首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Intact spermatozoa from rat cauda epididymis possess a Mg2+-dependent ATPase activity that hydrolyses externally added [gamma-32P]ATP. The ATPase reaction was linear with time for approx. 6 min and there was no detectable uptake of ATP by these cells. The ATPase activity of the whole spermatozoa was not due to leakage of the intracellular enzymic activity, contamination of the broken cells or any possible cell damage during incubation and isolation of spermatozoa. The activity of the enzyme was strongly inhibited (approx. 85%) by p-chloromercuribenzenesulphonic acid (50 microM) or the diazonium salt of sulphanilic acid (50 microM), which are believed not to enter the cells, whereas ouabain (0.5 mM), NaF (10 mM), NaN3 (2.5 mM) and oligomycin (5 microM) had no appreciable effect on the activity of the spermatozoal APTase. There was little loss of ATPase activity from the cells when washed with 0.5 mM-EDTA and an iso-osmotic or hyperosmotic medium. These data are consistent with the view that the observed ATPase activity is located on the external surface of spermatozoa. The sperm ecto-ATPase activity is resistant to the action of proteinases (50 micrograms/ml), namely trypsin, chymotrypsin and Pronase. Studies with various unlabelled phosphate esters indicate that the sperm ecto-ATPase is not a non-specific phosphatase and it has high degree of substrate specificity for ATP.  相似文献   

2.
Some kinetic properties of N-acetylglutamate 5-phosphotransferase (ATP: N-acetyl-L-glutamate 5-phosphotransferase EC 2.7.2.8) purified approx. 2000-fold from Pseudomonas aeruginosa have been studied. The enzyme required Mg2+ for activity. Mn2+, Zn2+, Co2+, and Ca2+, in this order, could replace Mg2+ partially. The substrate specificity was narrow: N-carbamoyl-L-glutamate and N-formyl-L-glutamate were phosphorylated, but at a lower rate than N-acetyl-L-glutamate; N-propionyl-L-glutamate was almost inactive as a substrate. dATP, but neither GTP nor ITP, could be used instead of ATP. The enzyme had a broad pH optimum from pH 6.5 to 9. Feedback inhibition by L-arginine was markedly dependent on pH. Above pH 9 no inhibition was observed. L-Citrulline was three times less potent an inhibitor than L-arginine. The enzyme showed Michaelis-Menten kinetics, even at low concentration of the second substrate. The apparent Km was 2 mM for N-acetyl-L-glutamate (at 10 mM ATP) and approx. 3 mM for ATP (at 40 mM N-acetyl-L-glutamate). In the presence of L-arginine the rate-concentration curves for N-acetyl-L-glutamate became signoidal, while no cooperativity was detected for ATP. A method was developed allowing the determination of N-acetyl-L-glutamate in the nanomolar range by means of purified enzyme.  相似文献   

3.
The kinetics of ATP hydrolysis and cation effects on ATPase activity in plasma membrane from Candida albicans ATCC 10261 yeast cells were investigated. The ATPase showed classical Michaelis-Menten kinetics for the hydrolysis of Mg X ATP, with Km = 4.8 mM Mg X ATP. Na+ and K+ stimulated the ATPase slightly (9% at 20 mM). Divalent cations in combination with ATP gave lower ATPase activity than Mg X ATP (Mg greater than Mn greater than Co greater than Zn greater than Ni greater than Ca). Divalent cations inhibited the Mg X ATPase (Zn greater than Ni greater than Co greater than Ca greater than Mn). Free Mg2+ inhibited Mg X ATPase weakly (20% inhibition at 10 mM). Computed analyses of substrate concentrations showed that free Zn2+ inhibited Zn X ATPase, mixed (Zn2+ + Mg2+) X ATPase, and Mg X ATPase activities. Zn X ATP showed high affinity for ATPase (Km = 1.0 mM Zn X ATP) but lower turnover (52%) relative to Mg X ATP. Inhibition of Mg X ATPase by (free) Zn2+ was noncompetitive, Ki = 90 microM Zn2+. The existence of a divalent cation inhibitory site on the plasma membrane Mg X ATPase is proposed.  相似文献   

4.
Cyclic GMP-stimulated cyclic nucleotide phosphodiesterase purified greater than 13,000-fold to apparent homogeneity from calf liver exhibited a single protein band (Mr approximately 102,000) on polyacrylamide gel electrophoresis under denaturing conditions. Enzyme activity comigrated with the single protein peak on analytical polyacrylamide gel electrophoresis, sucrose density gradient centrifugation, and gel filtration. From the sedimentation coefficient of 6.9 S and Stokes radius of 67 A, an Mr of 201,000 and frictional ratio (f/fo) of 1.7 were calculated, suggesting that the native enzyme is a nonspherical dimer of similar, if not identical, peptides. The effectiveness of Mg2+, Mn2+, and Co2+ in supporting catalytic activity depended on the concentration of cGMP and cAMP present as substrate or effector. Over a wide range of substrate concentrations, optimal concentrations for Mg2+, Mn2+, and Co2+ were about 10, 1, and 0.2 mM, respectively. At concentrations higher than optimal, Mg2+ inhibited activity somewhat; inhibition by Co2+ (and in some instances by Mn2+) was virtually complete. At low substrate concentrations, activity with optimal Mn2+ was equal to or greater than that with Co2+ and always greater than that with Mg2+. With greater than or equal to 0.5 microM cGMP or 20 to 300 microM cAMP and for cAMP-stimulated cGMP or cGMP-stimulated cAMP hydrolysis, activity with Mg2+ greater than Mn2+ greater than Co2+. In the presence of Mg2+, the purified enzyme hydrolyzed cGMP and cAMP with kinetics suggestive of positive cooperativity. Apparent Km values were 15 and 33 microM, and maximal velocities were 200 and 170 mumol/min/mg of protein, respectively. Substitution of Mn2+ for Mg2+ increased apparent Km and reduced Vmax for cGMP with little effect on Km or Vmax for cAMP. Co2+ increased Km and reduced Vmax for both. cGMP stimulated cAMP hydrolysis approximately 32-fold in the presence of Mg2+, much less with Mn2+ or Co2+. In the presence of Mg2+, Mn2+ and Co2+ at concentrations that increased activity when present singly inhibited cGMP-stimulated cAMP hydrolysis. It appears that divalent cations as well as cyclic nucleotides affect cooperative interactions of this enzyme. Whereas Co2+ effects were observed in the presence of either cyclic nucleotide, Mn2+ effects were especially prominent when cGMP was present (either as substrate or effector).  相似文献   

5.
Intact spermatozoa from rat cauda epididymides possess an ecto-(cyclic AMP-dependent protein kinase) activity that causes the transfer of the terminal phosphate group of ATP to the serine residues of all the histone fractions. The enzyme showed a high degree of substrate specificity for the phosphorylation of histones rather than protamine, casein and phosvitin. The cell-external-surface protein kinase requires Mg2+ for activity, and other bivalent cations such as Mn2+ and Co2+ can substitute partially for Mg2+, whereas Ca2+ and Zn2+ are potent inhibitors of the enzyme. The enzyme has markedly higher affinity for cyclic AMP than for other cyclic nucleotides for its activation, with an apparent Km value for cyclic AmP of 80 nM. Spermatozoal ecto-kinase activity is not due to contamination of broken cells or any possible cell damage during incubation and isolation of spermatozoa. There was no loss of kinase activity from the cells when washed with 2 mM-EDTA, and the histones phosphorylated by intact spermatozoa were located outside the cells. Protein kinase activity of intact cells was strongly inhibited (approx. 90%) by p-chloromercuribenzenesulphonic acid (10 microM), which is believed not to enter the cells. These data provide further support for the localization of a protein kinase on the external surface of spermatozoa.  相似文献   

6.
The effect of divalent cations on bovine sperm adenylate cyclase activity was studied. Mn2+, Co2+, Cd2+, Zn2+, Mg2+ and Ca2+ were found to satisfy the divalent cation requirement for catalysis of the bovine sperm adenylate cyclase. These divalent cations in excess of the amount necessary for the formation of the metal-ATP substrate complex were found to stimulate the enzyme activity to various degrees. The magnitude of stimulation at saturating concentrations of the divalent cations was strikingly greater with M2+ than with either Ca2+, Mg2+, Zn2+, Cd2+ or Co2+. The apparent Km was lowest for Zm2+ (0.1 - 0.2 mM) than for any of the other divalent cations tested (1.2 - 2.3 mM). The enzyme stimulation by Mn2+ was decreased by the simultaneous addition of Co2+, Cd2+, Ni2+ and particularly Zn2+ and Cu2+. The antagonism between Mn2+ and Cu2+ or Zn2+ appeared to have both competitive and non-competitive features. The inhibitory effect of Cu2+ on Mn2+-stimulated adenylate cyclase activity was prevented by 2,3-dimercaptopropanol, but not by dithiothreitol, L-ergothioneine, EDTA, EGTA or D-penicillamine. Ca2+ at concentrations of 1-5 mM was found to act synergistically with Mg2+, Zn2+, Co2+ and Mn2+ in stimulating sperm adenylate cyclase activity. The Ca2+ augmentation of the stimulatory effect of Zn2+, Co2+, Mg2+ and Mn2+ appeared to be specific.  相似文献   

7.
The phosphorylation in vivo and in vitro of the arginine-ornithine and the lysine-arginine-ornithine (LAO) periplasmic transport proteins of Escherichia coli K-12 was previously reported (Celis, R. T. F. (1984) Eur. J. Biochem. 145, 403-411). The phosphorylative reaction required ATP (as a direct energy donor), Mg2+, and a kinase that can be released by osmotic shock treatment of the cells. The enzyme was purified to electrophoretic homogeneity. The enzyme exhibited an ATPase activity and a kinase activity. Polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate gave an apparent molecular weight of 43,000 for the enzyme. The native protein showed the same molecular weight, suggesting that the protein is a monomer. The protein showed an apparent isoelectric point of 4.8 on isoelectric focusing. The two enzymatic reactions required a divalent cation and the apparent Km value for Mg2+ for the kinase activity was 0.5 mM. Mn2+ and Co2+ served as well as Mg2+, whereas Zn2+ and Ca2+ did not support activity. The ATPase activity of the enzyme yielded an apparent Km value for ATP of 50 microM. A similar value, Km of 100 microM, was calculated for the kinase activity with different concentrations of ATP. The enzyme showed a pH optimum of 7.3.  相似文献   

8.
Effects of metal ions on sphingomyelinase activity of Bacillus cereus   总被引:5,自引:0,他引:5  
Some divalent metal ions were examined for their effects on sphingomyelinase activity of Bacillus cereus. The enzyme activity toward mixed micelles of sphingomyelin and Triton X-100 proved to be stimulated by Co2+ and Mn2+, as well as by Mg2+. Km's for Co2+ and Mn2+ were 7.4 and 1.7 microM, respectively, being smaller than the Km for Mg2+ (38 microM). Sr2+ proved to be a competitive inhibitor against Mg2+, with a Ki value of 1 mM. Zn2+ completely abolished the enzyme activity at concentrations above 0.5 mM. The concentration of Zn2+ causing 50% inhibition of the enzyme activity was 2.5 microM. Inhibition by Zn2+ was not restored by increasing concentrations of Mg2+ when the concentration of Zn2+ was above 10 microM. Ba2+ was without effect. When sphingomyelinase was incubated with unsealed ghosts of bovine erythrocytes at 37 degrees C, the enzyme was significantly adsorbed onto the membrane in the presence of Mn2+, Co2+, Sr2+ or Ba2+. Incubation with intact or Pronase-treated erythrocytes caused enzyme adsorption only in the presence of Mn2+. In the course of incubation, the enzyme was first adsorbed on the membranes of intact bovine erythrocytes in the presence of Mn2+; then sphingomyelin breakdown proceeded with ensuing desorption of adsorbed enzyme. Hot-cold hemolysis occurred in parallel with sphingomyelin breakdown. In this case, the hydrolysis of membranous sphingomyelin as well as the initial enzyme adsorption took place in the following order: unsealed ghosts greater than Pronase-treated erythrocytes greater than intact erythrocytes.  相似文献   

9.
B C Shenoy  H G Wood 《FASEB journal》1988,2(8):2396-2401
The synthetase that attaches biotin to the aposubunit of transcarboxylase (biotin-[methylmalonyl-CoA-carboxyltransferase]ligase) (EC 6.3.4.9) was purified to homogeneity by ion-exchange chromatography on cellulose DE-52 and CM-cellulose. The synthetase is a monomer of molecular weight 30,000. The pH and temperature optima for the synthetase are 6.0 and 37 degrees C, respectively. The apparent Km for the substrates ATP, biotin, and apo 1.3 S subunit of apotranscarboxylase are 38, 2.0, and 0.9 microM, respectively. Ni2+, Co2+, Zn2+, or Mn2+ could replace Mg2+ in the reaction. The affinity of synthetase toward metals is as follows: Zn2+ greater than Ni2+ greater than Mn2+ greater than Co2+ greater than Mg2+, and the activity with Zn2+ was much greater than that with the other divalent metals. EDTA completely inactivates the enzyme. The metals are necessary not only for the catalytic activity but also for the storage stability of the enzyme. The synthetase shows absolute specificity toward ATP.  相似文献   

10.
The membrane-bound ATP synthetase complex of Methanobacterium thermoautotrophicum showed maximum activity for ATP hydrolysis at pH 8, at temperatures between 65 and 70 degrees C, and at an ATP-Mg2+ ratio of 0.5. Anaerobic conditions were not prerequisite for enzyme activity. The enzyme showed a Km value for ATP of 2 mM, and activity was Mg2+ dependent; Mn2+, Co2+, Ca2+, and Zn2+ could replace Mg2+ to some extent. Other nucleoside triphosphates could be hydrolyzed. N,N'-dicyclohexylcarbodiimide inhibited ATP hydrolysis. A proton-motive force, artificially imposed by a pH shift or valinomycin, resulted in ATP synthesis in whole cells. The ATP synthetase complex of the thermophilic methanogenic bacterium is similar to those described in aerobic and anaerobic microorganisms.  相似文献   

11.
Using the activated cGMP-dependent protein kinase in the presence of the phosphorylatable peptide [[Ala34]histone H2B-(29-35)], we found that lin-benzoadenosine 5'-diphosphate (lin-benzo-ADP) was a competitive inhibitor of the enzyme with respect to ATP with a Ki (22 microM) similar to the Kd (20 microM) determined by fluorescence polarization titrations. The Kd for lin-benzo-ADP determined in the absence of the phosphorylatable peptide, however, was only 12 microM. ADP bound with lower affinity (Ki = 169 microM; Kd = 114 microM). With [Ala34]histone H2B-(29-35) as phosphoryl acceptor, the Km for lin-benzo-ATP was 29 microM, and that for ATP was 32 microM. The Vmax with lin-benzo-ATP, however, was only 0.06% of that with ATP as substrate [0.00623 +/- 0.00035 vs. 11.1 +/- 0.17 mumol (min.mg)-1]. Binding of lin-benzo-ADP to the kinase was dependent upon a divalent cation. Fluorescence polarization revealed that Mg2+, Mn2+, Co2+, Ni2+, Ca2+, Sr2+, and Ba2+ supported nucleotide binding to the enzyme; Ca2+, Sr2+, and Ba2+, however, did not support any measurable phosphotransferase activity. The rank order of metal ion effectiveness in mediating phosphotransferase activity was Mg2+ greater than Ni2+ greater than Co2+ greater than Mn2+. Although these results were similar to those observed with the cAMP-dependent protein kinase [Hartl, F. T., Roskoski, R., Jr., Rosendahl, M. S., & Leonard, N. J. (1983) Biochemistry 22, 2347], major differences in the Vmax with lin-benzo-ATP as substrate and the effect of peptide substrates on nucleotide (both lin-benzo-ADP and ADP) binding were observed.  相似文献   

12.
Human erythrocytes contain a phosphatase that is highly specific for phosphoglycollate. It shows optimum pH of 6.7 and has Km 1 mM for phosphoglycollate. The molecular weight appears to be about 72000. The enzyme is a dimeric molecule having subunits of mol. wt. about 35000. It could be purified approx. 4000-fold up to a specific activity of 5.98 units/mg of protein. The activity of the enzyme is Mg2+-dependent. Co2+, and to a smaller extent Mn2+, may substitute for Mg2+. Half-maximum inhibition of the phosphatase by 5,5'-dithiobis-(2-nitrobenzoate), EDTA and NaF is obtained at 0.5 microM, 1 mM and 4 mM respectively. Moreover, it needs a univalent cation for optimum activity. Phosphoglycollate phosphatase is a cytoplasmic enzyme. Approx. 5% of its total activity is membrane-associated. This part of activity can be approx. 70% solubilized by freezing, thawing and treatment with 0.25% Triton X-100.  相似文献   

13.
Phosphatidylinositol kinase was solubilized and purified from porcine liver microsomes to apparent homogeneity. The purification procedure includes: solubilization of microsomes by 2% Triton X-100, ammonium sulfate precipitation (20-35% saturation), Reactive blue agarose chromatography, DEAE-Sephacel chromatography and two consecutive hydroxyapatite chromatographies. A total of 4900-fold purification with 8% recovery of enzyme activity was achieved. The molecular weight of the enzyme as estimated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis was 55000. The enzyme is stimulated in a decreasing order by Mg2+, Fe2+, Mn2+, Fe3+ and Co2+. Ca2+ inhibited Mg2+-stimulated activity with an I50 of 0.4 mM. Apparent Km values for phosphatidylinositol and ATP are 120 and 60 microM, respectively. The enzyme is inhibited by adenosine (I50 = 70 microM), ADP (I50 = 120 microM) and quercetin (I50 = 100 microM). The enzyme is also sensitive to sulfhydryl inhibitors. Using the purified enzyme as an immunogen, we have successfully prepared antibodies for phosphatidylinositol kinase in rabbits. The antibodies appear to recognize an antigen of Mr 55000 on SDS-polyacrylamide gel electrophoresis from various porcine tissues in Western blot analysis.  相似文献   

14.
The complex interrelationships between the transport of inorganic cations and C4 dicarboxylate were examined using mutants defective in potassium transport and retention, divalent cation transport, or phosphate transport. The potassium transport system, studied using 86Rb+ as a K+ analogue, kinetically appeared as a single system (Km 200 microM for Rb+, Ki 50 microM for K+), the activity of which was only slightly reduced in K+ retention mutants. Divalent cation transport, studied using 54Mn2+, 60Co2+, and 45Ca2+, was more complex being represented by at least two systems, one with a high affinity for Mn2+ (Km 2.5 microM) and a more general one of low affinity (Km 1.3-10 mM) for Mg2+, Mn2+, Ca/2+, and Co2+. Divalent cation transport was repressed by Mg2+, derepressed in K+ retention mutants, and defective in Co2+-resistant mutants. Phosphate was required for both divalent cation and succinate transport, and phosphate transport mutants (arsenate resistant) were found to be defective in both divalent cation and succinate transport. Divalent cations, especially Mg2+ and Co2+, decreased Km for succinate transport approximately 20-fold over that achieved with K+; neither cation was required stoichiometrically for succinate transport. The loss of divalent cation transport in cobalt-resistant mutants has been correlated with the loss of a 55,000 molecular weight membrane protein. Similarly, the loss of phosphate transport in arsenate-resistant mutants has been correlated with the loss of a 35,000 molecular weight membrane component.  相似文献   

15.
The purpose of this study was to characterize the interrelationship between free calcium (Ca2+) and magnesium (Mg2+) in the Ca2+ ATPase enzyme cycle of kidney membranes. Experiments were performed with basolateral membranes from rat renal cortex and microdissected proximal and distal tubules from mice. Results were similar in the three types of preparations. We first investigated the effect of ATP concentration on Ca2(+)- and Mg2(+)-dependent ATP hydrolysis. With 0.2 microM Ca2+, the enzyme activity, as a function of ATP concentration, showed two saturable components: a high affinity component with a Km of 33 microM ATP and a low affinity component with a Km of 0.63 mM ATP. These components may represent either two distinct sites of ATP binding or two forms of the same site. For the sake of simplicity, it was assumed that the two components correspond to a high affinity and a low affinity substrate site. At the high affinity site (ATP = 50 microM), the Ca2+ dependence of ATP hydrolysis followed a single Michaelis-Menten kinetics with Km for Ca2+ of 0.08 microM. The addition of 1 mM Mg2+ resulted in a relatively constant increase in ATP hydrolysis at all Ca2+ concentrations, indicating that the effects of the two cations were additive. With high ATP concentration (ATP = 3 mM), Ca2+ also induced an ATP hydrolysis according to a saturable process, with a Km for Ca2+ of 0.2 microM. In contrast with what occurred with low concentrations of ATP, addition of millimolar Mg2+ completely curtailed the sensitivity of the enzyme to Ca2+.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
Cytidylate cyclase activity, which enzymatically converts cytidine 5'-triphosphate (CTP) to cytidine 3',5'-cyclic monophosphate (cyclic CMP), has been demonstrated in mouse tissue homogenates by use of a highly sensitive enzyme immunoassay (EIA) specific for cyclic CMP. Cyclic CMP formation is dependent on the amount of homogenate and on the incubation time. Although the enzyme activity was detected at wide ranges of pH from 6.8 to 11.5, the maximal activity was observed at around pH 9.4. The optimal temperature was 37 degrees C. Cytidylate cyclase activity was almost completely lost if the homogenates were heated at 90 degrees C for 3 min prior to use. The enzyme reaction exhibited typical Michaelis-Menten kinetics with an apparent Km for CTP of approx. 0.31 mM. Cyclic CMP formation was greatly enhanced with 4 mM Mn2+, Mg2+, Co2+; Mn2+ was the most effective. Fe2+ and Ca2+ were without effect. Cu2+ and Zn2+ at a concentration of 0.1 to 0.5 mM were inhibitory to Mn2+-dependent activity. Moreover, the enzyme activity was inhibited by several nucleotides including ATP, ADP, 5'-AMP, and GTP. Cytidylate cyclase activity was found to be present in all homogenates from a variety of mouse tissues examined except heart, with the highest level found in brain, and the lowest in liver.  相似文献   

17.
A soluble protein kinase from the promastigote form of the parasitic protozoon Leishmania donovani was partially purified using DEAE-cellulose, Sephadex G-200 and phosphocellulose columns. The enzyme preferentially utilized protamine as exogenous phosphate acceptor. The native molecular mass of the enzyme was about 85 kDa. Mg2+ ions were essential for enzyme activity; other metal ions, e.g. Ca2+, Co2+, Zn2+ and Mn2+, could not substitute for Mg2+. cAMP, cGMP, Ca2+/calmodulin and Ca2+/phospholipid did not stimulate enzyme activity. The pH optimum of the enzyme was 7.0-7.5, and the temperature optimum 37 degrees C. The apparent Km for ATP was 60 microM. Phosphoamino acid analysis revealed that the protein kinase transferred the gamma-phosphate of ATP to serine residues in protamine. The thiol reagents p-hydroxymercuribenzoic acid, 5-5'-dithio-bis(2-nitrobenzoic acid) and N-ethylmaleimide inhibited enzyme activity; the inhibition by p-hydroxymercuribenzoic acid and 5-5'-dithio-bis(2-nitrobenzoic acid) was reversed by dithiothreitol.  相似文献   

18.
ATP and the divalent cations Mg2+ and Ca2+ regulated K+ stimulation of the Ca2+-transport ATPase of cardiac sarcoplasmic reticulum vesicles. Millimolar concentrations of total ATP increased the K+-stimulated ATPase activity of the Ca2+ pump by two mechanisms. First, ATP chelated free Mg2+ and, at low ionized Mg2+ concentrations, K+ was shown to be a potent activator of ATP hydrolysis. In the absence of K+ ionized Mg2+ activated the enzyme half-maximally at approximately 1 mM, whereas in the presence of K+ the concentration of ionized Mg2+ required for half-maximal activation was reduced at least 20-fold. Second MgATP apparently interacted directly with the enzyme at a low affinity nucleotide site to facilitate K+-stimulation. With a saturating concentration of ionized Mg2+, stimulation by K+ was 2-fold, but only when the MgATP concentration was greater than 2 mM. Hill plots showed that K+ increased the concentration of MgATP required for half-maximal enzymic activation approx. 3-fold. Activation of K+-stimulated ATPase activity by Ca2+ was maximal at an ionized Ca2+ concentration of approx. 1 microM. At very high concentrations of either Ca2+ or Mg2+, basal Ca2+-dependent ATPase activity persisted, but the enzymic response to K+ was completely inhibited. The results provide further evidence that the Ca2+-transport ATPase of cardiac sarcoplasmic reticulum has distinct sites for monovalent cations, which in turn interact allosterically with other regulatory sites on the enzyme.  相似文献   

19.
Both phosphointermediate- and vacuolar-type (P- and V-type, respectively) ATPase activities found in cholinergic synaptic vesicles isolated from electric organ are immunoprecipitated by a monoclonal antibody to the SV2 epitope characteristic of synaptic vesicles. The two activities can be distinguished by assay in the absence and presence of vanadate, an inhibitor of the P-type ATPase. Each ATPase has two overlapping activity maxima between pH 5.5 and 9.5 and is inhibited by fluoride and fluorescein isothiocyanate. The P-type ATPase hydrolyzes ATP and dATP best among common nucleotides, and activity is supported well by Mg2+, Mn2+, or Co2+ but not by Ca2+, Cd2+, or Zn2+. It is stimulated by hyposmotic lysis, detergent solubilization, and some mitochondrial uncouplers. Kinetic analysis revealed two Michaelis constants for MgATP of 28 microM and 3.1 mM, and the native enzyme is proposed to be a dimer of 110-kDa subunits. The V-type ATPase hydrolyzes all common nucleoside triphosphates, and Mg2+, Ca2+, Cd2+, Mn2+, and Zn2+ all support activity effectively. Active transport of acetylcholine (ACh) also is supported by various nucleoside triphosphates in the presence of Ca2+ or Mg2+, and the Km for MgATP is 170 microM. The V-type ATPase is stimulated by mitochondrial uncouplers, but only at concentrations significantly above those required to inhibit ACh active uptake. Kinetic analysis of the V-type ATPase revealed two Michaelis constants for MgATP of approximately 26 microM and 2.0 mM. The V-type ATPase and ACh active transport were inhibited by 84 and 160 pmol of bafilomycin A1/mg of vesicle protein, respectively, from which it is estimated that only one or two V-type ATPase proton pumps are present per synaptic vesicle. The presence of presumably contaminating Na+,K(+)-ATPase in the synaptic vesicle preparation is demonstrated.  相似文献   

20.
The effects of Ca2+ on ethanolaminephosphotransferase [EC 2.7.8.1] and cholinephosphotransferase [EC 2.7.8.2] activities in rabbit platelet membranes were studied using endogenous diglyceride and CDP-[3H]ethanolamine or CDP-[14C]choline as substrates. Both transferases required Mn2+, Co2+, or Mg2+ as a metal cofactor and the optimal concentrations of the metals for both activities were about 5, 10, and 5 mM, respectively. When 5 mM Mg2+ was used as a cofactor, both transferase activities were inhibited by a low concentration of Ca2+ (half maximal inhibition at approx. 15 microM). In the presence of 5 mM Mn2+, however, approx. 5 mM Ca2+ was required to produce half maximal inhibition. The Ca2+-induced inhibition was reversible and the rate of the inhibition was not affected either by the concentrations of the CDP-compound or by exogenously added diacylglycerol. The relationship between Ca2+ and both Mg2+ and Mn2+ on the transferase activities was competitive. 45Ca2+ binding (and/or uptake) to the platelet membranes was inhibited by Mn2+, Mg2+, and Co2+, in a concentration-dependent manner. However, the inhibitory effects of the three metal ions on the total Ca2+ binding (and/or uptake) did not correlate with the activation of both transferase activities by the three metal ions in the presence of Ca2+. These results suggest that both transferase activities are regulated by low concentrations of Ca2+ in the presence of optimal concentrations of Mg2+, and that the inhibition is mediated directly by Ca2+, which interacts with a specific metal cofactor binding site(s) of the transferases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号