首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We determined the complete nucleotide sequence of the small (S) RNA segment of Uukuniemi virus, the prototype of the Uukuvirus genus within the Bunyaviridae family. The RNA, which is 1,720 nucleotides long, contains two nonoverlapping open reading frames. The 5' end of one strand (complementary to the viral strand) encodes the nonstructural protein NSs (273 residues; molecular weight, 32,019), whereas the 5' end of the viral-sense strand encodes the nucleocapsid protein N (254 residues; molecular weight, 28,508). Thus, the S RNA uses an ambisense coding strategy previously described for the S segment of two phleboviruses and the arenaviruses. The localization of the N protein within the S RNA sequence was confirmed by amino-terminal sequence analysis of all five possible cyanogen bromide fragments obtained from purified N protein. Northern (RNA) blot analyses with strand-specific probes showed that the N and NSs proteins are translated from subgenomic mRNAs about 800 and 850 nucleotides long, respectively. These mRNAs are apparently transcribed from full-length S RNAs of opposite polarities. The two mRNA species were also detected in virus-infected cells. Interestingly, highly purified virions contained full-length S RNA copies of both polarities at a ratio of about 10:1. In contrast, virions contained exclusively negative-strand copies of the M RNA segment. The possible significance of these results for viral infection is discussed. The amino acid sequence of the N protein showed 35 and 32% homology (identity) with the N protein of Punta Toro and sandfly fever Sicilian viruses, two members of the Phlebovirus genus. The NSs proteins were much less related (about 15% identity). In addition, the extreme 5' and 3' ends of the S RNA, which are complementary to each other, also showed a high degree of conservation with the two phleboviruses. These results indicate that the uukuviruses and phleboviruses are evolutionarily related and suggest that the two genera could be merged into a single genus within the Bunyaviridae family.  相似文献   

2.
The possible effect of virus adaptation to different transmission routes on virus stability in the environment is not well known. In this study we have compared the stabilities of three viruses within the Bunyaviridae family: the rodent-borne Hantavirus Hantaan virus (HTNV), the sand fly-borne Phlebovirus sandfly fever Sicilian virus (SFSV), and the tick-borne Nairovirus Crimean-Congo hemorrhagic fever virus (CCHFV). These viruses differ in their transmission routes: SFSV and CCHFV are vector borne, whereas HTNV is spread directly between its hosts, and to humans, via the environment. We studied whether these viruses differed regarding stability when kept outside of the host. Viral survival was analyzed at different time points upon exposure to different temperatures (4 degrees C, 20 degrees C, and 37 degrees C) and drying at 20 degrees C. We observed clearly different stabilities under wet conditions, particularly at 4 degrees C, where infectious SFSV, HTNV, and CCHFV were detectable after 528, 96, and 15 days, respectively. All three viruses were equally sensitive to drying, as shown by drying on aluminum discs. Furthermore, HTNV and SFSV partially survived for 2 min in 30% ethanol, whereas CCHFV did not. Electron microscopy images of HTNV, SSFSV, and CCHFV stored at 37 degrees C until infectivity was lost still showed the occurrence of virions, but with abnormal shapes and densities compared to those of the nonincubated samples. In conclusion, our study points out important differences in ex vivo stability among viruses within the Bunyaviridae family.  相似文献   

3.
Abstract

Eleven compounds were compared to ribavirin for their in vitro and in vivo inhibition of Punta Toro virus (PTV), a phlebovirus in the Bunyaviridae virus family.  相似文献   

4.
Abstract

The carboxamide functionality of tiazofurin 1a has been modified to produce the following analogs: carboximidates 5a,b, carboxamidines 6, 10, tetrahydropyrimidine 7, N-glycine 8 and N-glutamine 9. These structural modifications abolished the in vitro antiviral (RNA) activity exhibited by tiazofurin against the flaviviruses (yellow fever and Japanese encephalitis viruses), bunyavirus (Punta Toro virus) and togavirus (Venezuelan equine encephalomyelitis virus). Only carboximidates 5a,b retained marginal activity against bunyaviruses.  相似文献   

5.
The principal RNA species isolated from labeled preparations of the arenavirus Pichinde usually include a large viral RNA species L (apparent molecular weight = 3.2 X 10(6)), and a smaller viral RNA species S (apparent molecular weight = 1.6 X 10(6)). In addition, either little or considerable quantities of 28S rRNA as well as 18S rRNA can also be obtained in virus extracts, depending on the virus stock and growth conditions used to generate virus preparations. Similar RNA species have been identified in RNA extracted from Tacaribe and Tamiami arenavirus preparations. Oligonucleotide fingerprint analyses have confirmed the host ribosomal origin of the 28S and 18S species. Such analyses have also indicated that the Pichinde viral L and S RNA species each contain unique nucleotide sequences. Viral RNA preparations isolated by conventional phenol-sodium dodecyl sulfate extraction often have much of their L and S RNA species in the form of aggregates as visualized by either electron microscopy or oligonucleotide fingerprinting of material recovered from the top of gels (run by using undenatured RNA preparations). Circular and linear RNA forms have also been seen in electron micrographs of undenatured RNA preparations, although denatured viral RNA preparations have yielded mostly linear RNA species with few RNA aggregates or circular forms.  相似文献   

6.
7.
The molecular weights of the large genomic RNAs from Rous sarcoma and Moloney murine leukemia viruses were determined by a combination of sedimentation coefficients and retardation coefficients from gel electrophoresis. Six RNA standards, ranging from 0.7 X 10(6) to 5.3 X 10(6) daltons, were employed. Studies in the presence of varying concentrations of Mg2+ showed that the method provided valid molecular weights for RNAs of differing amounts of ordered structure. The molecular weight (X 10(-6)) of the high molecular weight RNA complexe from Rous sarcoma virus was 7.6 (+/-0.3) and from murine leukemia virus was 6.9 (+/-0.3). The molecular weights (X 10 (-6) of their Subunits were 3.3 (+/-0.1) and 2.8 (+/-0.2), respectively. Hence, the large complexes consisted of two, not three or more, subunits plus small associated RNAs. The high molecular weight RNA from cloned Rous sarcoma virus was heterogenous in molecular weight although the apparent molecular radius was constant; stuides were performed on subfractions of the RNA as well as on RNA from virus harvested at various time intervals. The preparations with lowest molecular weight approached a mass equal to twice that of the subunit, with hydrodynamic properties approaching those expected of normal single-stranded RNA.  相似文献   

8.
It is suspected that apart from tick-borne encephalitis virus several additional European Arboviruses such as the sandfly borne Toscana virus, sandfly fever Sicilian virus and sandfly fever Naples virus, mosquito-borne Tahyna virus, Inkoo virus, Batai virus and tick-borne Uukuniemi virus cause aseptic meningo-encephalitis or febrile disease in Europe. Currently, the microarray technology is developing rapidly and there are many efforts to apply it to infectious diseases diagnostics. In order to arrive at an assay system useful for high throughput analysis of samples from aseptic meningo-encephalitis cases the authors developed a combined multiplex ligation-dependent probe amplification and flow-through microarray assay for the detection of European Bunyaviruses. These results show that this combined assay indeed is highly sensitive, and specific for the accurate detection of multiple viruses.  相似文献   

9.
RNAs of influenza A, B, and C viruses.   总被引:29,自引:20,他引:9       下载免费PDF全文
The nucleic acids of influenza A, B, and C viruses were compared. Susceptibility to nucleases demonstrates that influenza C virus, just as influenza A and B viruses, possesses single-stranded RNA as its genome. The base compositions of the RNAs of influenza A, B, and influenza C virus are almost identical and comparative analysis on polyacrylamide gels shows that the genome of influenza C/GL/1167/54 virus, like that of the RNAs of influenza A and B viruses, is segmented. Eight distinct RNA bands were found for influenza A/PR/8/34 virus and for influenza B/Lee/40 virus. The RNA of influenza C/GL/1167/54 virus separated into at least four segments. The total molecular weights of the RNA of influenza A/PR/8/34 and B/Lee/40 virus were calculated to be 5.29 X 10(6) and 6.43 X 10(6), respectively. A minimum value of 4.67 X 10(6) daltons was obtained for influenza C/GL/1167/54 virus RNA. The data suggest that influenza C viruses are true members of the influenza virus group.  相似文献   

10.
The serological study of persons contacting dengue-like fever in 1987 in Afghanistan (in Rukha, Parwān Province) revealed that in 74% of cases an increase in the titers of antibodies to Sicilian and Neapolitan sandfly [correction of mosquito-borne] fever viruses was registered. Considering that such diseases appeared here for a number of years and were linked in time with the activity of sandflies [correction of mosquitoes] of the species Phlebotomus papatasii, the suggestion was made on the existence of a stable natural focus of sandfly [correction of mosquito-borne] fevers in the region of Rukha.  相似文献   

11.
Rift Valley fever is considered to be one of the most important viral zoonoses in Africa. In 2000, the Rift valley fever virus spread to the Arabian Peninsula and caused two simultaneous outbreaks in Yemen and Saudi Arabia. It is transmitted to ruminants and to humans by mosquitoes. The viral agent is an arbovirus, which belongs to the Phlebovirus genus in the Bunyaviridae family. This family of viruses comprises more than 300 members grouped into five genera: Orthobunyavirus, Phlebovirus, Hantavirus, Nairovirus, and Tospovirus. Several members of the Bunyaviridae family are responsible for fatal hemorrhagic fevers: Rift Valley fever virus (Phlebovirus), Crimean-Congo hemorrhagic fever virus (Nairovirus), Hantaan, Sin Nombre and related viruses (Hantavirus), and recently Garissa, now identified as Ngari virus (Orthobunyavirus). Here are reviewed recent advances in Rift Valley fever virus, its epidemiology, molecular biology and focus on recent data on the interactions between viral and cellular proteins, which help to understand the molecular mechanisms utilized by the virus to circumvent the host cellular response.  相似文献   

12.
The relationships among the genomes of various rhabdoviruses belonging to the vesicular stomatitis virus subgroup were analyzed by an oligonucleotide fingerprinting technique. Of 10 vesicular stomatitis viruses, Indiana serotype (VSV Indiana), obtained from various sources, either no, few, or many differences were observed in the oligonucleotide fingerprints of the 42S RNA species extracted from standard B virions. Analyses of the oligonucleotides obtained from RNA extracted from three separate preparations of VSV Indiana defective T particles showed that their RNAs contain fewer oligonucleotides than the corresponding B particle RNA species. The fingerprints of RNA obtained from five VSV New Jersey serotype viruses were easily distinguished from those of the VSV Indiana isolates. Three of the VSV New Jersey RNA fingerprints were similar to each other but quite different from those of the other two viruses. The RNA fingerprints of two Chandipura virus isolates (one obtained from India and one from Nigeria) were also unique, whereas the fingerprint of Cocal virus RNA was unlike that of the serologically related VSV Indiana.  相似文献   

13.
Structural components of influenza C virions.   总被引:11,自引:7,他引:4       下载免费PDF全文
The genome RNA species of influenza type C virions were analyzed by polyacrylamide gel electrophoresis. The pattern obtained was found to resemble those of other influenza viruses. Six RNA species were resolved, with estimated sizes ranging from 0.37 X 10(6) to 1.25 X 10(6) daltons. The internal ribonucleoproteins of influenza C virions were found to sediment heterogeneously in glycerol velocity gradients as demonstrated previously with influenza A/WSN virus. The ribonucleoproteins possessed diameters of 12 to 15 nm, with lengths ranging from 30 to 100 nm. Of the three major virion polypeptides (molecular weights, 88,000, 66,000, and 26,000), only the largest is glycosylated. Similar polypeptide species were present in influenza C virions of five different strains. All three major proteins of influenza C virions possess electrophoretic mobilities distinguishable from those of the major polypeptides of influenza A/WSN. The 66,000-dalton protein is associated with the ribonucleoprotein components. Two additional glycosylated polypeptides, with estimated molecular weights of 65,000 and 30,000, were detected in virions grown in embryonated eggs, but not in virus particles obtained from chicken embryo fibroblasts.  相似文献   

14.
A temperature-sensitive group II mutant of influenza virus, ts-52, with a presumed defect in viral RNA synthesis, readily produced von Magnus-type defective interfering virus (DI virus) when passed serially (four times) at high multiplicity in MDBK cells. The defective virus (ts-52 DI virus) had a high hemagglutinin and a low infectivity titer, and strongly interfered with the replication of standard infectious viruses (both ts-52 and wild-type ts+) in co-infected cells. Progeny virus particles produced by co-infection of DI virus and infectious virus were also defective and also had low infectivity, high hemagglutinating activity, and a strong interfering property. Infectious viruses ts+ and ts-52 were indistinguishable from ts-52 DI viruses by sucrose velocity or density gradient analysis. Additionally, these viruses all possessed similar morphology. However, when the RNA of DI viruses was analyzed by use of polyacrylamide gels containing 6 M urea, there was a reduction in the amount of large RNA species (V1 to V4), and a number of new smaller RNA species (D1 to D6) with molecular weights ranging from 2.9 X 10(5) to 1.05 X 10(5) appeared. Since these smaller RNA species (D1 to D6) were absent in some clones of infectious viruses, but were consistently associated with DI viruses and increased during undiluted passages and during co-infection of ts-52 with DI virus, they appeared to be a characteristic of DI viruses. Additionally, the UV target size of interfering activity and infectivity of DI virus indicated that interfering activity was 40 times more resistant to UV irradiation than was infectivity, further implicating small RNA molecules in interference. Our data suggest that the loss of infectivity observed among DI viruses may be due to nonspecific loss of a viral RNA segment(s), and the interfering property of DI viruses may be due to interfering RNA segments (DIRNA, D1 to D6). ts-52 DI virus interfered with the replication of standard virus (ts+) at both permissive (34 degrees C) and nonpermissive temperatures. The infectivity of the progeny virus was reduced to 0.2% for ts+ and 0.05% for ts-52 virus without a reduction in hemagglutinin titer. Interference was dependent on the concentration of DI virus. A particle ratio of 1 between DI virus (0.001 PFU/cell) and infectious virus (1.0 PFU/cell) produced a maximal amount of interference. Infectious virus yield was reduced 99.9% without any reduction of the yield of DI viruses Interference was also dependent on the time of addition of DI virus. Interference was most effective within the first 3 h of infection by infectious virus, indicating interference with an early function during viral replication.  相似文献   

15.
RNA viruses are characterized by high genetic variability resulting in rapid adaptation to new or resistant hosts. Research for plant RNA virus genetic structure and its variability has been relatively scarce compared to abundant research done for human and animal RNA viruses. Here, we utilized a molecular population genetic framework to characterize the evolution of a highly pathogenic plant RNA virus [Tomato spotted wilt virus (TSWV), Tospovirus, Bunyaviridae]. Data from genes encoding five viral proteins were used for phylogenetic analysis, and for estimation of population parameters, subpopulation differentiation, recombination, divergence between Tospovirus species, and selective constraints on the TSWV genome. Our analysis has defined the geographical structure of TSWV, attributed possibly to founder effects. Also, we identify positive selection favouring divergence between Tospovirus species. At the species level, purifying selection has acted to preserve protein function, although certain amino acids appear to be under positive selection. This analysis provides demonstration of population structuring and species-wide population expansions in a multisegmented plant RNA virus, using sequence-based molecular population genetic analyses. It also identifies specific amino acid sites subject to selection within Bunyaviridae and estimates the level of genetic heterogeneity of a highly pathogenic plant RNA virus. The study of the variability of TSWV populations lays the foundation in the development of strategies for the control of other viral diseases in floral crops.  相似文献   

16.
Solanum nodiflorum mottle virus RNA (Mr = 1.5 X 10(6)) was translated in vitro in a wheat embryo extract. Four major products were synthesized: 2 related proteins of molecular weight 100K (P100) and 67K (P67), a protein of molecular weight 38K (P38), and a methionine-lacking protein of molecular weight 28K (P28). P38 was synthesized by a minor RNA component (Mr approximately 0.4 X 10(6)) and comigrated with the only viral product detected in SNMV-infected N. clevelandii protoplasts. Antiserum raised against purified SNMV virions precipitated both in vitro- and in vivo-synthesized P38, suggesting that it is either a precursor to or an intact form of SNMV coat protein whose apparent molecular weight in purified virus preparations is 30K.  相似文献   

17.
Members of the Bunyaviridae family of RNA viruses (bunyaviruses, hantaviruses, nairoviruses, phleboviruses and uukuviruses) have been studied at the molecular and genetic level to understand the basis of their evolution and infection in vertebrate and invertebrate (arthropod) hosts. With the exception of the hantaviruses, these viruses infect and are transmitted by a variety of blood-sucking arthropods (mosquitoes, phlebotomines, gnats, ticks, etc.). The viruses are responsible for infection of various vertebrate species, occasionally causing human disease, morbidity and mortality (e.g. Rift Valley fever, Crimean-Congo haemorrhagic fever, Korean haemorrhagic fever). Genetic and molecular analyses of bunyaviruses have established the coding assignments of the three viral RNA species and documented which viral gene products determine host range and virulence. Ecological studies, with molecular techniques, have provided evidence for bunyavirus evolution in nature through genetic drift (involving the accumulation of point mutations) and shift (RNA-segment reassortment).  相似文献   

18.
Infectious pancreatic necrosis virus of fish, infectious bursal disease virus of chickens, Tellina virus and oyster virus of bivalve molluscs, and drosophila X virus of Drosophila melanogaster are naked icosahedral viruses with an electron microscopic diameter of 58 to 60 nm. The genome of each of these viruses consists of two segments of double-stranded RNA (molecular weight range between 2.6 x 10(6) and 2.2 x 10(6), and the virion, capsid proteins fall into three size class categories (large, medium, and small; ranging from 100,000 to 27,000) as determined by polyacrylamide slab gel electrophoresis. The hydrodynamic properties of the five viruses are similar as determined by analytical ultracentrifugation and laser quasi-elastic, light-scattering spectroscopy. The calculated particle weights range between 55 x 10(6) and 81 x 10(6). Tryptic peptide comparisons of 125I-labeled virion proteins showed that five viruses are different from each other, although there was considerable overlap in the peptide maps of the three aquatic viruses, indicting a degree of relatedness. Cross-neutralization tests indicated that drosophila X, infectious pancreatic necrosis, and infectious bursal disease viruses were different from each other and from oyster and Tellina viruses. The same test showed oyster and Tellina viruses to be related. The biochemical and biophysical properties of the five viruses cannt be included in the family Reoviridae or in any of the present virus genera.  相似文献   

19.
The genome of infectious pancreatic necrosis virus consists of two segments of dsRNA, in equimolar amounts, with molecular weights of 2.5 X 10(6) and 2.3 X 10(6) daltons, as determined by polyacrylamide gel electrophoresis and autoradiography. The viral RNA was resistant to ribonuclease, and in sucrose gradient it co-sedimented at 14S with RNase resistant RNA from virus infected cells. Upon denaturation in 98% formamide, the viral genome sedi-mented at 24S in formamide sucrose gradient and became sensitive to RNase. Denatured 24S viral RNA did revert to its undenatured 14S form upon recentrifugation in aquaeous sucrose gradient (0.1 M NaCL), but co-sedimented with the denatured large size class of reovirus 25S RNA. The same results were obtained if the native viral RNA was pre-treated with ribonuclease before denaturation, indicating the absence of exposed single strainded regions in the viral genome. Since infectious pancreatic necrosis virus contains only two dsRNA segments it does not belong to the family Reoviridae and may represent a new group of viruses.  相似文献   

20.
Molecular weight determinations of native and subunit RNAs of murine mammary tumor virus (MuMTV), a type B oncornavirus, were performed by polyacrylamide gel electrophoresis and compared with molecular weights of well-characterized avian cellular RNAs and tobacco mosaic virus RNA. From extrapolations of semilog plots of the molecular weights of the standard RNAs versus relative electrophoretic mobilities and Ferguson plots, the subunit and native RNAs of MuMTV were found to possess molecular weights of 2.93 X 10(6) and 6.45 X 10(6), respectively. These data support the assumption that two subunit molecules comprise the native RNA of MuMTV.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号