首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Rare inherited variations in multiplex families with autism spectrum disorder (ASD) are suggested to play a major role in the genetic etiology of ASD. To further investigate the role of rare inherited variations, we performed whole-exome sequencing (WES) in two families, each with three affected siblings. We also performed a two-stage follow-up case-control study in a Japanese population. WES of the six affected siblings identified six novel rare missense variations. Among these variations, CLN8 R24H was inherited in one family by three affected siblings from an affected father and thus co-segregated with ASD. In the first stage of the follow-up study, we genotyped the six novel rare missense variations identified by WES in 241 patients and 667 controls (the Niigata sample). Only CLN8 R24H had higher mutant allele frequencies in patients (1/482) compared with controls (1/1334). In the second stage, this variation was further genotyped, yet was not detected in a sample of 309 patients and 350 controls (the Nagoya sample). In the combined Niigata and Nagoya samples, there was no significant association (odds ratio = 1.8, 95% confidence interval = 0.1–29.6). These results suggest that CLN8 R24H plays a role in the genetic etiology of ASD, at least in a subset of ASD patients.  相似文献   

2.
Excess de novo likely gene-disruptive and missense variants within dozens of genes have been identified in autism spectrum disorder(ASD)and other neurodevelopmental disorders.However,many rare inherited missense variants of these high-risk genes have not been thoroughly evaluated.In this study,we analyzed the rare missense variant burden of POGZ in a large cohort of ASD patients from the Autism Clinical and Genetic Resources in China(ACGC)and further dissected the functional effect of diseaseassociated missense variants on neuronal development.Our results showed a significant burden of rare missense variants in ASD patients compared to the control population(P=4.6×10-5,OR=3.96),and missense variants in ASD patients showed more severe predicted functional outcomes than those in controls.Furthermore,by leveraging published large-scale sequencing data of neurodevelopmental disorders(NDDs)and sporadic case reports,we identified 8 de novo missense variants of POGZ in NDD patients.Functional analysis revealed that two inherited,but not de novo,missense variants influenced the cellular localization of POGZ and failed to rescue the defects in neurite and dendritic spine development caused by Pogz knockdown in cultured mouse primary cortical neurons.Significantly,L1CAM,an autism candidate risk gene,is differentially expressed in POGZ deficient cell lines.Reduced expression of L1cam was able to partially rescue the neurite length defects caused by Pogz knockdown.Our study showed the important roles of rare inherited missense variants of POGZ in ASD risk and neuronal development and identified the potential downstream targets of POGZ,which are important for further molecular mechanism studies.  相似文献   

3.
4.
Both schizophrenia (SCZ) and autism spectrum disorders (ASD) are neuropsychiatric disorders with overlapping genetic etiology. Protocadherin 15 (PCDH15), which encodes a member of the cadherin super family that contributes to neural development and function, has been cited as a risk gene for neuropsychiatric disorders. Recently, rare variants of large effect have been paid attention to understand the etiopathology of these complex disorders. Thus, we evaluated the impacts of rare, single-nucleotide variants (SNVs) in PCDH15 on SCZ or ASD. First, we conducted coding exon-targeted resequencing of PCDH15 with next-generation sequencing technology in 562 Japanese patients (370 SCZ and 192 ASD) and detected 16 heterozygous SNVs. We then performed association analyses on 2,096 cases (1,714 SCZ and 382 ASD) and 1,917 controls with six novel variants of these 16 SNVs. Of these six variants, four (p.R219K, p.T281A, p.D642N, c.3010-1G>C) were ultra-rare variants (minor allele frequency < 0.0005) that may increase disease susceptibility. Finally, no statistically significant association between any of these rare, heterozygous PCDH15 point variants and SCZ or ASD was found. Our results suggest that a larger sample size of resequencing subjects is necessary to detect associations between rare PCDH15 variants and neuropsychiatric disorders.  相似文献   

5.
Recent genome-wide association studies have identified various dyslipidemia-related genetic variants. However, most studies were conducted in a cross-sectional manner. We thus performed longitudinal exome-wide association studies of dyslipidemia in a Japanese population. We used ~244,000 genetic variants and clinical data of 6022 Japanese individuals who had undergone annual health checkups for several years. After quality control, the association of dyslipidemia-related phenotypes with 24,691 single nucleotide polymorphisms (SNPs) was tested using the generalized estimating equation model. In total, 82 SNPs were significantly (P < 2.03 × 10?6) associated with dyslipidemia phenotypes. Of these SNPs, four (rs74416240 of TCHP, rs925368 of GIT2, rs7969300 of ATXN2, and rs12231744 of NAA25) and two (rs34902660 of SLC17A3 and rs1042127 of CDSN) were identified as novel genetic determinants of hypo-HDL- and hyper-LDL-cholesterolemia, respectively. A replication study using the cross-sectional data of 8310 Japanese individuals showed the association of the six identified SNPs with dyslipidemia-related traits.  相似文献   

6.
Melatonin is involved in the regulation of circadian and seasonal rhythms and immune function. Prior research reported low melatonin levels in autism spectrum disorders (ASD). ASMT located in pseudo-autosomal region 1 encodes the last enzyme of the melatonin biosynthesis pathway. A previous study reported an association between ASD and single nucleotide polymorphisms (SNPs) rs4446909 and rs5989681 located in the promoter of ASMT. Furthermore, rare deleterious mutations were identified in a subset of patients. To investigate the association between ASMT and autism, we sequenced all ASMT exons and its neighboring region in 398 Chinese Han individuals with autism and 437 healthy controls. Although our study did not detect significant differences of genotypic distribution and allele frequencies of the common SNPs in ASMT between patients with autism and healthy controls, we identified new rare coding mutations of ASMT. Among these rare variants, 4 were exclusively detected in patients with autism including a stop mutation (p.R115W, p.V166I, p.V179G, and p.W257X). These four coding variants were observed in 6 of 398 (1.51%) patients with autism and none in 437 controls (Chi-Square test, Continuity Correction p = 0.032, two-sided). Functional prediction of impact of amino acid showed that p.R115W might affect protein function. These results indicate that ASMT might be a susceptibility gene for autism. Further studies in larger samples are needed to better understand the degree of variation in this gene as well as to understand the biochemical and clinical impacts of ASMT/melatonin deficiency.  相似文献   

7.
In genome-wide association studies, single nucleotide polymorphisms located in five novel loci were associated with PDB. We aimed at identifying rare genetic variants of candidate genes located in these loci and search for genetic association with PDB in the French-Canadian population. Exons, promoter and exon–intron junctions from patients with familial PDB and healthy individuals were sequenced in candidate genes, located within novel loci associated with PDB in our population. Rare variant was defined by a minor allele frequency <0.05 or absent from dbSNP (NCBI). We sequenced seven genes in 1p13 locus, three genes in 7q33, three genes in 8q22, and five genes in 15q24 locus. We identified 126 rare variants in at least one patient with PDB of whom 55 were located in 1p13 locus, 32 in 7q33, 10 in 8q22 and 29 in 15q24 locus. We located 71 of these 126 rare variants in an intron, 30 in an exon and 9 in an untranslated region. 60 % of these variants were located in functionally relevant gene regions. Among the 12 missense rare variants in PDB, two (rs62620995 in TM7SF4; rs62641691 in CD276) were predicted to be damaging by in silico analysis tools. Rs62620995, which altered a conserved amino acid (p.Leu397Phe) in the TM7SF4 gene, encoding the DC-STAMP protein involved in osteoclastogenesis through RANK signaling pathway, was found to have a marginal association with PDB (p = 0.09). Rs35500845, located in the CTHRC1 gene, which encodes a regulator of collagen matrix deposition, was also associated with PDB in the French-Canadian population (p = 0.046).  相似文献   

8.
AimWe performed a replication study in a Japanese population to evaluate the association between type 2 diabetes and 7 susceptibility loci originally identified by European genome-wide association study (GWAS) in 2012: ZMIZ1, KLHDC5, TLE1, ANKRD55, CILP2, MC4R, and BCAR1. We also examined the association of 3 additional loci: CCND2 and GIPR, identified in sex-differentiated analyses, and LAMA1, which was shown to be associated with non-obese European type 2 diabetes.MethodsWe genotyped 6,972 Japanese participants (4,280 type 2 diabetes patients and 2,692 controls) for each of the 10 single nucleotide polymorphisms (SNPs): rs12571751 in ZMIZ1, rs10842994 near KLHDC5, rs2796441 near TLE1, rs459193 near ANKRD55, rs10401969 in CILP2, rs12970134 near MC4R, rs7202877 near BCAR1, rs11063069 near CCND2, rs8108269 near GIPR, and rs8090011 in LAMA1 using a multiplex polymerase chain reaction invader assay. The association of each SNP locus with the disease was evaluated using a logistic regression analysis.ResultsAll SNPs examined in this study had the same direction of effect (odds ratio > 1.0, p = 9.77 × 10-4, binomial test), as in the original reports. Among them, rs12571751 in ZMIZ1 was significantly associated with type 2 diabetes [p = 0.0041, odds ratio = 1.123, 95% confidence interval 1.037–1.215, adjusted for sex, age and body mass index (BMI)], but we did not observe significant association of the remaining 9 SNP loci with type 2 diabetes in the present Japanese population (p ≥ 0.005). A genetic risk score, constructed from the sum of risk alleles for the 7 SNP loci identified by un-stratified analyses in the European GWAS meta-analysis were associated with type 2 diabetes in the present Japanese population (p = 2.3 × 10-4, adjusted for sex, age and BMI).ConclusionsZMIZ1 locus has a significant effect on conferring susceptibility to type 2 diabetes also in the Japanese population.  相似文献   

9.

Background

The cytokine IL-10 and its family members have been implicated in autoimmune diseases and we have previously reported that genetic variants in IL-10 were associated with a rare group of diseases called juvenile idiopathic arthritis (JIA). The aim of this study was to fine map genetic variants within the IL-10 cytokine family cluster on chromosome 1 using linkage disequilibrium (LD)-tagging single nucleotide polymorphisms (tSNPs) approach with imputation and conditional analysis to test for disease associations.

Methodology/Principal Findings

Fifty-three tSNPs were tested for association between Caucasian paediatric cohorts [219 systemic JIA (sJIA), 187 persistent oligoarticular JIA (pOJIA), and 139 extended OJIA (eOJIA) patients], and controls (Wellcome Trust control cohort, WTCCC2). Significant association with sJIA was detected at rs1400986 in the promoter of IL-20 (odds ratio 1.53; 95% CI 1.21–1.93; p = 0.0004), but in no other subtypes. Imputation analysis identified additional associated SNPs for pOJIA at IL-20 and IL-24, including a rare, functional, missense variant at IL-24 with a p = 0.0002. Penalised logistic regression analysis with HyperLasso and conditional analysis identified several further associations with JIA subtypes. In particular, haplotype analysis refined the sJIA association, with a joint effect at rs1400986 and rs4129024 in intron 1 of MAPKAPK2 (p = 3.2E−5). For pOJIA, a 3-SNP haplotype including rs1878672 in intron 3 of IL-10 showed evidence for association (p = 0.0018). In eOJIA, rs10863962 (3′UTR of FCAMR) and rs12409577 (intron of IL-19) haplotype showed some evidence of association (p = 0.0003).

Conclusions

This study supports previous association of IL-20 with sJIA. Haplotype analyses provided stronger association signals than single point analyses, while a penalised logistic regression approach also suggested multiple independent association signals. Replication studies are required to confirm or refute these findings. The results indicate that combined effects with unknown/rare variants remain to be characterised in JIA, and represent a possible example of synthetic association in this region.  相似文献   

10.

Background

Autism spectrum disorders (ASD) are a group of severe childhood neurodevelopmental disorders with still unknown etiology. One of the most frequently reported associations is the presence of recurrent de novo or inherited microdeletions and microduplications on chromosome 16p11.2. The analysis of rare variations of 8 candidate genes among the 27 genes located in this region suggested SEZ6L2 as a compelling candidate.

Methodology/Principal Findings

We further explored the role of SEZ6L2 variations by screening its coding part in a group of 452 individuals, including 170 patients with ASD and 282 individuals from different ethnic backgrounds of the Human Genome Diversity Panel (HGDP), complementing the previously reported screening. We detected 7 previously unidentified non-synonymous variations of SEZ6L2 in ASD patients. We also identified 6 non-synonymous variations present only in HGDP. When we merged our results with the previously published, no enrichment of non-synonymous variation in SEZ6L2 was observed in the ASD group compared with controls.

Conclusions/Significance

Our results provide an extensive ascertainment of the genetic variability of SEZ6L2 in human populations and do not support a major role for SEZ6L2 sequence variations in the susceptibility to ASD.  相似文献   

11.
AimWe performed a replication study in a Japanese population to evaluate the association between type 2 diabetes and six susceptibility loci (TMEM154, SSR1, FAF1, POU5F1, ARL15, and MPHOSPH9) originally identified by a transethnic meta-analysis of genome-wide association studies (GWAS) in 2014.MethodsWe genotyped 7,620 Japanese participants (5,817 type 2 diabetes patients and 1,803 controls) for each of the single nucleotide polymorphisms (SNPs) using a multiplex polymerase chain reaction invader assay. The association of each SNP locus with the disease was evaluated using logistic regression analysis.ResultsOf the six SNPs examined in this study, four (rs6813195 near TMEM154, rs17106184 in FAF1, rs3130501 in POU5F1 and rs4275659 near MPHOSPH9) had the same direction of effect as in the original reports, but two (rs9505118 in SSR1 and rs702634 in ARL15) had the opposite direction of effect. Among these loci, rs3130501 and rs4275659 were nominally associated with type 2 diabetes (rs3130501; p = 0.017, odds ratio [OR] = 1.113, 95% confidence interval [CI] 1.019–1.215, rs4275659; p = 0.012, OR = 1.127, 95% CI 1.026–1.238, adjusted for sex, age and body mass index), but we did not observe a significant association with type 2 diabetes for any of the six evaluated SNP loci in our Japanese population.ConclusionsOur results indicate that effects of the six SNP loci identified in the transethnic GWAS meta-analysis are not major among the Japanese, although SNPs in POU5F1 and MPHOSPH9 loci may have some effect on susceptibility to type 2 diabetes in this population.  相似文献   

12.
Several studies suggest involvement of serotoninergic system in the pathophysiology of Autism Spectrum Disorder (ASD). The 5-HT receptor binding studies using 3H-lysergic acid diethylamide (3H-LSD) and linkage analysis provided evidences to consider HTR2A as a potential candidate gene for ASD. The three SNPs, −1438A/G (rs6311), 102T/C (rs6313) and 1354C/T (rs6314) of HTR2A have been well studied in the etiology of various neuropsychiatric disorders. But studies on association of this gene with ASD are limited to two reports from American and Korean populations. Additionally there are reports, which demonstrated paternal imprinting of HTR2A with expression from only one allele. So far no reports are available on HTR2A and its association with any neuropsychiatric disorders from Indian population. Therefore, the present study investigates association of the above mentioned three markers of HTR2A with ASD in Indian population using population and family-based approaches. The study also deals with allelic expression pattern of HTR2A in Peripheral Blood Leukocytes (PBLs) to understand the parental imprinting status. The genotyping analyses were carried out for probands, parents and controls. The subsequent association analyses did not show association of these markers with ASD. So, HTR2A is unlikely to be a genetic marker for ASD in Indian population. The expression analyses showed absence of monoallelic expression, suggesting lack of parental imprinting of HTR2A gene. However, we noticed methylation of the CpG sites at −1438A/G and 102T/C loci of HTR2A gene. Further bioinformatics analysis revealed absence of CpG islands in the promoter of the gene supporting biallelic expression pattern of HTR2A in PBLs.  相似文献   

13.
Genetic variants of leucine-rich repeat kinase 2 (LRRK2) were reported to alter the risk for Parkinson’s disease (PD). However, the genetic spectrum of LRRK2 variants has not been clearly disclosed yet in Taiwanese population. Herein, we sequenced LRRK2 coding region in 70 Taiwanese early onset PD patients (age at onset ≤ 50), and found six amino acid-changing single nucleotide polymorphisms (SNPs, N551K, R1398H, R1628P, S1647T, G2385R and M2397T), one reported (R1441H) and 2 novel missense (R767H and S885N) mutations. We examined the frequency of identified LRRK2 variants by genotyping 573 Taiwanese patients with PD and 503 age-matched control subjects. The results showed that PD patients demonstrated a higher frequency of G2385R A allele (4.6%) than control subjects (2.1%; odds ratio = 2.27, 95% confidence interval: 1.38–3.88, P = 0.0017). Fewer PD patients (27.7%) carried the 1647T-2397T haplotype as compared with the control subjects (33.0%; odds ratio = 0.80, 95% confidence interval: 0.65–0.97, P = 0.0215). However, the frequency of 1647T-2385R-2397T haplotype (4.3%) in PD patients was still higher than in control subjects (1.9%, odds ratio: 2.15, 95% confidence interval: 1.27–3.78, P = 0.0058). While no additional subject was found to carry R767H and R1441H, one more patient was observed to carry the S885N variant. Our results indicate a robust risk association regarding G2385R and a new possible protective haplotype (1647T-2397T). Gene-environmental interaction and a larger cohort study are warranted to validate our findings. Additionally, two new missense mutations (R767H and S885N) regarding LRRK2 in PD patients were identified. Functional studies are needed to elucidate the effects of these LRRK2 variants on protein function.  相似文献   

14.
Autism Spectrum Disorder (ASD) demonstrates high heritability and familial clustering, yet the genetic causes remain only partially understood as a result of extensive clinical and genomic heterogeneity. Whole-genome sequencing (WGS) shows promise as a tool for identifying ASD risk genes as well as unreported mutations in known loci, but an assessment of its full utility in an ASD group has not been performed. We used WGS to examine 32 families with ASD to detect de novo or rare inherited genetic variants predicted to be deleterious (loss-of-function and damaging missense mutations). Among ASD probands, we identified deleterious de novo mutations in six of 32 (19%) families and X-linked or autosomal inherited alterations in ten of 32 (31%) families (some had combinations of mutations). The proportion of families identified with such putative mutations was larger than has been previously reported; this yield was in part due to the comprehensive and uniform coverage afforded by WGS. Deleterious variants were found in four unrecognized, nine known, and eight candidate ASD risk genes. Examples include CAPRIN1 and AFF2 (both linked to FMR1, which is involved in fragile X syndrome), VIP (involved in social-cognitive deficits), and other genes such as SCN2A and KCNQ2 (linked to epilepsy), NRXN1, and CHD7, which causes ASD-associated CHARGE syndrome. Taken together, these results suggest that WGS and thorough bioinformatic analyses for de novo and rare inherited mutations will improve the detection of genetic variants likely to be associated with ASD or its accompanying clinical symptoms.  相似文献   

15.
Autism is a neurodevelopmental disorder clinically characterized by impairment of social interaction, deficits in verbal communication, as well as stereotypic and repetitive behaviors. Several studies have implicated that abnormal synaptogenesis was involved in the incidence of autism. Neuroligins are postsynaptic cell adhesion molecules and interacted with neurexins to regulate the fine balance between excitation and inhibition of synapses. Recently, mutation analysis, cellular and mice models hinted neuroligin mutations probably affected synapse maturation and function. In this study, four missense variations [p.G426S (NLGN3), p.G84R (NLGN4X), p.Q162 K (NLGN4X) and p.A283T (NLGN4X)] in four different unrelated patients have been identified by PCR and direct sequencing. These four missense variations were absent in the 453 controls and have not been reported in 1000 Genomes Project. Bioinformatic analysis of the four missense variations revealed that p.G84R and p.A283T were “Probably Damaging”. The variations may cause abnormal synaptic homeostasis and therefore trigger the patients more predisposed to autism. By case–control analysis, we identified the common SNPs (rs3747333 and rs3747334) in the NLGN4X gene significantly associated with risk for autism [p = 5.09E-005; OR 4.685 (95 % CI 2.073–10.592)]. Our data provided a further evidence for the involvement of NLGN3 and NLGN4X gene in the pathogenesis of autism in Chinese population.  相似文献   

16.
Autism spectrum disorders (ASD) are a group of neurodevelopmental disorders. Recent studies suggested that calcium channel genes might be involved in the genetic etiology of ASD. CACNA1A, encoding an alpha-1 subunit of voltage-gated calcium channel, has been reported to play an important role in neural development. Previous study detected that a single nucleotide polymorphism (SNP) in CACNA1A confers risk to ASD in Central European population. However, the genetic relationship between autism and CACNA1A in Chinese Han population remains unclear. To explore the association of CACNA1A with autism, we performed a family-based association study. First, we carried out a family-based association test between twelve tagged SNPs and autism in 239 trios. To further confirm the association, the sample size was expanded to 553 trios by recruiting 314 additional trios. In a total of 553 trios, we identified association of rs7249246 and rs12609735 with autism though this would not survive after Bonferroni correction. Our findings suggest that CACNA1A might play a role in the etiology of autism.  相似文献   

17.
Peptic ulcer is one of the most common gastrointestinal disorders with complex etiology. Recently we conducted the genome wide association study for duodenal ulcer and identified disease susceptibility variations at two genetic loci corresponding to the Prostate stem cell antigen (PSCA) gene and the ABO blood group (ABO) gene. Here we investigated the association of these variations with gastric ulcer in two Japanese case-control sample sets, a total of 4,291 gastric ulcer cases and 22,665 controls. As a result, a C-allele of rs2294008 at PSCA increased the risk of gastric ulcer with odds ratio (OR) of 1.13 (P value of 5.85×10−7) in an additive model. On the other hand, SNP rs505922 on ABO exhibited inconsistent result between two cohorts. Our finding implies presence of the common genetic variant in the pathogenesis of gastric and duodenal ulcers.  相似文献   

18.
19.

Background

Genetic variants in the complement component 3 gene (C3) have been shown to be associated with age-related macular degeneration (AMD) in Caucasian populations of European descent. In particular, a nonsynonymous coding variant, rs2230199 (R102G), is presumed to be the most likely causal variant in the C3 locus based on strong statistical evidence for disease association and mechanistic functional evidence. However, the risk allele is absent or rare (<1%) in Japanese and Chinese populations, and the association of R102G with AMD has not been reported in Asian populations. Genetic heterogeneity of disease-associated variants among different ethnicities is common in complex diseases. Here, we sought to examine whether other common variants in C3 are associated with wet AMD, a common advanced-stage manifestation of AMD, in a Japanese population.

Methodology/Principal Findings

We genotyped 13 tag single nucleotide polymorphisms (SNPs) that capture the majority of common variations in the C3 locus and tested for associations between these SNPs and wet AMD in a Japanese population comprising 420 case subjects and 197 controls. A noncoding variant in C3 (rs2241394) exhibited statistically significant evidence of association (allelic P = 8.32×10−4; odds ratio = 0.48 [95% CI = 0.31–0.74] for the rs2241394 C allele). Multilocus logistic regression analysis confirmed that the effect of rs2241394 was independent of the previously described loci at ARMS2 and CFH, and that the model including variants in ARMS2 and CFH plus C3 rs2241394 provided a better fit than the model without rs2241394. We found no evidence of epistasis between variants in C3 and CFH, despite the fact that they are involved in the same biological pathway.

Conclusions

Our study provides evidence that C3 is a common AMD-associated locus that transcends racial boundaries and provides an impetus for more detailed genetic characterization of the C3 locus in Asian populations.  相似文献   

20.
The minor allele of the R620W missense single-nucleotide polymorphism (SNP) (rs2476601) in the hematopoietic-specific protein tyrosine phosphatase gene, PTPN22, has been associated with multiple autoimmune diseases, including rheumatoid arthritis (RA). These genetic data, combined with biochemical evidence that this SNP affects PTPN22 function, suggest that this phosphatase is a key regulator of autoimmunity. To determine whether other genetic variants in PTPN22 contribute to the development of RA, we sequenced the coding regions of this gene in 48 white North American patients with RA and identified 15 previously unreported SNPs, including 2 coding SNPs in the catalytic domain. We then genotyped 37 SNPs in or near PTPN22 in 475 patients with RA and 475 individually matched controls (sample set 1) and selected a subset of markers for replication in an additional 661 patients with RA and 1,322 individually matched controls (sample set 2). Analyses of these results predict 10 common (frequency >1%) PTPN22 haplotypes in white North Americans. The sole haplotype found to carry the previously identified W620 risk allele was strongly associated with disease in both sample sets, whereas another haplotype, identical at all other SNPs but carrying the R620 allele, showed no association. R620W, however, does not fully explain the association between PTPN22 and RA, since significant differences between cases and controls persisted in both sample sets after the haplotype data were stratified by R620W. Additional analyses identified two SNPs on a single common haplotype that are associated with RA independent of R620W, suggesting that R620W and at least one additional variant in the PTPN22 gene region influence RA susceptibility.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号