首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Metaphase-I chromosome associations in every diploid and polyploid species of the genus Aegilops were studied using C-banding in order to analyse the cytogenetic behaviour of the whole complement as well as of specific genomes in different polyploid species. Differences were observed in the frequency of associations per cell among different species of the same ploidic level and even between species sharing the same genomic constitution. Differences were also found between different genomes within the same polyploid species and between the same genome when present in several diploid and polyploid species. Several factors proposed as having an influence on the frequency of metaphase-I associations, such as chromosome morphology, C-heterochromatin content, genetic control and genome interactions, are discussed. Most of the polyploid Aegilops species showed a diploid-like behaviour at metaphase I although multivalents involving homoeologous associations were occasionally observed in Ae. biuncialis, Ae. juvenalis and Ae. crassa(6x); therefore, the Aegilops diploidising genetic system is not equally effective in all polyploid species.  相似文献   

2.
A low-copy, non-coding chromosome-specific DNA sequence, isolated from common wheat, was physically mapped to the distal 19% region of the long arm of chromosome 3B (3BL) of common wheat. This sequence, designated WPG118, was then characterized by Southern hybridization, PCR amplification and sequence comparison using a large collection of polyploid wheats and diploid Triticum and Aegilops species. The data show that the sequence exists in all polyploid wheats containing the B genome and absent from those containing the G genome. At the diploid level, it exists only in Ae. searsii, a diploid species of section Sitopsis, and not in other diploids including Ae. speltoides, the closest extant relative to the donor of the B genome of polyploid wheat. This finding may support the hypothesis that the B-genome of polyploid wheat is of a polyphyletic origin, i.e. it is a recombined genome derived from two or more diploid Aegilops species.  相似文献   

3.
C-banding patterns and polymorphisms were analyzed in several accessions of the diploidAegilops speciesAe. uniaristata, Ae. mutica, andAe. comosa subsp.comosa and subsp.heldreichii, and standard karyotypes of these species were established. Variation in C-band size and location was observed between different accessions, but did not prevent chromosome identification. One accession ofAe. uniaristata was homozygous for whole-arm translocations involving chromosomes 1N and 5N. The homoeologous relationships of these chromosomes were established by comparison of chromosome morphologies and C-banding patterns to other diploidAegilops species with known chromosome homoeology. In addition, in situ hybridization analysis with a 5S rDNA probe was used to identify homoeologous groups 1 and 5 chromosomes. The present analysis permitted the assignment of allAe. mutica, comosa subsp.comosa, andAe. comosa subsp.heldreichii chromosomes, and three of the sevenAe. uniaristata chromosomes according to their homoeologous groups. The data presented will be useful analyzing genome differentiation in polyploidAegilops species.  相似文献   

4.
RAPD analysis was used to study the genetic variation and phylogenetic relationships of polyploid Aegilops species with the U genome. In total, 115 DNA samples of eight polyploid species containing the U genome and the diploid species Ae. umbellulata (U) were examined. Substantial interspecific polymorphism was observed for the majority of the polyploid species with the U genome (interspecific differences, 0.01–0,2; proportion of polymorphic loci, 56.6–88.2%). Aegilops triuncialis was identified as the only alloploid species with low interspecific polymorphism (interspecific differences, 0–0.01, P = 50%) in the U-genome group. The U-genome Aegilops species proved to be separated from other species of the genus. The phylogenetic relationships were established for the U-genome species. The greatest separation within the U-genome group was observed for the US-genome species Ae. kotschyi and Ae. variabilis. The tetraploid species Ae. triaristata and Ae. columnaris, which had the UX genome, and the hexaploid species Ae. recta (UXN) were found to be related to each other and separate from the UM-genome species. A similarity was observed between the UM-genome species Ae. ovata and Ae. biuncialis, which had the UM genome, and the ancestral diploid U-genome species Ae. umbellulata. The UC-genome species Ae. triuncialis was rather separate and slightly similar to the UX-genome species.  相似文献   

5.
The phylogenetic relationships of 15 taxa from Hystrix and the related genera Leymus (NsXm), Elymus (StH), Pseudoroegneria (St), Hordeum (H), Psathyrostachys (Ns), and Thinopyrum (E) were examined by using the Giemsa C-banded karyotype. The Hy. patula C-banding pattern was similar to those of Elymus species, whereas C-banding patterns of the other Hystrix species were similar to those of Leymus species. The results suggest high genetic diversity within Hystrix, and support treating Hy. patula as E. hystrix L., and transferring Hy. coreana, Hy. duthiei ssp. duthiei and Hy. duthiei ssp. longearistata to the genus Leymus. On comparing C-banding patterns of Elymus species with their diploid ancestors (Pseudoroegneria and Hordeum), there are indications that certain chromosomal re-arrangements had previously occurred in the St and H genomes. Furthermore, a comparison of the C-banding patterns of the Hystrix and Leymus species with the potential diploid progenitors (Psathyrostachys and Thinopyrum) suggests that Hy. coreana and some Leymus species are closely related to the Ns genome of Psathyrostachys, whereas Hy. duthiei ssp. duthiei, Hy. duthiei ssp. longearistata and some of the Leymus species have a close relationship with the E genome. The results suggest a multiple origin of the polyploid genera Hystrix and Leymus.  相似文献   

6.
E D Badaeva  B Friebe  B S Gill 《Génome》1996,39(2):293-306
Genome differentiation in 12 diploid Aegilops species was analyzed using in situ hybridization with the highly repetitive DNA sequences pSc119 and pAs1 and C-banding. Chromosomes of all these diploid Aegilops species hybridized with the pSc119 probe; however, the level of hybridization and labeling patterns differed among genomes. Only four species (Ae. squarrosa, Ae. comosa, Ae. heldreichii, and Ae. uniaristata) showed distinct hybridization with pAs1. The labeling patterns were species-specific and chromosome-specific. Differences in in situ hybridization (ISH) patterns, also observed by C-banding, exist between the karyotypes of Ae. comosa and Ae. heldreichii, suggesting that they are separate, although closely related, subspecies. The S genome of Ae. spelioides was most similar to the B and G genomes of polyploid wheats on the basis of both C-banding and ISH patterns, but was different from other species of section Sitopsis. These species had different C-banding patterns but they were similar to each other and to Ae. mutica in the distribution of pSc119 hybridization sites. Two types of labeling were detected in Ae. squarrosa with the pAs1 probe. The first resembled that of the D-genome chromosomes of bread wheat, Triticum aestivum L. em. Thell., while the second was similar to the D genome of some of the polyploid Aegilops species. Relationships among diploid Aegilops species and the possible mechanisms of genome differentiation are discussed. Key words : wheat, Triticum, Aegilops, in situ hybridization, C-banding, evolution.  相似文献   

7.
RFLP variation revealed by protein disulfide isomerase (PDI) coding gene sequences was assessed in 170 accessions belonging to 23 species of Triticum and Aegilops. PDI restriction fragments were highly conserved within each species and confirmed that plant PDI is encoded either by single-copy sequences or by small gene families. The wheat PDI probe hybridized to single EcoRI or HindIII fragments in different diploid species and to one or two fragments per genome in polyploids. Four Aegilops species in the Sitopsis section showed complex patterns and high levels of intraspecific variation, whereas Ae. searsii possessed single monomorphic fragments. T. urartu and Ae. squarrosa showed fragments with the same mobility as those in the A and D genomes of Triticum polyploid species, respectively, whereas differences were observed between the hybridization patterns of T. monococcum and T. boeoticum and that of the A genome. The single fragment detected in Ae. squarrosa was also conserved in most accessions of polyploid Aegilops species carrying the D genome. The five species of the Sitopsis section showed variation for the PDI hybridization fragments and differed from those of the B and G genomes of emmer and timopheevi groups of wheat, although one of the Ae. speltoides EcoRI fragments was similar to those located on the 4B and 4G chromosomes. The similarity between the EcoRI fragment located on the 1B chromosome of common and emmer wheats and one with a lower hybridization intensity in Ae. longissima, Ae. bicornis and Ae. sharonensis support the hypothesis of a polyphyletic origin of the B genome. Received: 25 June 1999 / Accepted: 14 September 1999  相似文献   

8.
Summary Chloroplast DNA (cpDNA) restriction endonuclease patterns are used to examine phylogenetic relationships between Bromus subgenera Festucaria and Ceratochloa. Festucaria is considered monophyletic based on the L genome, while Ceratochloa encompasses two species complexes: the B. catharticus complex, which evolved by combining three different genomes, and the B. carinatus complex, which is thought to have originated from hybridization between polyploid species of B. catharticus and diploid members of Festucaria. All species of subgenus Ceratochloa (hexaploids and octoploids) were identical in chloroplast DNA sequences. Similarly, polyploid species of subgenus Festucaria, except for B. auleticus, were identical in cpDNA sequences. In contrast, diploid species of subgenus Festucaria showed various degrees of nucleotide sequence divergence. Species of subgenus Ceratochloa appeared monophyletic and phylogenetically closely related to the diploid B. anomalus and B. auleticus of subgenus Festucaria. The remaining diploid and polyploid species of subgenus Festucaria appeared in a distinct grouping. The study suggests that the B. catharticus complex must have been the maternal parent in the proposed hybrid origin of B. carinatus complex. Although there is no direct evidence for the paternal parent of the latter complex, the cpDNA study shows the complex to be phylogenetically very related to the diploid B. anomalus of subgenus Festucaria.  相似文献   

9.
Meiosis in seven interspecificCucumis hybrids has been analysed i.a. inC. metuliferus ×C. zeyheri, where the parents belong to different sections. In the triploid hybrids a remarkably high number of trivalents has been found. Additional data from literature on geographical distribution, cucurbitacins, flavonoid patterns, isozymes, C-banding, genome size, DNA amount and chloroplast DNA are used to discuss species relationships and evolution. The African cross-compatible group is divided into theMyriocarpus subgroup with the diploid speciesC. africanus, C. myriocarpus subsp.leptodermis and subsp.myriocarpus, and theAnguria subgroup withC. anguria, C. dipsaceus, C. ficifolius, C. prophetarum, C. zeyheri and all polyploids (exceptC. heptadactylus). It is argued that the Asian subg.Melo with x = 7 is derived from the African subg.Cucumis with x = 12; the latter contains all the polyploid species and has the most common basic chromosome number of theCucurbitaceae. This phylogenetic advance is interpreted with concepts of the quantum model of evolution.  相似文献   

10.
Many conflicting hypotheses regarding the relationships among crops and wild species closely related to wheat (the genera Aegilops, Amblyopyrum, and Triticum) have been postulated. The contribution of hybridization to the evolution of these taxa is intensely discussed. To determine possible causes for this, and provide a phylogeny of the diploid taxa based on genome‐wide sequence information, independent data were obtained from genotyping‐by‐sequencing and a target‐enrichment experiment that returned 244 low‐copy nuclear loci. The data were analyzed using Bayesian, likelihood and coalescent‐based methods. D statistics were used to test if incomplete lineage sorting alone or together with hybridization is the source for incongruent gene trees. Here we present the phylogeny of all diploid species of the wheat wild relatives. We hypothesize that most of the wheat‐group species were shaped by a primordial homoploid hybrid speciation event involving the ancestral Triticum and Am. muticum lineages to form all other species except Ae. speltoides. This hybridization event was followed by multiple introgressions affecting all taxa except Triticum. Mostly progenitors of the extant species were involved in these processes, while recent interspecific gene flow seems insignificant. The composite nature of many genomes of wheat‐group taxa results in complicated patterns of diploid contributions when these lineages are involved in polyploid formation, which is, for example, the case for tetraploid and hexaploid wheats. Our analysis provides phylogenetic relationships and a testable hypothesis for the genome compositions in the basic evolutionary units within the wheat group of Triticeae.  相似文献   

11.
The nucleotide sequence of the fragment of the internal transcribed spacer (ITS) of rDNA comprising the full-length ITS1, the gene encoding 5.8S rRNA, and part of the ITS2 sequence was determined in 22 samples of five diploid Aegilops species. The full alignment length of compared sequences was 524 bp. Species-specific substitutions were found in the ITS nucleotide sequence of rDNA of different Aegilops species. Intraspecific differences in ITS structure in diploid Aegilops species were detected for the first time. Polymorphism of the ITS nucleotide sequence within the same sample was revealed, which might be due either to differences between the genomes of individual plants comprising the sample or to the presence of several types of ribosomal genes in the genome of one plant. In general, both interspecific and intraspecific variability of the ITS nucleotide sequences of rDNA is extremely low. In total, 26 variable sites, twelve of which were informative, were identified.__________Translated from Molekulyarnaya Biologiya, Vol. 39, No. 2, 2005, pp. 193–197.Original Russian Text Copyright © 2005 by Goryunova, Chikida, Gori, Kochieva.  相似文献   

12.
The systematics of Botrychium subgenus Botrychium has been controversial, primarily because reduction in frond size and complexity has limited the number of characters available for discrimination of species. The recognition of many polyploid species has magnified the difficulty of classification because allopolyploids are often morphologically intermediate between their progenitor diploids. In order to evaluate species limits and sectional boundaries, we surveyed and compared 16 of the 24 currently recognized species for isozymic variation. Little or no intrapopulational variation was detected, but the variation present was consistent with the hypothesis that Botrychium species are primarily inbreeding. Interspecific comparisons distinguished six diploid species and provided evidence of molecular differentiation between the cryptic sister species B. lunaria and B. crenulatum. Evidence of possible progenitor/descendant relationships was found for certain diploid/polyploid relationships. Using enzyme bands shared between species, realignment of the sectional assignment of several species is proposed. Anomalous banding patterns in certain individuals suggested that gene silencing or homoeologous chromosome pairing might be operating in B. minganense, B. hesperium, and B. matricariifolium. Isozyme data also showed that some populations of species presumed to be uniformly diploid possessed isozyme patterns typical of polyploids. All available molecular data indicate that members of Botrychium subgenus Botrychium are actively evolving at diploid and polyploid levels.  相似文献   

13.
The genus Triticum L. includes the major cereal crop, common or bread wheat (hexaploid Triticum aestivum L.), and other important cultivated species. Here, we conducted a phylogenetic analysis of all known wheat species and the closely related Aegilops species. This analysis was based on chloroplast matK gene comparison along with trnL intron sequences of some species. Polyploid wheat species are successfully divided only into two groups – Emmer (sections Dicoccoides and Triticum) and Timopheevii (section Timopheevii). Results reveal strictly maternal plastid inheritance of synthetic wheat amphiploids included in the study. A concordance of chloroplast origin with the definite nuclear genomes of polyploid species that were inherited at the last hybridization events was found. Our analysis suggests that there were two ancestral representatives of Aegilops speltoides Tausch that participated in the speciation of polyploid wheats with B and G genome in their genome composition. However, G genome species are younger in evolution than ones with B genome. B genome-specific PCR primers were developed for amplification of Acc-1 gene.  相似文献   

14.
Diploid species of the genus Triticum L. are its most ancient representatives and have the A genome, which was more recently inherited by all polyploid species. Studies of the phylogenetic relationships among diploid and polyploid wheat species help to identify the donors of elementary genomes and to examine the species specificity of genomes. In this study, molecular analysis of the variable sequences of three nuclear genes (Acc-1, Pgk-1, and Vrn-1) was performed for wild and cultivated wheat species, including both diploids and polyploids. Based on the sequence variations found in the genes, clear differences were observed among elementary genomes, but almost no polymorphism was detected within each genome in polyploids. At the same time, the regions of the three genes proved to be rather heterogeneous in the diploid species Triticum boeoticum Boiss., T. urartu Thum. ex Gandil., and T. monococcum L., thus representing mixed populations. A genome variant identical to the A genome of polyploid species was observed only in T. urartu. Species-specific molecular markers discriminating the diploid species were not found. Analysis of the inheritance of morphological characters also failed to identify a species-specific character for the three diploid wheat species apart from the hairy leaf blade type, described previously.  相似文献   

15.
Diploid Aegilops umbellulata and Ae. comosa and their natural allotetraploid hybrids Ae. biuncialis and Ae. geniculata are important wild gene sources for wheat. With the aim of assisting in alien gene transfer, this study provides gene-based conserved orthologous set (COS) markers for the U and M genome chromosomes. Out of the 140 markers tested on a series of wheat-Aegilops chromosome introgression lines and flow-sorted subgenomic chromosome fractions, 100 were assigned to Aegilops chromosomes and six and seven duplications were identified in the U and M genomes, respectively. The marker-specific EST sequences were BLAST-ed to Brachypodium and rice genomic sequences to investigate macrosyntenic relationships between the U and M genomes of Aegilops, wheat and the model species. Five syntenic regions of Brachypodium identified genome rearrangements differentiating the U genome from the M genome and from the D genome of wheat. All of them seem to have evolved at the diploid level and to have been modified differentially in the polyploid species Ae. biuncialis and Ae. geniculata. A certain level of wheat–Aegilops homology was detected for group 1, 2, 3 and 5 chromosomes, while a clearly rearranged structure was showed for the group 4, 6 and 7 Aegilops chromosomes relative to wheat. The conserved orthologous set markers assigned to Aegilops chromosomes promise to accelerate gene introgression by facilitating the identification of alien chromatin. The syntenic relationships between the Aegilops species, wheat and model species will facilitate the targeted development of new markers specific for U and M genomic regions and will contribute to the understanding of molecular processes related to allopolyploidization.  相似文献   

16.
Phylogenetic relationships of polyploid Aegilops species sharing the U-genome were investigated by analyzing heterochromatin banding patterns of their somatic metaphase chromosomes as revealed by C-banding and fluorescence in situ hybridization (FISH) with the heterochromatin-limited repetitive DNA probes pSc119, pAs1, as well as the distribution of NOR and 5S DNA loci revealed by pTa71 (18S-26S rDNA), and pTa794 (5S rDNA) probes. Seven tetraploid (Ae. triuncialis, Ae. peregrina, Ae. kotschyi, Ae. geniculata, Ae. biuncialis, Ae. columnaris, and 4x Ae. neglecta) and one hexaploid (6x Ae. neglecta) Aegilops species of the U-genome cluster were studied. The Ut and Ct chromosomes of 4x Ae. triuncialis (UtCt) were similar to the diploid donors Ae. umbellulata (U) and Ae. caudata (C). However, the size of the NOR locus on chromosome 5Ut was reduced. Karyotypic analyses confirmed that 4x Ae. peregrina (SpUp) was derived from a hybridization of the diploid species Ae. umbellulata with Ae. longissima, whereas Ae. umbellulata and Ae. sharonensis (or an immediate precursor) were the diploid progenitor species of Ae. kotschyi (SkUk). In both 4x species, the NORs on S-genome chromosomes were inactivated and were accompanied with a decrease or loss of rDNA sequences. Karyotypes of the tetraploid species, Ae. geniculata (UgMg) and Ae. biuncialis (UbMb) differed from each other and from the putative diploid progenitors Ae. umbellulata and Ae. comosa indicating that various types of chromosomal alterations occurred during speciation. Inactivation of major NORs on the M-genome chromosomes, redistribution of 5S rDNA sites, and loss of some minor 18S-26S rDNA loci were observed in Ae. geniculata and Ae. biuncialis. Significant differences in the total amount and distribution of heterochromatin, the number and location of 5S and 18S-26S rDNA loci observed between Ae. columnaris (UcXc)/4x Ae. neglecta (UnXn) and Ae. geniculata/Ae. biuncialis indicate that these species have different origins. Similarities in C-banding and FISH patterns of most Ae. columnaris and 4x Ae. neglecta chromosomes suggest that they were probably derived from a common ancestor, whereas distinct differences of three chromosome pairs may indicate that the divergence of these species was probably associated with chromosomal rearrangements and/or introgressive hybridization. Ae. umbellulata contributed the U genome, however, the source of their second genomes remains unknown. The formation of 6x Ae. neglecta (UnXnNn) was not associated with large modifications of the parental genomes.  相似文献   

17.
Chromosome numbers for 26 different species of the generaPiper, Peperomia andPothomorphe (Piperaceae) are reported. The basic chromosome numbers are 2n = 26, x = 13 (Piper, Pothomorphe) and 2n = 22, x = 11 (Peperomia), polyploid series are characteristic forPiper andPeperomia. Piper has the smallest chromosomes and prochromosomal interphase nuclei,Peperomia the largest ones and mostly reticulate to euchromatic nuclei.Pothomorphe is intermediate in both characters. The karyomorphological differences betweenPothomorphe andPiper underline their generic separation. Interspecific size variation of chromosomes occurs inPiper andPeperomia. Infraspecific polyploidy was observed inPiper betle. C-banding reveals different patterns of heterochromatin (hc) distribution between the genera investigated. The genome evolution is discussed.  相似文献   

18.
Festuca species form a polyploid series but only two of the diploid species have been firmly proposed as progenitors of any polyploid. The number and distribution of rDNA sites on the chromosomes of F. scariosa (section Scariosae) and the four diploid species that comprise section Montanae are presented with their relative DNA amounts and key morphological features. Comparisons of the results with those of some polyploid Festuca species from section Bovinae published previously indicate that F. scariosa and F. altissima could be diploid progenitors of the polyploids. It is unlikely that any one of the other three Montanae species is a progenitor of these polyploids.  相似文献   

19.
Summary The three major isoenzymes of the NADP-dependent aromatic alcohol dehydrogenase (ADH-B), distinguished in polyploid wheats by means of polyacrylamide gel electrophoresis, are shown to be coded by homoeoalleles of the locus Adh-2 on short arms of chromosomes of the fifth homoeologous group. Essentially codominant expression of the Adh-2 homoeolleles of composite genomes was observed in young seedlings of hexaploid wheats (T. aestivum s.l.) and tetraploid wheats of the emmer group (T. turgidum s.l.), whereas only the isoenzyme characteristic of the A genome is present in the seedlings of the timopheevii-group tetraploids (T. timopheevii s.str. and T. araraticum).The slowest-moving B3 isoenzyme of polyploid wheats, coded by the homoeoallele of the B genome, is characteristic of the diploid species Aegilops speltoides S.l., including both its awned and awnless forms, but was not encountered in Ae. bicornis, Ae. sharonensis and Ae. longissima. The last two diploids, as well as Ae. tauschii, Ae. caudata, Triticum monococcum s.str., T. boeoticum s.l. (incl. T. thaoudar) and T. urartu all shared a common isoenzyme coinciding electrophoretically with the band B2 controlled by the A and D genome homoeoalleles in polyploid wheats. Ae. bicomis is characterized by the slowest isoenzyme, B4, not found in wheats and in the other diploid Aegilops species studied.Two electrophoretic variants of ADH-B, B1 and B2, considered to be alloenzymes of the A genome homoeoallele, were observed in T. dicoccoides, T. dicoccon, T. turgidum. s.str. and T. spelta, whereas B2 was characteristic of T. timopheevii s.l. and only B1 was found in the remaining taxa of polyploid wheats. The isoenzyme B1, not encountered among diploid species, is considered to be a mutational derivative which arose on the tetraploid level from its more ancestral form B2 characteristic of diploid wheats.The implication of the ADH-B isoenzyme data to the problems of wheat phylogeny and gene evolution is discussed.  相似文献   

20.
The genus Aegilops has an important potential utilization in wheat improvement because of its resistance to different biotic and abiotic stresses and close relation with the cultivated wheat. Therefore, a better knowledge of the eco-geographical distribution of Aegilops species and their collection and conservation are required. A total of 297 Aegilops accessions representing nine (five tetraploid and four diploid) species were collected in different regions of Bulgaria, and the ecological characteristics of the 154 explored sites were recorded. The distribution of the diploid species (Ae. caudata L., Ae. speltoides Tausch, Ae. umbellulata Zhuk. and Ae. comosa Sibth. and Sm.) was limited to specific environments in south-central Bulgaria. Tetraploid species were present in harsher environments than diploid species and showed wider adaptation and distribution. Species–environment relationships were analysed by considering the worldwide distribution of the species and their physiological resistance to abiotic stress. Aegilops cylindrica Host was more frequently found in northern Bulgaria and at high altitudes. Its distribution was closely related to its tolerance to low temperatures. Aegilops geniculata Roth and Ae. neglecta Req. ex Bertol. were absent in the north of Bulgaria, but widely distributed in low rainfall areas. Aegilops neglecta, more frost resistant than Ae. geniculata, was present at higher altitude. Aegilops biuncialis Vis. and Ae. triuncialis L. showed adaptation to a wide range of climatic conditions. The study of Aegilops species ecology and distribution in Bulgaria provided useful information for the future collection and for the genetic resource management in this region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号