首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The human MxA protein is an interferon-induced large GTPase with antiviral activity against a wide range of viruses, including influenza viruses. Recent structural data demonstrated that MxA oligomerizes into multimeric filamentous or ring-like structures by virtue of its stalk domain. Here, we show that negatively charged lipid membranes support MxA self-assembly. Like dynamin, MxA assembled around spherical liposomes inducing liposome tubulation. Cryo-transmission electron microscopy revealed that MxA oligomers around liposomes have a "T-bar" shape similar to dynamin. Moreover, biochemical assays indicated that the unstructured L4 loop of the MxA stalk serves as the lipid-binding moiety, and mutational analysis of L4 revealed that a stretch of four lysine residues is critical for binding. The orientation of the MxA molecule within the membrane-associated oligomer is in agreement with the proposed topology of MxA oligomers based on crystallographic data. Although oligomerization of wild-type MxA around liposomes led to the creation of helically decorated tubes similar to those formed by dynamin, this lipid interaction did not stimulate GTPase activity, in sharp contrast to the assembly-stimulated nucleotide hydrolysis observed with dynamin. Moreover, MxA readily self-assembles into rings at physiological conditions, as opposed to dynamin which self-assembles only at low salt conditions or onto lipids. Thus, the present results indicate that the oligomeric structures formed by MxA critically differ from those of dynamin.  相似文献   

2.
The interferon-inducible MxA GTPase is a key mediator of cell-autonomous innate immunity against a broad range of viruses such as influenza and bunyaviruses. MxA shares a similar domain structure with the dynamin superfamily of mechanochemical enzymes, including an N-terminal GTPase domain, a central middle domain, and a C-terminal GTPase effector domain. Recently, crystal structures of a GTPase domain dimer of dynamin 1 and of the oligomerized stalk of MxA (built by the middle and GTPase effector domains) were determined. These data provide exciting insights into the architecture and antiviral function of the MxA oligomer. Moreover, the structural knowledge paves the way for the development of novel antiviral drugs against influenza and other highly pathogenic viruses.  相似文献   

3.
Mammalian transient receptor potential canonical channels have been proposed as the molecular entities associated with calcium entry activity in nonexcitable cells. Amino acid sequence analyses of TRPCs revealed the presence of ankyrin-like repeat domains, one of the most common protein-protein interaction motifs. Using a yeast two-hybrid interaction assay, we found that the second ankyrin-like repeat domain of TRPC6 interacted with MxA, a member of the dynamin superfamily. Using a GST pull-down and co-immunoprecipitation assay, we showed that MxA interacted with TRPC1, -3, -4, -5, -6, and -7. Overexpression of MxA in HEK293T cells slightly increased endogenous calcium entry subsequent to stimulation of G(q) protein-coupled receptors or store depletion by thapsigargin. Co-expression of MxA with TRPC6 enhanced agonist-induced or OAG-induced calcium entry activity. GTP binding-defective MxA mutants had only a minor potentiating effect on OAG-induced TRPC6 activity. However, a MxA mutant that could bind GTP but that lacked GTPase activity produced the same effect as MxA on OAG-induced TRPC6 activity. These results indicated that MxA interacted specifically with the second ankyrin-like repeat domain of TRPCs and suggested that monomeric MxA regulated the activity of TRPC6 by a mechanism requiring GTP binding. Additional results showed that an increase in the endogenous expression of MxA, induced by a treatment with interferon alpha, regulated the activity of TRPC6. The study clearly identified MxA as a new regulatory protein involved in Ca2+ signaling.  相似文献   

4.
Dynamins are large GTPases with mechanochemical properties that are known to constrict and tubulate membranes. A recently identified mammalian dynamin-like protein (DLP1) is essential for the proper cellular distribution of mitochondria and the endoplasmic reticulum in cultured cells. In this study, we investigated the ability of DLP1 to remodel membranes similar to conventional dynamin. We found that the expression of a GTPase-defective mutant, DLP1-K38A, in cultured cells led to the formation of large cytoplasmic aggregates. Electron microscopy (EM) of cells expressing DLP1-K38A revealed that these aggregates were comprised of membrane tubules of a consistent diameter. High-magnification EM revealed the presence of many regular striations along individual membrane tubules, and immunogold labeling confirmed the association of DLP1 with these structures. Biochemical experiments with the use of recombinant DLP1 and labeled GTP demonstrated that DLP1-K38A binds but does not hydrolyze or release GTP. Furthermore, the affinity of DLP1-K38A for membrane is increased compared with wild-type DLP1. To test whether DLP1 could tubulate membrane in vitro, recombinant DLP1 was combined with synthetic liposomes and nucleotides. We found that DLP1 protein alone assembled into sedimentable macromolecular structures in the presence of guanosine-5'-O-(3-thio)triphosphate (GTPgammaS) but not GTP. EM of the GTPgammaS-treated DLP1 revealed clusters of stacked helical ring structures. When liposomes were included with DLP1, formation of long membrane tubules similar in size to those formed in vivo was observed. Addition of GTPgammaS greatly enhanced membrane tubule formation, suggesting the GTP-bound form of DLP1 deforms liposomes into tubules as the DLP1-K38A does in vivo. These results provide the first evidence that the dynamin family member, DLP1, is able to tubulate membranes both in living cells and in vitro. Furthermore, these findings also indicate that despite the limited homology to conventional dynamins (35%) these proteins remodel membranes in a similar manner.  相似文献   

5.
MxA is an interferon-induced antiviral protein. Viral replication relies on the trafficking machinery of the host cell. Overexpression of MxA was found to perturb trafficking of internalized transferrin resulting in its accumulation in cells. Interestingly, this perturbation of endocytic trafficking was transient--with a maximal effect being seen 5-6 h after transfection. By 12 h after transfection the perturbation of endocytosis was seen to have subsided although MxA protein levels remained elevated even 24 h after transfection. The accumulation of transferrin is due to a block in transferrin recycling. It is further shown that MxA can physically associate with the endocytic protein dynamin, possibly accounting for the observed effect of MxA expression on transferrin endocytosis. These results uncover a hitherto unknown aspect of MxA action on trafficking processes within cells.  相似文献   

6.
Recently, Gao et al. and Chappie et al. elucidated the crystal structures of the polytetrameric stalk domain of the dynamin-like virus resistance protein, MxA, and of the G-domain dimer of the large, membrane-deforming GTPase, dynamin, respectively. Combined, they provide a hypothetical oligomeric structure for the complete dynamin protein. Here, it is discussed how the oligomers are expected to form and how they participate in dynamin mediated vesicle fission during the process of endocytosis. The proposed oligomeric structure is compared with the novel mechanochemical model of dynamin function recently proposed by Bashkirov et al. and Pucadyil and Schmid. In conclusion, the new model of the dynamin oligomer has the potential to explain how short self-limiting fissogenic dynamin assemblies are formed and how concerted GTP hydrolysis is achieved. The oligomerisation of two other dynamin superfamily proteins, the guanylate binding proteins (GBPs) and the immunity-related GTPases (IRGs), is addressed briefly.  相似文献   

7.
Interferon-induced Mx proteins in antiviral host defense   总被引:7,自引:0,他引:7  
Haller O  Staeheli P  Kochs G 《Biochimie》2007,89(6-7):812-818
  相似文献   

8.
9.
10.
The minibrain kinase (Mnbk)/dual specificity Yak 1-related kinase 1A (Dyrk1A) gene is implicated in the mental retardation associated with Down's syndrome. It encodes a proline-directed serine/threonine kinase whose function has yet to be defined. We have used a solid-phase Mnbk/Dyrk1A kinase assay to aid in the search for the cellular Mnbk/Dyrk1A substrates. The assay revealed that rat brain contains two cytosolic proteins, one with a molecular mass of 100 kDa and one with a molecular mass of 140 kDa, that were prominently phosphorylated by Mnbk/Dyrk1A. The 100-kDa protein was purified and identified as dynamin 1. The conclusion was further supported by evidence that a recombinant glutathione S-transferase fusion protein containing dynamin isoform 1aa was phosphorylated by Mnbk/Dyrk1A. In addition to isoform 1aa, Mnbk/Dyrk1A also phosphorylated isoforms 1ab and 2aa but not human MxA protein when analyzed by the solid-phase kinase assay. Upon Mnbk/Dyrk1A phosphorylation, the interaction of dynamin 1 with the Src homology 3 domain of amphiphysin 1 was reduced. However, when Mnbk/Dyrk1A phosphorylation was allowed to proceed more extensively, the phosphorylation enhanced rather than reduced the binding of dynamin 1 to amphiphysin 1. The result suggests that Mnbk/Dyrk1A can play a dual role in regulating the interaction of dynamin 1 with amphiphysin 1. Mnbk/Dyrk1A phosphorylation also reduced the interaction of dynamin with endophilin 1, whereas the same phosphorylation enhanced the binding of dynamin 1 to Grb2. Nevertheless, the dual function of Mnbk/Dyrk1A phosphorylation was not observed for the interaction of dynamin 1 with endophilin 1 or Grb2. The interactions of dynamin with amphiphysin and endophilin are essential for the formation of endocytic complexes; our results suggest that Mnbk/Dyrk1A may function as a regulator controlling the assembly of endocytic apparatus.  相似文献   

11.
Here we show that Dictyostelium discoideum dynamin A is a fast GTPase, binds to negatively charged lipids, and self-assembles into rings and helices in a nucleotide-dependent manner, similar to human dynamin-1. Chemical modification of two cysteine residues, positioned in the middle domain and GTPase effector domain (GED), leads to altered assembly properties and the stabilization of a highly regular ring complex. Single particle analysis of this dynamin A* ring complex led to a three-dimensional map, which shows that the nucleotide-free complex consists of two layers with 11-fold symmetry. Our results reveal the molecular organization of the complex and indicate the importance of the middle domain and GED for the assembly of dynamin family proteins. Nucleotide-dependent changes observed with the unmodified and modified protein support a mechanochemical action of dynamin, in which tightening and stretching of a helix contribute to membrane fission.  相似文献   

12.
The Arabidopsis dynamin-related protein 1A (AtDRP1A) is involved in endocytosis and cell plate maturation in Arabidopsis. Unlike dynamin, AtDRP1A does not have any recognized membrane binding or protein-protein interaction domains. We report that GTPase active AtDRP1A purified from Escherichia coli as a fusion to maltose binding protein forms homopolymers visible by negative staining electron microscopy. These polymers interact with protein-free liposomes whose lipid composition mimics that of the inner leaflet of the Arabidopsis plasma membrane, suggesting that lipid-binding may play a role in AtDRP1A function. However, AtDRP1A polymers do not appear to assemble and disassemble in a dynamic fashion and do not have the ability to tubulate liposomes in vitro, suggesting that additional factors or modifications are necessary for AtDRP1A’s in vivo function.  相似文献   

13.
The interferon-induced human MxA protein belongs to the class of dynamin-like, large guanosine-5'-triphosphatases that are involved in intracellular vesicle trafficking and organelle homeostasis. MxA shares many properties with the other members of this protein superfamily, including the propensity to self-assemble and to associate with lipid membranes. However, MxA is unique in that it has antiviral activity and inhibits the replication of several RNA viruses. Here, we determined the role of membranes for the antiviral function of MxA using LaCrosse-bunyavirus (LACV). We show that MxA does not affect trafficking and sorting of viral glycoproteins but binds and mislocates the viral nucleocapsid (N) protein into membrane-associated, large perinuclear complexes. We further demonstrate that MxA localizes to a subcompartment of the smooth endoplasmic reticulum where the viral N protein accumulates. In infected MxA-expressing cells, oligomeric MxA/N complexes are formed in close association with COP-I-positive vesicular-tubular membranes. Our results suggest that this membrane compartment is the preferred place where MxA and N interact, leading to efficient sequestration and missorting of an essential viral component.  相似文献   

14.
Clathrin-mediated endocytosis is a major cellular pathway for internalization of proteins and lipids and for recycling of synaptic vesicles. The GTPase dynamin plays a key role in this process, and the proline-rich domain of dynamin participates in various protein-protein interactions to ensure a proper coordination of endocytic processes. Although dynamin is not directly associated with actin, several dynamin-binding proteins can interact with actin or with proteins that regulate actin assembly, thereby coordinately regulating actin assembly and trafficking events. This article summarizes dynamin interactions with various Src homology 3-containing proteins, many of which are actin-binding proteins. It also discusses the recently identified two new dynamin binding proteins, SH3 protein interacting with Nck, 90 kDa/Wiskott-Aldrich syndrome protein interacting with SH3 protein (SPIN90/WISH) and sorting nexin 9, and outlines their potential role as a link between endocytosis and actin dynamics.  相似文献   

15.
The final step in the liberation of secretory vesicles from the trans-Golgi network (TGN) involves the mechanical action of the large GTPase dynamin as well as conserved dynamin-independent fission mechanisms, e.g. mediated by Brefeldin A-dependent ADP-ribosylated substrate (BARS). Another member of the dynamin family is the mammalian dynamin-like protein 1 (DLP1/Drp1) that is known to constrict and tubulate membranes, and to divide mitochondria and peroxisomes. Here, we examined a potential role for DLP1 at the Golgi complex. DLP1 localized to the Golgi complex in some but not all cell lines tested, thus explaining controversial reports on its cellular distribution. After silencing of DLP1, an accumulation of the apical reporter protein YFP-GL-GPI, but not the basolateral reporter VSVG-SP-GFP at the Golgi complex was observed. A reduction in the transport of YFP-GL-GPI to the plasma membrane was confirmed by surface immunoprecipitation and TGN-exit assays. In contrast, YFP-GL-GPI trafficking was not disturbed in cells silenced for BARS, which is involved in basolateral sorting and trafficking of VSVG-SP-GFP in COS-7 cells. Our data indicate a new role for DLP1 at the Golgi complex and thus a role for DLP1 as a novel component of the apical sorting machinery at the TGN is discussed.  相似文献   

16.
The mammalian dynamin-like protein 1 (DLP1), a member of the dynamin family of large GTPases, possesses mechanochemical properties known to constrict and tubulate membranes. In this study, we have combined two experimental approaches, induction of peroxisome proliferation by Pex11pbeta and expression of dominant-negative mutants, to test whether DLP1 plays a role in peroxisomal growth and division. We were able to localize DLP1 in spots on tubular peroxisomes in HepG2 cells. In addition, immunoblot analysis revealed the presence of DLP1 in highly purified peroxisomal fractions from rat liver and an increase of DLP1 after treatment of rats with the peroxisome proliferator bezafibrate. Expression of a dominant negative DLP1 mutant deficient in GTP hydrolysis (K38A) either alone or in combination with Pex11pbeta caused the appearance of tubular peroxisomes but had no influence on their intracellular distribution. In co-expressing cells, the formation of tubulo-reticular networks of peroxisomes was promoted, and peroxisomal division was completely inhibited. These findings were confirmed by silencing of DLP1 using siRNA. We propose a direct role for the dynamin-like protein DLP1 in peroxisomal fission and in the maintenance of peroxisomal morphology in mammalian cells.  相似文献   

17.
Sorting nexin 9 (SNX9) functions at the interface between membrane remodeling and the actin cytoskeleton. In particular, SNX9 links membrane binding to potentiation of N-WASP and dynamin GTPase activities. SNX9 is one of a growing number of proteins that contain two lipid-binding domains, a phox homology (PX) and a Bin1/Amphiphysin/RVS167 (BAR) domain, and localizes to diverse membranes that are enriched in different phosphoinositides. Here, we investigate the mechanism by which SNX9 functions at these varied membrane environments. We show that SNX9 has low-lipid-binding affinity and harnesses a broad range of phosphoinositides to synergistically enhance both dynamin and N-WASP activities. We introduced point mutations in either the PX domain, BAR domain or both that are predicted to disrupt their functions and examined their respective roles in lipid-binding, and dynamin and N-WASP activation. We show that the broad lipid specificity of SNX9 is not because of independent and additive contributions by individual domains. Rather, the two domains appear to function in concert to confer lipid-binding and SNX9's membrane active properties. We also demonstrate that the two domains are differentially required for full SNX9 activity in N-WASP and dynamin regulation, and for localization of SNX9 to clathrin-coated pits and dorsal ruffles. In total, our results suggest that SNX9 can integrate signals from varied lipids through two domains to direct membrane remodeling events at multiple cellular locations.  相似文献   

18.
Dynamin is a large GTP-binding protein that mediates endocytosis by hydrolyzing GTP. Previously, we reported that phospholipase D2 (PLD2) interacts with dynamin in a GTP-dependent manner. This implies that PLD may regulate the GTPase cycle of dynamin. Here, we show that PLD functions as a GTPase activating protein (GAP) through its phox homology domain (PX), which directly activates the GTPase domain of dynamin, and that the arginine residues in the PLD-PX are vital for this GAP function. Moreover, wild-type PLD-PX, but not mutated PLD-PXs defective for GAP function in vitro, increased epidermal growth factor receptor (EGFR) endocytosis at physiological EGF concentrations. In addition, the silencing of PLDs was shown to retard EGFR endocytosis and the addition of wild-type PLDs or lipase-inactive PLDs, but not PLD1 mutants with defective GAP activity for dynamin in vitro, resulted in the recovery of EGFR endocytosis. These findings suggest that PLD, functioning as an intermolecular GAP for dynamin, accelerates EGFR endocytosis. Moreover, we determined that the phox homology domain itself had GAP activity - a novel function in addition to its role as a binding motif for proteins or lipids.  相似文献   

19.
A Ponten  C Sick  M Weeber  O Haller    G Kochs 《Journal of virology》1997,71(4):2591-2599
Human MxA protein is an interferon-induced 76-kDa GTPase that exhibits antiviral activity against several RNA viruses. Wild-type MxA accumulates in the cytoplasm of cells. TMxA, a modified form of wild-type MxA carrying a foreign nuclear localization signal, accumulates in the cell nucleus. Here we show that MxA protein is translocated into the nucleus together with TMxA when both proteins are expressed simultaneously in the same cell, demonstrating that MxA molecules form tight complexes in living cells. To define domains important for MxA-MxA interaction and antiviral function in vivo, we expressed mutant forms of MxA together with wild-type MxA or TMxA in appropriate cells and analyzed subcellular localization and interfering effects. An MxA deletion mutant, MxA(359-572), formed heterooligomers with TMxA and was translocated to the nucleus, indicating that the region between amino acid positions 359 and 572 contains an interaction domain which is critical for oligomerization of MxA proteins. Mutant T103A with threonine at position 103 replaced by alanine had lost both GTPase and antiviral activities. T103A exhibited a dominant-interfering effect on the antiviral activity of wild-type MxA rendering MxA-expressing cells susceptible to infection with influenza A virus, Thogoto virus, and vesicular stomatitis virus. To determine which sequences are critical for the dominant-negative effect of T103A, we expressed truncated forms of T103A together with wild-type protein. A C-terminal deletion mutant lacking the last 90 amino acids had lost interfering capacity, indicating that an intact C terminus was required. Surprisingly, a truncated version of MxA representing only the C-terminal half of the molecule exerted also a dominant-negative effect on wild-type function, demonstrating that sequences in the C-terminal moiety of MxA are necessary and sufficient for interference. However, all MxA mutants formed hetero-oligomers with TMxA and were translocated to the nucleus, indicating that physical interaction alone is not sufficient for disturbing wild-type function. We propose that dominant-negative mutants directly influence wild-type activity within hetero-oligomers or else compete with wild-type MxA for a cellular or viral target.  相似文献   

20.
Burger KN  Demel RA  Schmid SL  de Kruijff B 《Biochemistry》2000,39(40):12485-12493
Dynamin is a large GTPase involved in the regulation of membrane constriction and fission during receptor-mediated endocytosis. Dynamin contains a pleckstrin-homology domain which is essential for endocytosis and which binds to anionic phospholipids. Here, we show for the first time that dynamin is a membrane-active molecule capable of penetrating into the acyl chain region of membrane lipids. Lipid penetration is strongly stimulated by phosphatidic acid (PA), phosphatidylinositol 4-phosphate, and phosphatidylinositol 4, 5-bisphosphate. Though binding is more efficient in the presence of the phosphoinositides, a much larger part of the dynamin molecule penetrates into PA-containing mixed-lipid systems. Thus, local lipid metabolism will dramatically influence dynamin-lipid interactions, and dynamin-lipid interactions are likely to play an important role in dynamin-dependent endocytosis. Our data suggest that dynamin is directly involved in membrane destabilization, a prerequisite to membrane fission.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号