首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Muylaert  Koenraad  Van Mieghem  Riet  Sabbe  Koen  Tackx  Micky  Vyverman  Wim 《Hydrobiologia》2000,432(1-3):25-36
Freshwater tidal estuaries comprise the most upstream reaches of estuaries and are often characterised by the presence of dense bacterial and algal populations which provide a large food source for bacterivorous and algivorous protists. In 1996, the protistan community in the freshwater tidal reaches of the Schelde estuary was monitored to evaluate whether these high food levels are reflected in a similarly high heterotrophic protistan biomass. Protistan distribution patterns were compared to those of metazoan zooplankton to evaluate the possible role of top-down regulation of protists by metazoans. Apart from the algivorous sarcodine Asterocaelum, which reached high densities in summer, heterotrophic protistan biomass was dominated by ciliates and, second in importance, heterotrophic nanoflagellates (HNAN). HNAN abundance was low (annual average 2490 cells ml–1) and did not display large seasonal variation. It is hypothesised that HNAN were top-down controlled by oligotrich ciliates throughout the year and by rotifers in summer. Ciliate abundance was generally relatively high (annual average 65 cells ml–1) and peaked in winter (maximum 450 cells ml–1). The decline of ciliate populations in summer was ascribed to grazing by rotifers, which developed dense populations in that season. In winter, ciliate populations were probably regulated `internally' by carnivorous ciliates (haptorids and Suctoria). Our observations suggest that, in this type of productive ecosystems, the microbial food web is mainly top-down controlled rather than regulated by food availability.  相似文献   

2.
Whether the primary role of bacterioplankton is to act as "remineralizers" of nutrients or as direct nutritional source for higher trophic levels will depend on factors controlling their production and abundance. In tropical lakes, low nutrient concentration is probably the main factor limiting bacterial growth, while grazing by microzooplankton is generally assumed to be the main loss factor for bacteria. Bottom-up and top-down regulation of microbial abundance was studied in six nutrient limitation and dilution gradient-size fractionation in situ experiments. Bacteria, heterotrophic nanoflagellates (HNF), ciliates and rotifers showed relatively low densities. Predation losses of HNF and ciliates accounted for a major part of their daily production, suggesting a top-down regulation of protistan populations by rotifers. Phosphorus was found to be strongly limiting for bacterial growth, whereas no response to enrichment with Nitrogen or DOC was detected. HNF were the major grazers on bacteria (g-0.43 d(-1)), the grazing coefficient increased when ciliates were added (g- 0.80 d(-1)) but decreased when rotifers were added (g- 0.23 d(-1)) probably due to nutrient recycling or top-down control of HNF and ciliates by rotifers.  相似文献   

3.
SUMMARY 1. We studied the effect of the small crustacean zooplankton on heterotrophic micro-organisms and edible phytoplankton in a eutrophic lake during a cyanobacterial bloom.
2. Small (15 L) enclosures were filled with natural or screened (100 μm) lake water and incubated for 5 days in the lake. Screening removed crustacean zooplankton but the initial density of rotifers and phytoplankton remained the same in control and removal treatments. Changes in the abundance and biomass of bacteria, autotrophic picoplankton (APP), heterotrophic nanoflagellates (HNF) and ciliates were measured daily.
3. The crustacean zooplankton, dominated by the small cladoceran Chydorus sphaericus , did not affect cyanobacteria, the main phytoplankton group during the experiment.
4. The removal of the crustacean zooplankton induced a higher abundance of ciliates and reduced that of the HNF, indicating the importance of ciliates in controlling HNF in this system.  相似文献   

4.
Protozoa are now being recognized as important members of planktonic food webs. This is due to the inclusion of microbial links in our paradigm of trophic relationships. Heterotrophic microflagellates and ciliates are major grazers of bacteria. They can stimulate production through nutrient recycling and can transform microbial production into larger particles, which are then available for macroconsumers. In this paper we add new groups, the small (< 20 μm) ciliates and myxotrophic flagellates, to the planktonic food web.  相似文献   

5.
1. Large mixotrophic ciliates ( Stentor araucanus , S. amethystinus and Ophrydium naumanni ) were a characteristic component of a temperate, oligotrophic lake in North Patagonia. During a 1-year study, the abundance, biomass and primary production of these large Chlorella -bearing ciliates were compared with those of the total plankton community.
2. Mixotrophic ciliates peaked in spring and from late summer to autumn, accounting for 1.6–43% (annual average: 16.3%) and 67–99% (annual average: 92%) of total ciliate abundance and biomass, respectively. Their contribution to total zooplankton biomass, including flagellates, rotifers, ciliates and crustaceans, was 14–76%, or 47% as an annual average. Endosymbiotic algae accounted for up to 25% of total autotrophic biomass (annual mean: 3.9%).
3. Maximum cell-specific photosynthetic rates of S. araucanus and S. amethystinus at light saturation varied between 80 and 4400 pg C ciliate–1 h–1 with high values during autumn and winter, and low values during summer. The depth-integrated rates of photosynthesis (0–40 m) of algal endosymbionts contributed 1–25% to total photosynthesis (annual mean: 6.5%).
4. A comparison of calculated ingestion rates with photosynthetic rates of Stentor indicates that photosynthate produced by endosymbionts generally exceeded heterotrophic food supply of Stentor during autumn and winter, but was much lower during summer, when food supply was high.
5. The mixotrophic ciliates represent an important 'link' between nanoplankton and higher trophic levels within the plankton community because of their high heterotrophic biomass and considerable contribution to total photosynthesis.  相似文献   

6.
The growth of planktonic bacteria from a eutrophic lake was evaluated with microflagellate predators present and absent. Differential filtration (50 and 8 µm filters) was used to exclude ciliates and larger zoo-and phytoplankton from replicate experimental cultures. Additional filtration (1 µm filter) excluded heterotrophic microflagellates from a second set of experimental cultures, producing cultures that contained either bacteria and microflagellates or only bacteria. Growth of bacteria and microflagellates was evaluated by epifluorescent microscopy from repeated sampling over approximately 200 h. Bacterial numbers were reduced in the presence of microflagellates, and microflagellates were observed to contain bacterial prey. However, microflagellate numbers were high (about 106 cells ml-1) and were less than an order of magnitude lower than bacterial numbers. Bacteria growing in the presence of microflagellates did not show predator-prey population oscillations but had in-phase oscillations in numbers, suggesting that microflagellate predation in freshwater may not control numbers of planktonic bacteria. Clearance rates of heterotrophic microflagellates, estimated to be only 30 body volumes hr-1, were insufficient to maintain flagellate growth, suggesting that other energy sources may be needed to maintain microflagellates in eutrophic freshwater ecosystems.  相似文献   

7.
Effects of Fixation on Cell Volume of Marine Planktonic Protozoa   总被引:8,自引:2,他引:6       下载免费PDF全文
The effects of fixation on the cell volume of marine heterotrophic nanoflagellates and planktonic ciliates were investigated. Decreases in cell volume depended on the combination of the protozoan taxa and the particular fixative. For a particular fixative and protozoan species, degree of shrinkage was independent of physiological state. The volume of fixed cells was found to be approximately 20 to 55% lower than the cell volume of live organisms. For the heterotrophic microflagellates, the fixatives ranked, in order of decreasing effect on cell volume, as glutaraldehyde, formaldehyde, acid Lugol's solution, and modified van der Veer solution. With oligotrichous ciliates and a tintinnid ciliate, formaldehyde caused less shrinkage than glutaraldehyde or acid Lugol's solution. With the aldehyde fixatives, the microflagellates were found to shrink more than the ciliates. Differential effects of fixation on cell volumes may result in an underestimation of the biomass of certain protozoan taxa in natural samples.  相似文献   

8.
Composition and seasonal dynamics of phytoplankton, bacteria,and zooplankton (including heterotrophic flagellates, ciliates,rotifers and crustaceans) were studied in 55 lakes in NorthernGermany with different trophic status, ranging from mesotrophicto hypertrophic. Mean abundance and biomass of all groups increasedsignificantly with trophic level of the lake, but bacteria andmetazooplankton showed only a weak correlation and a slightincrease with chlorophyll concentration. Composition of phytoplanktonshowed a dominance of cyanobacteria in hypertrophic lakes, whereasthe importance of chrysophytes and dinophytes decreased withan increase in trophic status. Protozoans (heterotrophic flagellatesand ciliates) made up 24% (mesotrophic lakes) to 42% (hypertrophiclakes) of total zooplankton biomass on average, and were dominatedby ciliates (62–80% of protozoan biomass). Seasonally,protozoans can build up to 60% of zooplankton biomass in spring,when heterotrophic flagellates can contribute  相似文献   

9.
The objective of this study was to analyze the flux of biomass through the communities of bacteria and phagotrophic protists in the cold and warm conditions occurring seasonally in Butrón River. Bacterial and heterotrophic protistan (flagellate and ciliate) abundance was determined by epifluorescence direct counts; protistan grazing on planktonic bacteria was measured from fluorescently labeled bacteria uptake rates; and the estimate of bacterial secondary production was obtained from [3H]thymidine incorporation rates. The abundance of bacterial, flagellate, and ciliate communities was similar during cold and warm situations. However, we observed that estimates of dynamic parameters, i.e., secondary bacterial production and protistan grazing, in both situations were noticeably different. In the warm situation, grazing rates of flagellates and ciliates (bacteria per protist per hour) were, respectively, 7 times and 18 times higher than those determined in the cold situation, and the grazing rates of the protistan communities (bacteria per protists present in 1 ml of water per hour) increased up to 5 times in the case of flagellates and 42 times in the case of ciliates. Estimates of bacterial secondary production were also higher during the warm situation, showing a ninefold increase. The percentage of bacterial production preyed upon by flagellates or ciliates was not significantly different between the two conditions. These results showed that in the different conditions of a system, the flux of biomass between the trophic levels may be quite different although this process may not be reflected in the abundance of each community of bacteria, flagellates, and ciliates. Offprint requests to: J. Iriberri.  相似文献   

10.
Seasonal and depth variations of the abundance, biomass, and bacterivory of protozoa (heterotrophic and mixotrophic flagellates and ciliates) were determined during thermal stratification in an oligomesotrophic lake (Lake Pavin, France). Maximal densities of heterotrophic flagellates (1.9 × 103 cells ml–1) and ciliates (6.1 cells ml–1) were found in the metalimnion. Pigmented flagellates dominated the flagellate biomass in the euphotic zone. Community composition of ciliated protists varied greatly with depth, and both the abundance and biomass of ciliates was dominated by oligotrichs. Heterotrophic flagellates dominated grazing, accounting for 84% of total protistan bacterivory. Maximal grazing impact of heterotrophic flagellates was 18.9 × 106 bacteria 1–1h–1. On average, 62% of nonpigmented flagellates were found to ingest particles. Ciliates and mixotrophic flagellates averaged 13% and 3% of protistan bacterivory, respectively. Attached protozoa (ciliates and flagellates) were found to colonize the diatom Asterionella formosa. Attached bacterivores had higher ingestion rates than free bacterivorous protozoa and may account for 66% of total protozoa bacterivory. Our results indicated that even in low numbers, epibiotic protozoa may have a major grazing impact on free bacteria. Correspondence: C. Amblard.  相似文献   

11.
Arndt  Hartmut 《Hydrobiologia》1993,255(1):231-246
Recent investigations have shown that processes within the planktonic microbial web are of great significance for the functioning of limnetic ecosystems. However, the general importance of protozoans and bacteria as food sources for rotifers, a major component of planktonic habitats, has seldom been evaluated. Results of feeding experiments and the analysis of the food size spectrum of rotifers suggest that larger bacteria, heterotrophic flagellates and small ciliates should be a common part of the food of most rotifer species. About 10–40 per cent of rotifers' food can consist of heterotrophic organisms of the microbial web. Field experiments have indicated that rotifer grazing should generally play a minor role in bacteria consumption compared to feeding by coexisting protozoans. However, according to recent experiments regarding food selection, rotifers should be efficient predators on protozoans. Laboratory experiments have revealed that even nanophagous rotifers can feed on ciliates. Preliminary microcosm and chemostat experiments have indicated that rotifers, due to their relatively low community grazing rates compared to the growth rates of bacteria and protozoans, should generally not be able (in contrast to some cladocerans) to suppress the microbial web via grazing, though they may structure it. Filter-feeding nanophagous rotifers (e.g. brachionids) seem to be significant feeders on the smaller organisms of the microbial web (bacteria, flagellates, small ciliates), whereas grasping species (e.g. synchaetids and asplanchnids) seem to be efficient predators on larger organisms (esp. ciliates). Another important role of rotifers is their feedback effect on the microbial web. Rotifers provide degraded algae, bacteria and protozoans to the microbial web and may promote microbial activity. Additional experimental work is necessary for a better understanding of the function of rotifers in aquatic ecosystems.  相似文献   

12.
1. Benthic organisms can have a strong effect on the plankton in rivers, although normally only members of the macrofauna are considered as important consumers. In the present study we conducted experiments on four different dates (in December, March, June and September) to assess the potential role of periphytic heterotrophic flagellates (HF), ciliates and rotifers in the control of potamoplankton (bacteria, algae, HF and ciliates). 2. Natural periphyton was established on the walls of circular flow channels by exposing them to river water (River Rhine, Germany). The experimental channels (with periphyton) and control channels (without periphyton) were filled with riverine water and the increase rates of planktonic bacteria, algae, HF and oligotrich ciliates were determined for the two treatments. 3. The abundance of periphytic ciliates and rotifers at the beginning of the four experiments showed large differences with low values in December and March, and high values in June and September. Dominant potential consumers of plankton were the heterotrich ciliate Stentor sp. and bdelloid rotifers. 4. The rates of increase of planktonic algae, HF and ciliates were significantly smaller in the presence of periphyton compared with those in their absence. Significant interactions between the treatment (with and without periphyton) and the time of experiment were found for the planktonic HF and algae, indicating that the impact of the periphyton varied temporarily. The planktonic groups responded differently to the periphyton with the planktonic HF showing the highest loss rate. Significant differences were also found among the loss rates of different HF groups and different diatom size classes. 5. These laboratory experiments demonstrate that periphytic ciliates and rotifers are potentially important consumers of different planktonic groups. The quantitative impact of periphyton on plankton with respect to the selective feeding needs further attention.  相似文献   

13.
SUMMARY. 1. Two experiments with plankton communities from Storrs Pond (NH), one conducted in the laboratory and one in field enclosures, assessed the impact of different cladocerans on rotifers and ciliated protozoa.
2. The smallest cladoceran, Bosmina longirostris , did not depress rotifer or ciliate growth rates while the intermediate sized dadoceran, Daphnia galeata mendotae , reduced ciliate growth rates in the enclosure experiment but had only a marginal effect in the jar experiment. D. galeata mendotae had no effect on any of the rotifers in either experiment.
3. In both experiments the largest cladoceran, Daphniapulex , depressed the growth rates of ciliates and those rotifers known to be vulnerable to interference competition. Polyarthra vulgaris , previously shown to be resistant to cladoceran interference, was the only rotifer unaffected by D. pulex in the field experiment but was depressed by the much higher densities of this cladoceran in the laboratory experiment.
4. Cladocerans did not affect phytoplankton or bacterioplankton abundance in either experiment. Therefore the mechanism most likely to be responsible for the suppressive effect of cladocerans on rotifers and ciliates in these experiments is direct mechanical interference or predation, rather than exploitative competition.  相似文献   

14.
  • 1 The major components of the microbial food web (dissolved organic carbon, bacteria, protozoa, rotifers and algae) of Priest Pot, a small freshwater pond, were investigated over a period of 5 months. Water samples were collected from the epilimnion every 1–3 days.
  • 2 Time series analysis helped identify the trophic relationships within the planktonic community. There were strong predator—prey relationships between both ciliates and large rotifers and the total nanoplankton, between rotifers and small ciliates and between the total microzooplankton community and phytoplankton. Small rotifers and small ciliates probably share the same food resources. The major bacterivores in the system could not be identified with our methods. However, our previous results point to a dominating role of nanoplanktonic (2–20 μm) heterotrophic protists as the main grazers of bacteria.
  • 3 Rotifers are the major type of metazoan zooplankton in Priest Pot; crustacean zooplankton are absent from the community. Bacterial production probably reaches rotifers via a variety of pathways: there may be a three-step link from bacteria to bacterivorous nanoplankton, to ciliates and then to rotifers. Furthermore, a strong correlation between the nanoplankton and rotifers suggests a direct link between these components, implying a much shorter pathway. Some of the rotifers in the pond can graze directly on bacteria, and many of the larger planktonic organisms (large ciliates and rotifers) are algivores. The latter two predator—prey relationships suggest an efficient transfer of bacterial and primary production to higher trophic levels.
  相似文献   

15.
NW Mediterranean surface water was spiked with picoplanktonprey (heterotrophic bacteria or cyanobacteria) or predators(bacterivorous microflagellates or ciliates) to investigatedifferential grazing pressure on picoplankton populations. Addinga particular prey type did not yield different growth patternsfor heterotrophic bacteria and cyanobacteria. but gave eithersimilar, positive, effects on both picoplankton types or similarnegative effects. Natural populations of both predator typesincreased with additions of cyanobacteria, but not heterotrophicbacteria. Ciliate additions gave marked decreases in cyanobacteria.While individual groups of grazers may preferentially consumecyanobacteria, selective grazing is probably not responsiblefor the maintenance of apparently stable populations of differentgroups of picoplankters during the summer.  相似文献   

16.
1. The taxonomic composition, abundance and biomass of heterotrophic protists (ciliates, heterotrophic flagellates (HF), rhizopods and actinopods) in the sediment and water column of shallow inlets of the Southern Baltic was studied under a variety of environmental conditions during 1996–1997. A shallow, highly eutrophic station and a deeper, less eutrophic station were compared.
2. Community biomass ranged from 0.12 to 0.34 μg C cm?3 in the water column and from 1.5 to 105 μg C cm?3 in the sediment. Heterotrophic protists dominated zooplankton biomass at both stations (73% and 84% mean contribution), while they were of minor importance within the zoobenthos. Expressed per unit area, benthic biomass contributed a significant part (44% and 49%) to the total heterotrophic protistan community at both stations.
3. Although the methodology for counting ciliates and HF was focussed on a high taxonomic resolution, the results reveal some general trends in the distribution of heterotrophic protists: protozooplankton biomass was dominated by flagellates (80% mean biomass contribution) at the shallow station and by ciliates (73% mean biomass contribution) at the deep station. In the benthos at both stations, ciliates were the dominant protozoans, followed by the hitherto little‐studied rhizopods (25% and 35% mean biomass contribution) and flagellates.
4. The degree of benthic–pelagic coupling differed between taxonomic groups. Benthic and pelagic communities of ciliates showed little taxonomic overlap. In contrast, many heterotrophic flagellate species were found both in the benthos and in the pelagic. These benthic–pelagic species contributed significantly to the biomass of HF in the water column. The planktonic rhizopod community consisted of a subset of those species found in the benthos.
5. The abundance of benthic and pelagic protists was positively correlated at the shallow station, but taxonomic data indicate that the direct exchange between benthic and pelagic communities was only partly responsible.  相似文献   

17.
1. The seasonal development of heterotrophic nanoflagellates (HNF), bacteria, rotiferans and crustacean zooplankton was studied in the epilimnion of Lake Pavin, an oligomesotrophic lake in the Massif Central of France.
2. HNF abundance varied from 0.1 to 2.5 × 103 mL–1. Free-living HNF reached their highest density in spring when the copepod Acanthodiaptomus denticornis dominated the metazooplankton. They were present in low numbers when rotifers and cladocerans were numerous.
3. Attached HNF, consisting of bicoecids and choanoflagellates, were fixed to large diatoms and to the colonial cyanobacterium Anabaena flos-aquae . The abundance of attached HNF was significantly correlated to bacterial abundance, which fluctuated between 1.1 and 2.7 × 106 mL–1. Highest abundance of these epiphytic protists was recorded when free-living heterotrophic nanoflagellates declined.
4. The comparison of the dynamics of heterotrophic nanoflagellates, bacteria, and the impact of zooplankton grazing suggested that prey abundance, the presence of suitable attachment sites and limited competition from the free-living forms were the main factors controlling the development of the epiphytic flagellate protists. In contrast, the low abundance of free-living forms during the period of rotiferan and cladoceran development suggests the prevalence of a top-down control by predation of the metazoopankton.  相似文献   

18.
孟昭翠  徐奎栋 《生态学报》2013,33(21):6813-6824
利用Ludox-QPS方法并结合沉积环境因子的综合分析,研究了2011年4月采自长江口及东海10个站位以底栖硅藻、纤毛虫和异养小鞭毛虫为代表的微型底栖生物及小型底栖生物的组成、丰度和生物量、分布及生态特点。结果表明,底栖硅藻的丰度 (5.92 ? 104 ind/10 cm2) 和生物量 (83.29 ?g C/10 cm2) 远高于纤毛虫 (丰度为1036 ind/10 cm2,生物量为3.33 ?g C/10 cm2)、异养小鞭毛虫 (丰度为4451 ind/10 cm2,生物量为2.51 ?g C/10 cm2) 和小型底栖生物 (丰度为1947 ? 849 ind/10 cm2,生物量为49.01? 22.05 ?g C/10 cm2)。在鉴定出的11个小型底栖生物类群中,线虫占小型底栖生物总丰度的90%和总生物量的37%。底栖硅藻生物量在长江口及东海海域呈由近岸向外海逐渐降低的分布特点,而底栖纤毛虫、异养小鞭毛虫及小型底栖生物的分布则正相反。在垂直分布上,76%的硅藻和80%的线虫分布在0–2 cm沉积物表层,仅1%的硅藻和6%的线虫分布在5–8 cm分层。统计分析表明,底栖硅藻的现存量与沉积物中叶绿素a含量呈极显著的正相关,与底层水温度呈弱的正相关;该海域底栖原生动物和小型底栖生物的分布受多个因子而非单一环境因子的共同作用。对比分析表明,长江口及东海单位体积沉积物中的硅藻丰度较水体中的硅藻丰度高2个数量级,沉积物中相当部分的叶绿素a含量可能系底栖硅藻所贡献;表层8 cm沉积物中纤毛虫的丰度约是上层30 m水柱中纤毛虫丰度的30倍,生物量约是后者的40倍。尽管纤毛虫在生物量上远小于小型底栖生物,但其估算的生产力约是后者的3倍;而异养小鞭毛虫由于个体更小,其周转率可能较纤毛虫更高。长江口及东海陆架区原生动物和小型底栖生物的高现存量及生产力预示着其在该海域生态系统中的重要作用。  相似文献   

19.
Summary Pack ice surrounding Antarctica supports rich and varied populations of microbial organisms. As part of the Antarctic Marine Ecosystem Research in the Ice Edge Zone (AMERIEZ) studies, we have examined this community during the late spring, autumn, and winter. Although organisms are found throughout the ice, the richest concentrations often occur in the surface layer. The ice flora consists of diatoms and flagellates. Chrysophyte cysts (archaeomonads) of unknown affinity and dinoflagellate cysts are abundant and may serve as overwintering stages in ice. The ice fauna includes a variety of heterotrophic flagellates, ciliates, and micrometazoa. The abundance of heterotrophs indicates an active food web within the ice community. Ice may serve as a temporary habitat or refuge for many of the microbial forms and some of these appear to provide an inoculum for planktonic populations when ice melts. Larger consumers, such as copepods and the Antarctic krill, Euphausia superba are often found on the underside of ice floes and within weathered floes. The importance of the ice biota as a food resource for these pelagic consumers is unknown.  相似文献   

20.
Response of temperate microplankton communities to N:Si ratio perturbation   总被引:2,自引:0,他引:2  
In order to study the effect of the nitrogen:silicon (N:Si)ratio on temperate microplankton food webs, mesocosm experimentswere conducted in Trondheim (Norway) using two different ratios(molar ratios of 1:1 and 4:1). With the exception of diatoms,the increase in abundance of all microbial groups [phototrophicnanoflagellates, autotrophic dinoflagellates, bacteria, heterotrophicnanoflagellates (HNAN), heterotrophic microflagellates and ciliates]was significantly greater in the high N:Si treatment. Midwaythrough the experiment, HNAN biovolume exceeded that of bacteriain the high N:Si treatment, indicating strong top-down grazingcontrol. Heterotrophic microflagellate biovolume exceeded ciliatebiovolume under both nutrient regimes. However, heterotrophicplankton failed to respond rapidly to increased diatom biomass.The heterotrophic:autotrophic biovolume ratio remained <0.1for the majority of the experiment, suggesting that, given similarnutrient concentrations and ratios, much of the autotrophicproduction would be lost from surface waters through diatomaggregation and sinking before the micrograzer community wasable to respond. Measured differences in diatom physiology betweentreatments are discussed with respect to nutritional qualityand consequences for planktonic grazers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号