首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract: Diurnal changes in starch, sugar and amino acid concentrations in source leaves, sink leaves and roots of tobacco plants were determined. In addition to wild type tobacco, transformed plants deficient in root nitrate reductase and exhibiting decreased rates of growth were employed. Further, the growth rates of tobacco plants were modulated by exposure to elevated pCO2. From the diurnal alterations in metabolite concentrations, the daily turnover of starch and amino N was estimated in order to: (i) elucidate whether turnover rates can be related to growth rates, and (ii) identify individual amino compounds with the potential to indicate nitrogen fluxes and the C/N status of plants. Elevated pCO2 increased growth rates and daily turnover of starch in both wild type and transformed plants, indicating enhanced rates of photosynthesis. In wild type plants, elevated pCO2 increased the turnover of amino N, notably glutamine and alanine, in mature source leaves, indicating enhanced nitrate reduction. By contrast, amino N turnover in source leaves of transformed plants was not affected by elevated pCO2, although nitrate reduction was presumably enhanced. Apparently, export of amino N was increased from the source leaves of transformed plants. This assumption was supported by a significantly increased turnover of amino N in young sink leaves compared to mature source leaves, indicating a preference for acropetal amino N allocation and import into the young leaves of the transformed plants. Further, elevated pCO2 increased the allocation of leaf‐derived amino N to the roots of transformed plants. This led to increased levels of amino compounds during the entire day, notably glutamate, but did not affect root growth of the transformed plants. The suitability of individual amino compounds as markers for major N fluxes, such as nitrate reduction, photorespiration, and amino N export and import is discussed.  相似文献   

2.
The root/shoot-ratio is a simple parameter to describe the systemic response of plants to alterations of their nutritional status, as indicated by the C/N-balance of leaves. The ‘functional equilibrium hypothesis’ holds that leaf growth is limited by the supply of nitrogen from the roots, whereas root growth depends on the carbon supply from leaves. The nature of the systemic control that balances root and shoot growth is not fully understood. Previous experiments have shown that root growth of transformed tobacco plants, which lack functional root nitrate reductase, was severely impeded, when plants were grown on NO 3 ? as the sole N-source. In these experiments, the root/shoot-ratio was correlated with the Glutamate/Glutamine-ratio of roots. In the present study we tested the hypothesis that high internal Glu contents (in relation to Gln) inhibit root growth. Wild type and transformed tobacco plants were given access to both NH4 and NO3, and were cultivated at ambient and elevated pCO2 in order to vary carbon availability. The uptake and assimilation of NH 4 + by the root was significantly higher in transformed than in wild type tobacco, in particular at elevated pCO2. Consequently, the Glu/Gln-ratio in the root of transformants was significantly lower than in NO 3 ? -grown plants, and was, in the present study, not different from the wild type. However, we failed to observe a correlation between plant architecture and the Glu/Gln-ratio of roots, suggesting that signals arising from the immediate products of nitrate reduction (nitrite) are involved in the systemic control of root growth. Furthermore the synthesis of root-derived signals, which affect N-turnover, starch re-mobilization and the growth of leaves, appears to be associated with root nitrate reduction. This enzymatic step seems to be indispensable for the systemic control of biomass partitioning, and plays a crucial role for the integration of carbon and nitrogen metabolism at the whole plant level.  相似文献   

3.
Stitt  Mark  Feil  Regina 《Plant and Soil》1999,215(2):143-153
Accumulation of nitrate in the shoot of low-nitrate reductase tobacco transformants leads to an increase of the shoot:root ratio to higher values than in nitrogen-sufficient wild-type plants, even though the transformants are severely deficient in organic nitrogen. In the present paper, wild-type plants and low- nitrate reductase transformants were grown on vertical agar plates to investigate whether this inhibition of root growth by internal nitrate (i) can be reversed by adding sugars to the roots and (ii) is due to slower growth of the main roots or to a decreased number of lateral roots. When grown with a low nitrate supply, the transformants resembled wild-type plants with respect to amino acid and protein levels, shoot-root allocation, lateral root frequency, and rates of growth. When the transformants were grown with a high nitrate supply in the absence of sucrose they grew more slowly and had lower levels of amino acids and protein than wild-type plants, but accumulated more nitrate and developed a high shoot:root ratio. Root length was not affected, but the number of lateral roots per plant decreased. The slower root growth was accompanied by an increase of the concentration of sugars in the roots. Addition of 2% sucrose to the medium partially reversed the high shoot:root ratio in the transformants, but did not increase the frequency of lateral roots. It is concluded that nitrate accumulation in the plant leads to decreased root growth via (i) changes in carbon allocation leading to decreased allocation of sugars to root growth, and (ii) a decrease in the number of lateral roots and a shift in the sensitivity with which root growth responds to the sugar supply. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

4.
The effect of advanced meristem age on growth and accumulationof plant nitrogen (N) in potato (Solanum tuberosum L.) was studied.Etiolated plantlets, excised from sprouted, single-eye-containingcores from 7 and 19-month-old seed-tubers, were transplantedinto aerated nutrient culture. Rates of shoot and root dry matterand shoot soluble-N (which included nitrate-N) accumulationwere similar for plants from both meristem ages over a 30 dinterval of log-linear growth. The rate at which nitrate-N accumulatedwas consistently 17 per cent higher in shoots from 19-month-oldcompared to those from 7-month-old meristems. However, accumulationof free amino-N and soluble protein-N were 21 and 15 per centlower, respectively in shoots from 19-month-old meristems. Abuild-up of shoot nitrate, along with lower rates of accumulationof amino-N and soluble protein-N, suggests a lower capacityfor nitrate reduction during early growth of plants from oldermeristems. Furthermore, these effects can be attributed to age-inducedchanges in the meristem or bud tissue as the plants were separatedfrom the tuber tissue initially in the study. Long-term ageingof seed-potatoes apparently affects changes within meristemsthat translate into a lower capacity to accumulate reduced formsof nitrogen during early plant growth. Potatoes (Solanum tuberosum L.), meristem age, nitrogen metabolism, plant growth potential  相似文献   

5.
Abstract: The significance of root nitrate reductase for sulfur assimilation was studied in tobacco (Nicotiana tabacum) plants. For this purpose, uptake, assimilation, and long-distance transport of sulfur were compared between wild-type tobacco and transformants lacking root nitrate reductase, cultivated either with nitrate or with ammonium nitrate. A recently developed empirical model of plant internal nitrogen cycling was adapted to sulfur and applied to characterise whole plant sulfur relations in wild-type tobacco and the transformant. Both transformation and nitrogen nutrition strongly affected sulfur pools and sulfur fluxes. Transformation decreased the rate of sulfate uptake in nitrate-grown plants and root sulfate and total sulfur contents in root biomass, irrespective of N nutrition. Nevertheless, glutathione levels were enhanced in the roots of transformed plants. This may be a consequence of enhanced APR activity in the leaves that also resulted in enhanced organic sulfur content in the leaves of the tranformants. The lack of nitrate reductase in the roots in the transformants caused regulatory changes in sulfur metabolism that resembled those observed under nitrogen deficiency. Nitrate nutrition reduced total sulfur content and all the major fractions analysed in the leaves, but not in the roots, compared to ammonium nitrate supply. The enhanced organic sulfur and glutathione levels in ammonium nitrate-fed plants corresponded well to elevated APR activity. But foliar sulfate contents also increased due to decreased re-allocation of sulfate into the phloem of ammonium nitrate-fed plants. Further studies will elucidate whether this decrease is achieved by downregulation of a specific sulfate transporter in vascular tissues.  相似文献   

6.
Elevated atmospheric pCO(2) increases the C-availability for plants and thus leads to a comparable increase in plant biomass production and nutrient demand. Arbuscular mycorrhizal fungi (AMF) are considered to play an important role in the nutrient uptake of plants as well as to be a significant C-sink. Therefore, an increased colonization of plant roots by AMF is expected under elevated atmospheric pCO(2). To test these hypotheses, Lolium perenne L. plants were grown from seeds in a growth chamber in pots containing a silica sand/soil mixture for 9 weeks with and without inoculation with Glomus intraradices (Schenck and Smith). The growth response of plants at two different levels of N fertilization (1.5 or 4.5 mM) combined with ambient (35 Pa) and elevated atmospheric pCO(2) (60 Pa) was compared. The inoculation with G. intraradices, the elevated atmospheric pCO(2) and the high N fertilization treatment all led to an increased plant biomass production of 16%, 20% and 49%, respectively. AMF colonization and high N fertilization increased the plant growth response to elevated atmospheric pCO(2); the plant growth response to high N fertilization was also increased by AMF colonization. The root/shoot ratio was reduced by high N fertilization or elevated atmospheric pCO(2), but was not affected by AMF colonization. The unchanged specific leaf area indicated that if AMF colonization represented an increased C-sink, this was fully covered by the plant. Elevated atmospheric pCO(2) strongly increased AMF colonization (60%) while the high N fertilization had a slightly negative effect. AMF colonization neither improved the N nor P nutrition status, but led to an improved total P uptake. The results underline the importance of AMF for the response of grassland ecosystems to elevated atmospheric pCO(2).  相似文献   

7.
Mutants and transformants of tobacco (Nicotiania tabacum L. cv Gatersleben 1) with decreased expression of nitrate reductase have been used to investigate whether nitrate accumulation in the shoot acts as a signal to alter allocation between shoot and root growth. (a) Transformants with very low (1–3% of wild-type levels) nitrate reductase activity had growth rates, and protein, amino acid and glutamine levels similar to or slightly lower than a nitrate-limited wild-type, but accumulated large amounts of nitrate. These plants should resemble a nitrate-limited wild-type, except in responses where nitrate acts as a signal. (b) Whereas the shoot:root ratio decreases from about 3.5 in a well-fertilized wild-type to about 2 in a nitrate-limited wild-type, the transformants had a very high shoot:root ratio (8–10) when they were grown on high nitrate. When they were grown on lower nitrate concentrations their shoot:root ratio declined progressively to a value similar to that in nitrate-limited wild-types. Mutants with a moderate (30–50%) decrease of nitrate reductase also had a small but highly significant increase of their shoot:root ratio, compared to the wild-type. The increased shoot:root ratio in the mutants and transformants was due to a stimulation of shoot growth and an inhibition of root growth. (c) There was a highly significant correlation between leaf nitrate content and the shoot:root ratio for eight genotypes growing at a wide range of nitrate supply. (d) A similar increase of the shoot:root ratio in nitrate reductase-deficient plants, and correlation between leaf nitrate content and the shoot:root ratio, was found in plants growing on ammonium nitrate. (f) Split-root experiments, in which the transformants were grown with part of their root system in high nitrate and the other part in low nitrate, showed that root growth is inhibited by the accumulation of nitrate in the shoot. High concentrations of nitrate in the rooting medium actually stimulate local root growth. (g) The inhibition of root growth in the transformants was relieved when the transformants were grown on limiting phosphate, even though the nitrate content of the root remained high. This shows that the nitrate-dependent changes in allocation can be overridden by other signals that increase allocation to root growth. (h) The reasons for the changed allocation were investigated in transformants growing normally, and in split-root culture. Accumulation of nitrate in the shoot did not lead to decreased levels of amino acids or protein in the roots. However, it did lead to a strong inhibition of starch synthesis and turnover in the leaves, and to decreased levels of sugars in the root. The rate of root growth was correlated with the root sugar content. It is concluded that these changes of carbon allocation could contribute to the changes in shoot and root growth.  相似文献   

8.
Lettuce was grown in aerated nutrient solutions containing all necessary plant nutrients except phosphate. Phosphate was supplied at four different exponentially increasing rates of daily dosage. In addition, two levels of light and atmospheric CO2 were imposed. The four phosphate addition treatments resulted in different, fairly constant relative growth rates, whereas little effect was observed from light or CO2 levels. Growth reduction associated with limiting phosphate nutrition resulted in increases in root/shoot ratio, dry matter content and concentrations of sugars and organic acids. By contrast, the concentrations of nitrate in the shoots was decreased. The concentrations of nitrate and the sum of sugars and organic acids in the shoot showed a strong negative correlation. Two opposing mechanistic models concerning the effects of environmental conditions on nitrate accumulation in plants are discussed in the light of these results.  相似文献   

9.
Abstract. The effects of a change in the distribution of nitrate within the root zone on N uptake and growth were studied using young lettuce plants after reducing the proportion of their root systems supplied with nitrate from 100 to ca 10% in split-root experiments in the glasshouse. The main effects of the localized nitrate supply were concentrated in a 2-week period immediately after the treatment was imposed, when a temporary reduction in nitrate uptake caused the gradual development of N deficiency and a decline in plant growth rate. The plants adapted to the change in nitrate distribution, initially by increasing unit absorption rates (uptake rates per unit weight of root) and more gradually by increasing production of new roots in the high-nitrate zone. As a result, relative N uptake rates and relative growth rates were restored to the same levels as for control plants (given a spatially uniform N supply throughout) after ca 12d, even though only ca 12–15% of their roots were exposed to nitrate at this time. Thereafter, the plants continued to adapt by concentrating new root growth in the nitrate-containing zone, ultimately allowing unit absorption rates to return to normal. There was no evidence of any significant N deficiency in the plants after the initial adaptive response was complete, even though the total-N concentrations of the plants given the localized supply were consistently less than those given the uniform N treatment, and nitrate concentrations in the petiole sap were generally lower in leaves on one side of the plant (because of limited lateral movement of nitrate between xylem vessels during its transport to the shoot). The delay in the initiation of an adaptive response caused a significant check in growth, and the resulting relative weight differences were maintained throughout the subsequent life of the plant. Plants in all treatments matured on the same date, so yields for those grown with the localized supply were less than those of the control, and could not be recovered by delaying final harvest without unacceptable loss of quality. The pattern of the changes in N uptake and plant growth, and the effect on final yield, were similar to those exhibited by young lettuce plants subjected to a temporary interruption in nitrate supply, suggesting that the reduction in final yield for plants grown with the localized supply was largely the effect of the check in growth which occurred whilst the Plants were adapting to the change in nitrate distribution during the early part of the experiment. This implies that the rate of dry matter production of young lettuce plants can be altered by N treatment without affecting their rate of physiological development.  相似文献   

10.
Stoimenova  M.  Libourel  I.G.L.  Ratcliffe  R.G.  Kaiser  W.M. 《Plant and Soil》2003,253(1):155-167
The effects of root anoxia on a tobacco (Nicotiana tabacum) wild type (WT) and a transformant (LNR-H) lacking root nitrate reductase were compared. LNR-H plants were visibly more sensitive to oxygen deprivation than WT, showing rapid and heavy wilting symptoms. LNR-H roots also produced substantially more ethanol and lactate than WT roots under anoxia, and their sugar and sugar-P content, as well as their ATP levels, remained higher. The fermentation rates of WT and LNR-H roots were unaffected by sugar feeding and the higher fermentation rate in the LNR-H roots was associated with a greater acidification of the cytoplasm under anoxia. From these observations it is concluded: (i) that the absence of NR activity in the LNR-H roots does not necessarily limit NADH recycling; and (ii) that nitrate reduction in the WT roots results in a more acidifying metabolism. It is the higher metabolic rate in the LNR-H roots that leads to the greater cytoplasmic acidification under anoxia despite the absence of a contribution from the metabolism of nitrate. Competition for NADH cannot explain this difference in metabolic rate, and it remains unclear why the NR-free LNR-H, and tungstate-treated WT roots, had much higher fermentation rates than WT roots. The difference in anaerobic metabolism could still be due to the presence or absence of nitrate reductase and the possibility that this could occur through the production of nitric oxide is discussed.  相似文献   

11.
Levels of nitrate reductase activity (N.R.A.) were measured in shoots and roots of P sufficient and P deficient rape plants and changes in N.R.A. examined in relation to the onset of H ion efflux from the roots. Rates of xylem exudation were measured and the sap analysed for nitrate, amino-N and phosphate content. The optimum concentration of phosphate in the leaves for N.R.A. was about 0.7%. Both high and low concentrations of phosphate within the leaves inhibited N.R.A in those leaves. This inhibition of N.R.A led to the accumulation of nitrate in the older parts of the shoots of P sufficient plants. Less accumulation of nitrate occurred in the P deficient plants since nitrate uptake by the plants decreased before any fall in N.R.A. Xylem exudation rates halved within 18 hours of depriving the plants of phosphate, and, since the composition of the sap remained constant, this indicated a reduced flux of nitrate into the xylem. The rate of xylem exudation continued to fall and by the end of the experiment was approximately one tenth of the rate in the P sufficient plants. The onset of H ion efflux from the terminal portions of the root preceded any effect on N.R.A by 2 days.  相似文献   

12.
Uptake and utilization of nitrate were investigated in Hordeum vulgare L. cvs Mette and Golf in the vegetative stage, 2 and 4 weeks after sowing. The plants were subjected to a light/dark cycle of 16/8 h (18/12°C). Results obtained with the two genotypes were essentially similar. In the light, xylem nitrate transport and shoot nitrate reduction approximately equalled the amount of nitrate absorbed by the root. A drastic decline in translocation to the shoot in darkness was entirely attributable to decreased transpiration since no major changes in xylem nitrate concentration were observed. Darkening caused only a slight decrease in nitrate uptake, while root nitrate reduction was enhanced. Nitrate starvation for 2 days did not significantlly affect dry matter increment, but resulted in a drastic drop in previously accumulated nitrate, indicating that the stored nitrate is accessible and can sustain unrestricted growth. Uptake increased upon re-addition of nitrate and after 8 h it was about twice that of non-starved plants. During recovery, restoration of root nitrate pools and root nitrate reduction took precedence over shoot nitrate accumulation and reduction. Net nitrate uptake and removal of nitrate from the root to the transpiration stream seem to be decisive for the rate of root nitrate reduction.  相似文献   

13.
14.
The relationship between availability of external nitrate and N translocation between root and shoot was studied in N-limited barley ( Hordeum vulgare L. cv. Golf). Nitrate-N was added at a relative rate (i.e. N added per unit time and unit N in plant biomass) of (1.09 da-1, and distributed between the subroots at ratios of 50:50 or 80:20. The plants were grown for 13 days under these conditions of nitrate nutrition, and for another three days with the nitrate distribution reversed from 80:20 to 20:80. The nitrale-N doses thus experienced by individual subroots ranged from 2 to 11 mg N g-1 root dry weight day-1 . 15N-Nitrate labellings were performed after 2 to 3 and 12 to 13 days of nitrate nutrition. and 2 to 3 days after reversal of nitrate additions. For all treatments, between 60 and 82% of the absorbed label initially left the root, and between 25 and 55% of the label recovered in roots had been supplied (cycled) via the shoot. Labelling of xylem N at the end of the 24-h labelling period ranged from to 36 to 46% indicating that a substantial fraction of the N in the xylem had been absorbed by the plant prior to labelling. It is concluded that cycling of N to roots, and cycling of N in the plant as a whole, is substantial also during N-limited growth. N allocation to roots increased with external nitrate dose. An increased utilization of non-translocated N as well as an increased translocation of N from the shoot contributed to this effect. Thus, the results indicate that increased external availability of N also increased the sink strength of the root for cycling N.  相似文献   

15.
Spring barley ( Hordeum vulgare L. cv. Golf) was grown at different nitrate supply rates, controlled by using the relative addition rate technique, in order to elucidate the relationship between nitrate-N supply and root and shoot levels of abscisic acid (ABA). The plants were maintained as (1) standard cultures where nitrate was supplied at relative addition rates (RAs) of 0.03, 0.09 and 0.18 day−1, and (2) split-root cultures at RA 0.09 day−1 but with the nitrate distributed between the two root parts in ratios of 100:0, 80:20 and 60:40. Time-dependent changes in root and shoot concentrations of ABA (determined by radioimmunoassay using a monoclonal antibody) were observed in both standard and split-root cultures during 12 days of acclimation to the different nitrate regimes. However, the ABA responses were similar at all nitrate supply rates. Further experiments were performed with split-root cultures where the distribution of nitrate between the two root parts was reversed from 80:20 to 20:80 so that short-term effects to local perturbations of nitrate supply could be studied without altering whole-plant N absorption. Transient increases in ABA concentrations (maximum of 25 to 40% after 3 to 4 h) were observed in both subroot parts, as well as in xylem sap and shoot tissue. By pruning the root system it was demonstrated that the change in ABA had its origin in the subroot part receiving the increased nitrate supply (i.e. switched from 20 to 80% of the total nitrate supply). The data indicate that ABA responses are easily transmitted between different organs, including transmission from one set of seminal roots to another via the shoot. The data do not provide any indication that long-term nitrate supplies or general nitrogen status of barley plants affect, or are otherwise related to, the average tissue ABA concentrations of roots and shoots.  相似文献   

16.
Summary Plant growth and allocation to root, shoot and carbon-based leaf chemical defense were measured in response to defoliation and nitrate limitation inHeterotheca subaxillaris. Field and greenhouse experiments demonstrated that, following defoliation, increased allocation to the shoot results in an equal root/shoot ratio between moderately defoliated (9% shoot mass removed) and non-defoliated plants. High defoliation (28% shoot mass or >25% leaf area removed) resulted in greater proportional shoot growth, reducing the root/shot ratio relative to moderate or non-defoliated plants. However, this latter effect was dependent on nutritional status. Despite the change in distribution of biomass, defoliation and nitrate limitation slowed the growth and development ofH. subaxillaris. Chronic defoliation decreased the growth of nitrate-rich plants more than that of nitrate-limited plants. The concentration of leaf mono- and sesqui-terpenes increased with nitrate-limitation and increasing defoliation. Nutrient stress resulting from reduced allocation to root growth with defoliation may explain the greater allocation to carbon-based leaf defenses, as well as the defoliation-related greater growth reduction of nitrate-rich plants.  相似文献   

17.
The influence of nutrient nitrate level (0-20 millimolar) on the effects of NO2 (0-0.5 parts per million) on nodulation and in vivo acetylene reduction activity of the roots and on growth and nitrate and Kjeldahl N concentration in shoots was studied in bean (Phaseolus vulgaris L. cv Kinghorn Wax) plants. Exposing 8-day old seedlings for 6 hours each day, for 15 days, to 0.02 to 0.5 parts per million NO2 decreased total nodule weight at 0 and 1 millimolar nitrate, and nitrogenase (acetylene reduction) activity at all concentrations of nitrate. The pollutant had little effect on root fresh or dry weights. Shoot growth was inhibited by NO2. The NO2 exposure increased nitrate concentration in roots only at 20 millimolar nutrient nitrate. Exposure to NO2 markedly increased Kjeldahl N concentration in roots but generally decreased that in shoots. The experiments demonstrated that nutrient N level and NO2 concentration act jointly in affecting nodulation and N fixing capability, plant growth and composition, and root/shoot relationships of bean plants.  相似文献   

18.
Six Argentinian wheat ( Triticum aestivum L.) cultivars grown in nutrient solutions in controlled environment were compared for their nitrate uptake rates on a root dry weight basis. Up to 3-fold differences were observed among the cultivars at 16, 20 and 24 days from germination, either when measured by depletion from the nutrient solution in short-term experiments, or by total N accumulation in the tissue during 8 days.
No differences in total N concentration in root or shoots were found among cultivars. Although the different cultivars showed significant differences in shoot/root ratio and nitrate reductase activity (EC 1.6.6.1) in the roots, none of these parameters was correlated with the nitrate uptake rate. However, nitrate uptake was found to be positively correlated (r = 0.99) with the shoot relative growth rate of the cultivars. The three cultivars with the highest nitrate uptake rates and relative growth rates showed a positive correlation between root nitrate concentration and uptake. However, this correlation was not found in the cultivars with the lowest growth and uptake rates.
Our results indicate that the difference in nitrate uptake rate among these cultivars may only be a consequence of their differences in growth rate, and it is suggested that at least two mechanisms regulate nitrate uptake, one working when plant demand is low and another when plant demand is high.  相似文献   

19.
Transgenic tobacco plants that overproduce the tobacco anionic peroxidase wilt upon reaching maturity, although having functional stomata and normal vascular anatomy and physiology. These plants were examined further to determine the cause for wilting, and thus better understand how the anionic peroxidase functions in plant growth and development. Shoots from young peroxidase overproducing plants were grafted onto wild-type tobacco root stock to determine if the roots could absorb and transmit sufficient water to maintain leaf turgidity. These grafted plants never wilted when grown in the greenhouse though shoot peroxidase activity remained ten-fold greater than in control plants, thus indicating that wilting is a consequence of peroxidase expression in the roots. Close examination of root systems revealed considerably less root mass in the transformed plant, primarily exhibited through a decrease in branching. At flowering, root growth rate and total root mass in transformed plants were less than 50% of control plants although shoot mass and growth rate were unchanged. This is in contrast to root growth in young seedlings where transformed plants performed equivalently to controls. Root hydraulic conductivity was measured to evaluate the effect of elevated peroxidase expression on water absorption and transport; however, no significant change in hydraulic conductivity was found in transformed plants. The consequence of anionic peroxidase overexpression on indoleacetic acid (IAA) metabolism was also examined. No significant difference in IAA levels was observed; however, root elongation in plants overexpressing peroxidase was insensitive to exogenous IAA. It can be concluded that the overexpression of the tobacco anionic peroxidase in transformed plants results in diminished root mass from fewer root branches, which contributes to the wilting phenomenon seen in these plants. Further, this developmental change in transformed plants may be a consequence of the metabolism of IAA by the anionic peroxidase.  相似文献   

20.
Summary Pure and mixed cultures of the dicotyledons Atriplex hortensis L. (C3 plant) and Amaranthus retroflexus L. (C4 plant) were maintained under open air conditions in standard soil at low and high nitrogen supply levels.A comparison of shoot dry weight and shoot length in the various series shows that the growth of the aboveground parts of both species was severely reduced under low N conditions. In both pure and mixed cultures the differences resulting from low N vs. high N conditions was less pronounced with Atriplex (C3 plant) than with Amaranthus (C4 plant). The root dry weight of the two species was not reduced so much under low N conditions as was the shoot dry weight. The low N plants were found to contain a larger proportion of their biomass in the roots than did the high N plants. In general the root proportion of Atriplex was greater than that of Amaranthus. The contents of organic nitrogen and nitrate and the nitrate reductase activity (NRA) per g dry weight of both species decreased continually throughout the experiments. With the exception of young plants, the low N plants always had tower contents of organic nitrogen and nitrate and nitrate reductase activities than did the high N plants. The highest values of NRA were measured in the leaf laminae. The eaves also exhibited the highest concentrations of organic nitrogen. The highest nitrate concentrations, however, were observed in the shoot axis, and in most cases the lowest nitrate values were found in the laminae. At the end of ne growing season this pattern was found to have been reversed with Atriplex, but not with Amaranthus. Thus Atriplex was able to maintain a higher NRA in the laminae than Amaranthus under low N conditions.The transpiration per leaf area of the C4 plant Amaranthus during the course of a day was substantially lower than that of the C3 plant Atriplex. There were no significant differences in transpiration between the low N and high N series of Amaranthus. The low N plants of Atriplex, however, clearly showed in most cases higher transpiration rates than the corresponding high N plants. These different transpiration rates of the high N and the low N Atriplex plants were also reflected in a distinct 13C discrimination.The sum of these results points to the conclusion that the C3 plant Atriplex hortensis can maintain a better internal inorganic nitrogen supply than the C4 plant Amaranthus retroflexus under low N conditions and an ample water supply, due to the larger root proportion and the more pronounced and flexible transpiration of the C3 plant.Dedicated to Prof. Dr. Karl Mägdefrau, Deisenhofen, on the ocasion of his 80th birthday  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号