文献   

9.
Aerosol particle size influences airway drug deposition. Current inhaler devices are inefficient, delivering a heterodisperse distribution of drug particle sizes where, at best, 20% reaches the lungs. Monodisperse aerosols are the appropriate research tools to investigate basic aerosol science concepts within the human airways. We hypothesized that engineering such aerosols of albuterol would identify the ideal bronchodilator particle size, thereby optimizing inhaled therapeutic drug delivery. Eighteen stable mildly to moderately asthmatic patients [mean forced expiratory volume in 1 s (FEV1) 74.3% of predicted] participated in a randomized, double-blind, crossover study design. A spinning-top aerosol generator was used to produce monodisperse albuterol aerosols that were 1.5, 3, and 6 microm in size, and also a placebo, which were inhaled at cumulative doses of 10, 20, 40, and 100 microg. Lung function changes and tolerability effects were determined. The larger particles, 6 and 3 microm, were significantly more potent bronchodilators than the 1.5-microm and placebo aerosols for FEV1 and for the forced expiratory flow between exhalation of 25 and 75% of forced vital capacity. A 20-microg dose of the 6- and 3-microm aerosols produced FEV1 bronchodilation comparable to that produced by 200 microg from a metered-dose inhaler. No adverse effects were observed in heart rate and plasma potassium. The data suggest that in mildly to moderately asthmatic patients there is more than one optimal beta2-agonist bronchodilator particle size and that these are larger particles in the higher part of the respirable range. Aerosols delivered in monodisperse form can enable large reductions of the inhaled dose without loss of clinical efficacy.  相似文献   

10.
To investigate the effect of exercise and its associated increase in ventilation on the deposition and subsequent retention of inhaled particles, we measured the fractional and regional lung deposition of a radioactively tagged (99mTc) monodisperse aerosol (2.6 microns mass median aerodynamic diam) in normal human subjects at rest and while exercising on a bicycle ergometer. Breath-by-breath deposition fraction (DF) was measured throughout the aerosol exposures by Tyndallometry. Following each exposure gamma camera analysis was used to 1) determine the regional distribution of deposited particles and 2) monitor lung retention for 2.5 h and again at 24 h. We found that DF was unchanged between ventilation at rest (6-10 l/min) and exercise (32-46 l/min). Even though mouth deposition was enhanced with exercise, it was not large enough to produce a significant difference in the deposition fraction of the lung (DFL) between resting and exercise exposures. The central-to-peripheral distribution of deposited aerosol was larger for the exercise vs. resting exposure, reflecting a shift of particle deposition to more central bronchial airways. Apical-to-basal distribution was not different for the two exposures. Retention at 2.5 h and 24 h (R24) was reduced following the exercise vs. the resting exposure, consistent with greater bronchial deposition during exercise. The product of DFL and R24 gave a measure of fractional burden at 24 h (B24), i.e., the fraction of inhaled aerosol residing in the lungs 24 h after exposure. B24 was not significantly different between rest and exercise exposures.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
Accurate dose estimation under various inhalation conditions is important for assessing both the potential health effects of pollutant particles and the therapeutic efficacy of medicinal aerosols. We measured total deposition fraction (TDF) of monodisperse micrometer-sized particles [particle diameter (Dp) = 1, 3, and 5 microm in diameter] in healthy adults (8 men and 7 women) in a wide range of breathing patterns; tidal volumes (Vt) of 350-1500 ml and respiratory flow rates (Q) of 175-1,000 ml/s. The subject inhaled test aerosols for 10-20 breaths with each of the prescribed breathing patterns, and TDF was obtained by monitoring inhaled and exhaled aerosols breath by breath by a laser aerosol photometer. Results show that TDF varied from 0.12-0.25, 0.26-0.68, and 0.45-0.83 for Dp = 1, 3, and 5 microm, respectively, depending on the breathing pattern used. TDF was comparable between men and women for Dp = 1 microm but was greater in women than men for Dp = 3 and 5 microm for all breathing patterns used (P < 0.05). TDF increased with an increase in Vt regardless of Dp and Q used. At a fixed Vt TDF decreased with an increase in Q for Dp = 1 and 3 microm but did not show any significant changes for Dp = 5 microm. The varying TDF values, however, could be consolidated by a single composite parameter (omega) consisting of Dp, Vt, and Q. The results indicate that unifying empirical formulas provide a convenient means of assessing deposition dose of particles under varying inhalation conditions.  相似文献   

12.
Pulmonary drug delivery systems rely on inhalation of drug-laden aerosols produced from aerosol generators such as inhalers, nebulizers etc. On deposition, the drug molecules diffuse in the mucus layer and are also subjected to mucociliary advection which transports the drugs away from the initial deposition site. The availability of the drug at a particular region of the lung is, thus, determined by a balance between these two phenomena. A mathematical analysis of drug deposition and retention in the lungs is developed through a coupled mathematical model of aerosol transport in air as well as drug molecule transport in the mucus layer. The mathematical model is solved computationally to identify suitable conditions for the transport of drug-laden aerosols to the deep lungs. This study identifies the conditions conducive for delivering drugs to the deep lungs which is crucial for achieving systemic drug delivery. The effect of different parameters on drug retention is also characterized for various regions of the lungs, which is important in determining the availability of the inhaled drugs at a target location. Our analysis confirms that drug delivery efficacy remains highest for aerosols in the size range of 1-5 μm. Moreover, it is observed that amount of drugs deposited in the deep lung increases by a factor of 2 when the breathing time period is doubled, with respect to normal breathing, suggesting breath control as a means to increase the efficacy of drug delivery to the deep lung. A higher efficacy also reduces the drug load required to be inhaled to produce the same health effects and hence, can help in minimizing the side effects of a drug.  相似文献   

13.
We examined the measurement error in inhaled and exhaled aerosol concentration resulting from the bolus delivery system when small volumes of monodisperse aerosols are inspired to different lung depths. A laser photometer that illuminated approximately 75% of the breathing path cross section recorded low inhaled bolus half-widths (42 ml) and negative deposition values for shallow bolus inhalation when the inhalation path of a 60-ml aerosol was straight and unobstructed. We attributed these results to incomplete mixing of the inhaled aerosol bolus over the breathing path cross section, on the basis of simultaneous recordings of the photometer with a particle-counter sampling from either the center or the edge of the breathing path. Inserting a 90 degrees bend into the inhaled bolus path increased the photometer measurement of inhaled bolus half-width to 57 ml and yielded positive deposition values. Dispersion, which is predominantly affected by exhaled bolus half-width, was not significantly altered by the 90 degrees bend. We conclude that aerosol bolus-delivery systems should ensure adequate mixing of the inhaled bolus to avoid error in measurement of bolus deposition.  相似文献   

14.
Kim, Chong S., S. C. Hu, P. DeWitt, and T. R. Gerrity.Assessment of regional deposition of inhaled particles in human lungs by serial bolus delivery method. J. Appl.Physiol. 81(5): 2203-2213, 1996.Detailedregional deposition of inhaled particles was investigated in youngadults (n = 11) by use of aserial bolus aerosol delivery technique. A small bolus (45 mlhalf-width) of monodisperse aerosols [1-, 3-, and5-µm particle diameter(Dp)] wasdelivered sequentially to a specific volumetric depth of the lung(100-500 ml in 50-ml increments), while the subject inhaled cleanair via a laser aerosol photometer (25-ml dead volume) with a constantflow rate ( = 150, 250, and 500 ml/s) andexhaled with the same without a pause to theresidual volume. Deposition efficiency (LDE) and deposition fraction in10 local volumetric regions and total deposition fraction of the lungwere obtained. LDE increased monotonically with increasing lung depthfor all three Dp.LDE was greater with smaller values in all lungregions. Deposition was distributed fairly evenly throughout the lungregions with a tendency for an enhancement in the distal lung regions for Dp = 1 µm.Deposition distribution was highly uneven forDp = 3 and 5 µm, and the region of the peak deposition shifted toward the proximalregions with increasingDp. Surface dosewas 1-5 times greater in the small airway regions and 2-17times greater in the large airway regions than in the alveolar regions.The results suggest that local or regional enhancement of deposition occurs in healthy subjects and that the local enhancement can be animportant factor in health risk assessment of inhaled particles.

  相似文献   

15.
Cascade impactors, operating on the principle of inertial size separation in (ideally) laminar flow, are used to determine aerodynamic particle size distributions (APSDs) of orally inhaled product (OIP) aerosols because aerodynamic diameter can be related to respiratory tract deposition. Each stage is assumed typically to be an ideal size fractionator. Thus, all particles larger than a certain size are considered collected and all finer particles are treated as penetrating to the next stage (a step function stage efficiency curve). In reality, the collection efficiency of a stage smoothly increases with particle size as an “S-shaped” curve, from approximately 0% to 100%. Consequently, in some cases substantial overlap occurs between neighboring stages. The potential for bias associated with the step-function assumption has been explored, taking full resolution and two-stage abbreviated forms of the Andersen eight-stage nonviable impactor (ACI) and the next-generation pharmaceutical impactor (NGI) as example apparatuses. The behavior of unimodal, log-normal APSDs typical of OIP-generated aerosols has been investigated, comparing known input values to calculated values of central tendency (mass median aerodynamic diameter) and spread (geometric standard deviation, GSD). These calculations show that the error introduced by the step change assumption is larger for the ACI than for the NGI. However, the error is sufficiently small to be inconsequential unless the APSD in nearly monodisperse (GSD ≤1.2), a condition that is unlikely to occur with realistic OIPs. Account may need to be taken of this source of bias only for the most accurate work with abbreviated ACI systems.  相似文献   

16.
The use and variety of drugs administered to children as inhaled aerosols is increasing, but little is known about how much drug reaches the lung and how it is distributed there in different age groups. In this article the reasons for measuring aerosol deposition in children are discussed and the potential methods for doing this described. Of the methods available, only the use of radiolabelled aerosols gives accurate information on total lung deposition and distribution. The potential risk of the radiation exposure required for these measurements varies with the age of the child but seems to be small. Properly designed studies are expected to clarify the factors affecting lung deposition in children and identify methods of inhalation associated with efficient and predictable delivery of the drug. Measurements of radioaerosol deposition may therefore be justified in children when this information is expected to lead to improvements in the effectiveness or safety of their treatment.  相似文献   

17.
Information regarding the deposition patterns of inhaled particles has important implications to the fields of medicine and risk assesment. The former concerns the targeted delivery of inhaled pharmacological drugs (aerosol therapy); the latter concerns the risk assessment of inhaled air pollutants (inhalation toxicology). It is well documented in the literature that the behavior and fate of inhaled particles may be formulated using three families of variables: respiratory system morphologies, aerosol characteristics, and ventilatory parameters. It is straightforward to propose that the seminal role is played by morphology per se because the structures of individual airways and their spatial orientations within lungs affect the motion of air and the trajectories of transported particles. In previous efforts, we have developed original algorithms to describe airway networks within lungs and employed them as templates to interpret the results of single photon emission computed tomography (SPECTs) studies. In this work, we have advanced the process of mathematical modeling and computer simulations to produce three-dimensional (3D) images. We have tested the new in silico model by studying two different branching concepts: an inclusive (all airways present) system and a single “typical” pathway system. When viewed with the glasses supplied with this volume, the 3D nature of airway branching networks within lungs as displayed via our original computer graphics software is clear. We submit that the new technology will have numerous and seminal functions in future medical and toxicological regimens, the most fundamental being the creation of a platform to view natural 3D structures in vivo with related biological processes (e.g., disposition of inhaled pharmaceuticals).  相似文献   

18.
The deposition of aerosol particles in the human lung airways is due to two distinct mechanisms. One is by direct deposition resulting from diffusion, sedimentation and impaction as the aerosol moves in and out of the lung. The other is an indirect mechanism by which particles are transported mechanically from the tidal air to the residential air and eventually captured by the airways due to intrinsic particle motion. This last mechanism is not well understood at present. Using a trumpet airway model constructed from Weibel's data, a two-component theory is developed. In this theory, the particle concentrations in the airways and the alveoli at a given airway depth are considered to be quantitatively different. This difference in concentrations will cause a net mixing between the tidal and residential aerosol as the aerosol is breathed in and out. A distribution parameter is then introduced to account for the distribution of ventilation. The effect of intrinsic particle motion on the aerosol mixing is also included. From this theory, total and regional deposition in the lung at the steady mouth breathing without pause is calculated for several different respiratory cycles. The results agree reasonably well with the experimental data.  相似文献   

19.
Rodents have been widely used to study the environmental or therapeutic impact of inhaled particles. Knowledge of airway morphometry is essential in assessing geometric influence on aerosol deposition and in developing accurate lung models of aerosol transport. Previous morphometric studies of the rat lung performed ex situ provided high-resolution measurements (50-125 μm). However, it is unclear how the overall geometry of these casts might have differed from the natural in situ appearance. In this study, four male Wistar rat (268 ± 14 g) lungs were filled sequentially with perfluorocarbon and phosphate-buffered saline before being imaged in situ in a 7-T magnetic resonance (MR) scanner at a resolution of 0.2 × 0.2 × 0.27 mm. Airway length, diameter, gravitational, bifurcation, and rotational angles were measured for the first four airway generations from 3D geometric models built from the MR images. Minor interanimal variability [expressed by the relative standard deviation RSD (=SD/mean)] was found for length (0.18 ± 0.07), diameter (0.15 ± 0.15), and gravitational angle (0.12 ± 0.06). One rat model was extended to 16 airway generations. Organization of the airways using a diameter-defined Strahler ordering method resulted in lower interorder variability than conventional generation-based grouping for both diameter (RSD = 0.12 vs. 0.42) and length (0.16 vs. 0.67). Gravitational and rotational angles averaged 82.9 ± 37.9° and 53.6 ± 24.1°, respectively. Finally, the major daughter branch bifurcated at a smaller angle (19.3 ± 14.6°) than the minor branch (60.5 ± 19.4°). These data represent the most comprehensive set of rodent in situ measurements to date and can be used readily in computational studies of lung function and aerosol exposure.  相似文献   

20.
Total aerosol deposition in the lung was measured in 100 subjects with various lung conditions. The subjects consisted of 40 normals (N), 15 asymptomatic smokers (S), 10 smokers with small airway disease (SAD), 20 with chronic simple bronchitis (SB), and 15 with chronic obstructive bronchitis (COPD), and a relationship of total aerosol deposition to degree of lung abnormality was investigated. The subjects were categorized by medical history and a battery of pulmonary function tests, including spirometry, body plethysmography, and single and multiple N2 washout measurements. Subjects repeatedly breathed a monodisperse test aerosol (1.0 micron diam) from a collapsible rebreathing bag (0.5 liter volume) at a rate of 30 breaths/min, while inhaled and exhaled aerosol concentrations were continuously monitored by a laser aerosol photometer in situ and recorded on a strip-chart recorder. The number of rebreathing breaths resulting in 90% aerosol loss from the bag (N90) was determined, and percent predicted N90 values were then determined from the results of computer simulation and used as a deposition index. The percent predicted N90 values were 99.7 +/- 14, 86.5 +/- 15, 66.9 +/- 17, 51 +/- 12, and 30.9 +/- 9, respectively, for N, S, SAD, SB, and COPD. All of these values were significantly different from each other (P less than 0.05). There was no difference between male and female but percent predicted N90 values were slightly higher in young than in old normals. Percent predicted N90 values showed a strong linear correlation with spirometric measurements of forced expiratory volume in 1 s and maximum midexpiratory flow rate. However, many of the SAD and SB with normal spirometry showed abnormal N90. These results suggest that total lung aerosol deposition is a sensitive index of lung abnormality and may be of potential use for nonspecific general patient screening.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号