首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A model is proposed describing multiple binding of multivalent antigen to specific receptors of immunocompetent cells. The rate at which these multiple bonds can dissociate and the effective valence of the antigen appear to be of the greatest importance in determining the degree of receptor occupancy at equilibrium. In particular, as antigen concentration decreases, only antigens with high number of determinants per molecule maintain the ability to form multiple bonds even if the dissociation rate is relatively high. Assuming that multiple binding is directly linked to lymphocyte activation, this may result in an inverse relation between antigen valence and ability to induce selection of clones with higher affinities.  相似文献   

2.
B and Mast cells are activated by the aggregation of the immune receptors. Motivated by this phenomena we consider a simple spatially extended model of mutual interaction of kinases and membrane receptors. It is assumed that kinase activates membrane receptors and in turn the kinase molecules bound to the active receptors are activated by transphosphorylation. Such a type of interaction implies positive feedback and may lead to bistability. In this study we apply the Steklov eigenproblem theory to analyze the linearized model and find exact solutions in the case of non-uniformly distributed membrane receptors. This approach allows us to determine the critical value of receptor dephosphorylation rate at which cell activation (by arbitrary small perturbation of the inactive state) is possible. We found that cell sensitivity grows with decreasing kinase diffusion and increasing anisotropy of the receptor distribution. Moreover, these two effects are cooperating. We showed that the cell activity can be abruptly triggered by the formation of the receptor aggregate. Since the considered activation mechanism is not based on receptor crosslinking by polyvalent antigens, the proposed model can also explain B cell activation due to receptor aggregation following binding of monovalent antigens presented on the antigen presenting cell.  相似文献   

3.
In this study we have investigated the effect that interleukin 1 (IL-1) has on cell surface IL-1 receptor expression in the murine thymoma cell line, EL4 6.1. These cells express IL-1 receptors with both high affinity (Kd = 65 pM, 986 receptors/cell) and low affinity (Kd = 14.5 nM, 10,417 receptors/cell). The high- and low-affinity receptors are indistinguishable by crosslinking studies performed at both high and low ligand concentrations. However, the two affinity states could be functionally distinguished on the basis of their internalization of ligand. Receptor-mediated endocytosis was dependent upon the concentration of ligand bound to the cells. In the presence of low IL-1 concentrations receptor-mediated endocytosis was slow, whereas at high IL-1 concentrations, endocytosis was more rapid. Furthermore, receptor-mediated endocytosis of IL-1 did not result in downregulation of surface IL-1 receptors. Indeed, both kinetic and equilibrium binding studies revealed that pre-incubation of cells with IL-1 alpha resulted in an acute upregulation of 125IL-1 alpha binding to high affinity surface receptors in a time and energy dependent manner. Examination of the association kinetics suggested that increased binding was not attributable to positive co-operativity of the high affinity IL-1 receptor, but was due to increasing IL-1 receptor number. This observation was confirmed by equilibrium binding studies. Moreover, receptor numbers were not enhanced by de novo synthesis, nor release of receptors from an intracellular pool. The observed increases in surface ligand binding were most probably due to conversion of the surface pool of low affinity receptors into high affinity receptors.  相似文献   

4.
The anthrax toxin is composed of three independent polypeptide chains. Successful intoxication only occurs when heptamerization of the receptor-binding polypeptide, the protective antigen (PA), allows binding of the two enzymatic subunits before endocytosis. We show that this tailored behavior is caused by two counteracting posttranslational modifications in the cytoplasmic tail of PA receptors. The receptor is palmitoylated, and this unexpectedly prevents its association with lipid rafts and, thus, its premature ubiquitination. This second modification, which is mediated by the E3 ubiquitin ligase Cbl, only occurs in rafts and is required for rapid endocytosis of the receptor. As a consequence, cells expressing palmitoylation-defective mutant receptors are less sensitive to anthrax toxin because of a lower number of surface receptors as well as premature internalization of PA without a requirement for heptamerization.  相似文献   

5.
A large number of G protein-coupled receptors are palmitoylated on cysteine residues located in their carboxyl tail, but the general role of this post-translational modification remains poorly understood. Here we show that preventing palmitoylation of the V2 vasopressin receptor, by site-directed mutagenesis of cysteines 341 and 342, significantly delayed and decreased both agonist-promoted receptor endocytosis and mitogen-activated protein kinase activation. Pharmacological blockade of receptor endocytosis is without effect on the vasopressin-stimulated mitogen-activated protein kinase activity, excluding the possibility that the reduced kinase activation mediated by the palmitoylation-less mutant could result from altered receptor endocytosis. In contrast, two dominant negative mutants of beta-arrestin which inhibit receptor endocytosis also attenuated vasopressin-stimulated mitogen-activated protein kinase activity, suggesting that the scaffolding protein, beta-arrestin, represents the common link among receptor palmitoylation, endocytosis, and kinase activation. Coimmunoprecipitation and bioluminescence resonance energy transfer experiments confirmed that inhibiting receptor palmitoylation considerably reduced the vasopressin-stimulated recruitment of beta-arrestin to the receptor. Interestingly, the changes in beta-arrestin recruitment kinetics were similar to those observed for vasopressin-stimulated receptor endocytosis and mitogen-activated protein kinase activation. Taken together the results indicate that palmitoylation enhances the recruitment of beta-arrestin to the activated V2 vasopressin receptor thus facilitating processes requiring the scaffolding action of beta-arrestin.  相似文献   

6.
A number of recent studies have demonstrated an essential role for receptor endocytosis in the activation of the mitogen-activated protein (MAP) kinases, Erk-1 and Erk-2 (extracellular activated protein kinases 1 and 2), by growth factor receptors and the G-protein coupled beta2-adrenergic receptor. Because ligand-mediated receptor endocytosis and activation of the MAP kinase pathway are common phenomena among G-protein coupled receptors, it has been suggested that the essential role of endocytosis in MAP kinase activation identified for the beta2-adrenergic receptor may be universal for all G-protein coupled receptors (Daaka,Y., Luttrell, L. M., Ahn, S., Della Rocca, G. J., Ferguson, S. S. G., Caron, M. G., and Lefkowitz, R. J. (1998) J. Biol. Chem. 273, 685-688). We tested this hypothesis using the Gq/11-coupled m3-muscarinic receptor expressed in Chinese hamster ovary cells and an m3-muscarinic receptor mutant that does not undergo endocytosis. We demonstrate that inhibition of endocytosis by concanavalin A and cytochalasin D does not affect the ability of the wild type m3-muscarinic receptor to activate Erk-1/2. Furthermore, the mutant m3-muscarinic receptor that is unable to undergo endocytosis, activates the MAP kinase pathway in an identical manner to the wild type receptor. We conclude that receptor endocytosis is not universally essential for MAP kinase activation by G-protein coupled receptors. We discuss the possibility that the differential roles played by endocytosis in MAP kinase activation between various receptor subtypes may be linked to the mechanism of upstream activation of Raf-1.  相似文献   

7.
The ST6Gal-I sialyltransferase produces Siglec ligands for the B-cell-specific CD22 lectin and sustains humoral immune responses. Using multiple experimental approaches to elucidate the mechanisms involved, we report that ST6Gal-I deficiency induces immunoglobulin M (IgM) antigen receptor endocytosis in the absence of immune stimulation. This coincides with increased antigen receptor colocalization with CD22 in both clathrin-deficient and clathrin-enriched membrane microdomains concurrent with diminished tyrosine phosphorylation of Igalpha/beta, Syk, and phospholipase C-gamma2 upon immune activation. Codeficiency with CD22 restores IgM antigen receptor half-life at the cell surface in addition to reversing alterations in membrane trafficking and immune signaling. Diminished immune responses due to ST6Gal-I deficiency further correlate with constitutive recruitment of Shp-1 to CD22 in unstimulated B cells independent of Lyn tyrosine kinase activity and prevent autoimmune disease pathogenesis in the Lyn-deficient model of systemic lupus erythematosus, resulting in a significant extension of life span. Protein glycosylation by ST6Gal-I restricts access of antigen receptors and Shp-1 to CD22 and operates by a CD22-dependent mechanism that decreases the basal rate of IgM antigen receptor endocytosis in altering the threshold of B-cell immune activation.  相似文献   

8.
Dopamine receptors are important for diverse biological functions and are important pharmacological targets in human medicine. Signal transduction from the dopamine receptors is controlled at many levels, including by the process of receptor trafficking. Little is known regarding the endocytic and postendocytic trafficking properties of the D5 dopamine receptor. Here, we show that endocytosis of the D5 receptor can be achieved both homologously, through direct receptor activation by agonist, and also heterologously, due to independent activation of protein kinase C (PKC). In contrast, the D1 receptor is endocytosed only in response to agonist but not PKC activation. We have identified the residue in the third intracellular loop of the D5 receptor that is both necessary for PKC-mediated endocytosis of the D5 receptor and sufficient to induce PKC-mediated endocytosis when introduced to the D1 receptor. In addition, we show that endocytosis of D5 through both pathways is dependent on clathrin and dynamin but that only agonist-induced endocytosis engages β-arrestin 2. Together, these data show that the D5 receptor shows a trafficking profile distinct from that of any of the other dopamine receptors.  相似文献   

9.
Eph receptors and their membrane‐bound ligands, the ephrins, represent a complex subfamily of receptor tyrosine kinases (RTKs). Eph/ephrin binding can lead to various and opposite cellular behaviors such as adhesion versus repulsion, or cell migration versus cell‐adhesion. Recently, Eph endocytosis has been identified as one of the critical steps responsible for such diversity. Eph receptors, as many RTKs, are rapidly endocytosed following ligand‐mediated activation and traffic through endocytic compartments prior to degradation. However, it is becoming obvious that endocytosis controls signaling in many different manners. Here we showed that activated EphA2 are degraded in the lysosomes and that about 35% of internalized receptors are recycled back to the plasma membrane. Our study is also the first to demonstrate that EphA2 retains the capacity to signal in endosomes. In particular, activated EphA2 interacted with the Rho family GEF Tiam1 in endosomes. This association led to Tiam1 activation, which in turn increased Rac1 activity and facilitated Eph/ephrin endocytosis. Disrupting Tiam1 function with RNA interference impaired both ephrinA1‐dependent Rac1 activation and ephrinA1‐induced EphA2 endocytosis. In summary, our findings shed new light on the regulation of EphA2 endocytosis, intracellular trafficking and signal termination and establish Tiam1 as an important modulator of EphA2 signaling .  相似文献   

10.

Background

Upon ligand binding, cell surface signaling receptors are internalized through a process tightly regulated by endocytic proteins and adaptor protein 2 (AP2) to orchestrate them. Although the molecular identities and roles of endocytic proteins are becoming clearer, it is still unclear what determines the receptor endocytosis kinetics which is mainly regulated by the accumulation of endocytic apparatus to the activated receptors.

Methodology/Principal Findings

Here we employed the kinetic analysis of endocytosis and adaptor recruitment to show that μ2, a subunit of AP2 interacts directly with phospholipase D (PLD)1, a receptor-associated signaling protein and this facilitates the membrane recruitment of AP2 and the endocytosis of epidermal growth factor receptor (EGFR). We also demonstrate that the PLD1-μ2 interaction requires the binding of PLD1 with phosphatidic acid, its own product.

Conclusions/Significance

These results suggest that the temporal regulation of EGFR endocytosis is achieved by auto-regulatory PLD1 which senses the receptor activation and triggers the translocation of AP2 near to the activated receptor.  相似文献   

11.
Metabotropic glutamate receptors (mGluRs) constitute an unique subclass of G protein-coupled receptors (GPCRs). These receptors are activated by the excitatory amino acid glutamate and play an essential role in regulating neural development and plasticity. In the present review, we overview the current understanding regarding the molecular mechanisms involved in the desensitization and endocytosis of Group 1 mGluRs as well as the relative contribution of desensitization to the spatial-temporal patterning of glutamate receptor signaling. Similar to what has been reported previously for prototypic GPCRs, mGluRs desensitization is mediated by second messenger-dependent protein kinases and GPCR kinases (GRKs). However, it remains to be determined whether mGluRs phosphorylation by GRKs and beta-arrestin binding are absolutely required for desensitization. Group 1 mGluRs endocytosis is both agonist-dependent and -independent. Agonist-dependent mGluRs internalization is mediated by a beta-arrestin- and dynamin-dependent clathrin-coated vesicle dependent endocytic pathway. The activation of Group 1 mGluRs also results in oscillatory Gq protein-coupling leading to the cyclical activation of phospholipase Cbeta thereby stimulating oscillations in both inositol 1,4,5-triphosphate formation and Ca(2+) release from intracellular stores. These glutamate receptor-stimulated Ca(2+) oscillations are translated into the synchronous activation of protein kinase C (PKC), which has led to the hypothesis that oscillatory mGluRs signaling involves the repetitive phosphorylation of mGluRs by PKC. However, recent experimental evidence suggests that oscillatory signaling is an intrinsic glutamate receptor property that is independent of feedback receptor phosphorylation by PKC. The challenge in the future will be to determine the structural determinants underlying mGluRs-mediated spatial-temporal signaling as well as to understand how complex signaling patterns can be interpreted by cells in both the developing and adult nervous systems.  相似文献   

12.
Serpentine receptors relay hormonal or sensory stimuli to heterotrimeric guanine nucleotide-binding proteins (G proteins). In most G protein-coupled receptors (GPCRs), binding of the agonist ligand elicits both stimulation of the G protein and endocytosis of the receptor. We have begun to address whether these responses reflect the same sets of conformational changes in the receptor using constitutively active mutants of the human complement factor 5a receptor (C5aR). Two different mutant receptors both constitutively activate G protein-mediated responses, but one (F251A) is endocytosed only in response to ligand stimulation, while the other (NQ) is constitutively internalized in the absence of ligand. Both the constitutive and ligand-dependent endocytosis are accompanied by recruitment of beta-arrestin to the receptor. An inactivating mutation (N296A) complements the NQ mutation, producing a receptor that is activated only upon exposure to agonist; this revertant receptor (NQ/N296A) is nevertheless constitutively endocytosed. Thus one mutant (F251A) requires agonist for triggering endocytosis but not for activation of the downstream G protein signal, while another (NQ/N296A) behaves in the opposite fashion. Dissociation of two responses normally dependent on agonist binding indicates that the corresponding functions of an activated GPCR reflect different sets of changes in the receptor's conformation .  相似文献   

13.
Plants deploy numerous plasma membrane receptors to sense and rapidly react to environmental changes. Correct localization and adequate protein levels of the cell-surface receptors are critical for signaling activation and modulation of plant development and defense against pathogens. After ligand binding, receptors are internalized for degradation and signaling attenuation. However, one emerging notion is that the ligand-induced endocytosis of receptor complexes is important for the signal duration, ampli tude, and specificity. Recently, mutants of major endocytosis players, including clathrin and dynamin have been shown to display defects in activation of a subset of signal transduction pathways, implying that signaling in plants might not be solely restricted to the plasma membrane. Here, we summarize the up-to-date knowledge of receptor complex endocytosis and its effect on the signaling outcome, in the context of plant development and immunity.  相似文献   

14.
15.
Anti-Tac monoclonal antibody identifies the receptor for interleukin 2 (IL 2, or T cell growth factor) present on activated human T lymphocytes. By using tritiated anti-Tac, we now report a sensitive and specific binding assay to evaluate cell surface IL 2 receptor expression. IL 2 receptors on human peripheral blood lymphocytes can be detected within 6 hr after PHA stimulation. PHA-induced receptor expression is inhibited by actinomycin D and cycloheximide, but not by mitomycin C, suggesting a requirement for de novo RNA and protein synthesis, but not DNA synthesis. Scatchard analysis of [3H]-anti-Tac binding to lymphocytes stimulated with PHA for 3 days revealed from 20,000 to 60,000 molecules of antibody bound per cell, and a Kd of 1 to 3 x 10(-10) mol/l. Sequential binding studies of activated human lymphocytes maintained in long-term culture with IL 2 demonstrated a progressive decline in receptor number correlating with diminished growth rate. Restimulation with lectin or antigen increased the number of IL 2 receptors, suggesting that IL 2 dependent immune responses may be regulated, at least in part, by IL 2 receptor expression. Receptor number was also increased by PMA. Moreover, similar effects were produced by incubation with phospholipase C but not interleukin 1. Because both PMA and phospholipase C result in activation of protein kinase C, these data suggest the possibility that activation of protein kinase C may induce IL 2 receptor expression.  相似文献   

16.
The cell surface binding, endocytosis, and lysosomal routing of procathepsin D (procath-D) in cancer cells are mostly independent of the mannose-6-phosphate (M6P) receptors. In an attempt to define the receptor involved, we intracellularly cross-linked procath-D with a 68-kDa protein that we identified with specific antibodies as prosaposin in human breast and ovarian cancer cell lines. In cancer cells, this protein-protein interaction was resistant to ammonium chloride or M6P treatment, indicating that it was independent of the M6P receptors. A similar interaction also occurred in the breast cancer cell culture medium between the secreted prosaposin and procath-D. Since these two precursors can be endocytosed, we then determined whether they were interacting with the same cell surface receptor. In fibroblasts, we confirmed that the endocytosis of these two proteins was different since it was generally mediated by the M6P receptors for procath-D and mostly by LRP (LDL receptor-related protein) for prosaposin. In breast cancer cells, prosaposin endocytosis was not detected, in contrast to procath-D endocytosis, suggesting that the majority of procath-D is not internalized as a complex with prosaposin. Moreover, RAP (receptor-associated protein), a ligand inhibiting LRP-mediated endocytosis, prevented internalization of prosaposin in 49-F rat fibroblasts, but did not affect procath-D M6P-independent internalization in MDA-MB231 cells. We conclude that in breast cancer cells, even though procath-D interacts intracellularly and extracellarly with prosaposin, it is endocytosed independent of prosaposin by a receptor different from the M6P receptors and the LRP.  相似文献   

17.
After activation, most G protein-coupled receptors (GPCRs) are regulated by a cascade of events involving desensitization and endocytosis. Internalized receptors can then be recycled to the plasma membrane, retained in an endosomal compartment, or targeted for degradation. The GPCR-associated sorting protein, GASP, has been shown to preferentially sort a number of native GPCRs to the lysosome for degradation after endocytosis. Here we show that a mutant beta(2) adrenergic receptor and a mutant mu opioid receptor that have previously been described as lacking "recycling signals" due to mutations in their C termini in fact bind to GASP and are targeted for degradation. We also show that a mutant dopamine D1 receptor, which has likewise been described as lacking a recycling signal, does not bind to GASP and is therefore not targeted for degradation. Together, these results indicate that alteration of receptors in their C termini can expose determinants with affinity for GASP binding and consequently target receptors for degradation.  相似文献   

18.
19.
T-cell activation is essential for initiation and control of immune system function. T cells are activated by interaction of cell-surface antigen receptors with major histocompatibility complex (MHC) proteins on the surface of other cells. Studies using soluble oligomers of MHC-peptide complexes and other types of receptor cross-linking agents have supported an activation mechanism that involves T cell receptor clustering. Receptor clustering induced by incubation of T cells with MHC-peptide oligomers leads to the induction of T-cell activation processes, including downregulation of engaged receptors and upregulation of the cell-surface proteins CD69 and CD25. Dose-response curves for these T-cell activation markers are bell-shaped, with different maxima and midpoints, depending on the valency of the soluble oligomer used. In this study, we have analyzed the activation behavior using a mathematical model that describes the binding of multivalent ligands to cell-surface receptors. We show that a simple equilibrium binding model accurately describes the activation data for CD4(+) T cells treated with MHC-peptide oligomers of varying valency. The model can be used to predict activation and binding behavior for T cells and MHC oligomers with different properties.  相似文献   

20.
The D(3) dopamine receptor is endocytosed through a heterologous mechanism mediated by phorbol esters. Here, we show that following this endocytosis the D(3) dopamine receptors fail to recycle and are instead targeted for degradation through an interaction with the G protein-coupled receptor (GPCR)-associated sorting protein-1 (GASP-1). Furthermore, we identified a specific binding motif in the C terminus common to the D(3) and D(2) that confers GASP-1 binding. shRNA knockdown of GASP-1 delayed post-endocytic degradation of both the D(2) and D(3) dopamine receptors. In addition, mutation of the D(2) and D(3) receptor C termini to resemble the D(4), which does not interact with GASP-1, not only inhibited GASP-1 binding but slowed degradation after endocytosis. Conversely, mutation of the C terminus of the D(4) to resemble that of the D(2) and D(3) facilitated GASP-1 binding and promoted post-endocytic degradation of the mutant D(4) receptor. Thus, we have identified a motif that is both necessary and sufficient to promote GASP-1 binding and receptor degradation. In addition, these data demonstrated that GASP-1 can mediate post-endocytic degradation of dopamine receptors that have been endocytosed not only as a consequence of dopamine activation but also as a consequence of activation by phorbol esters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号